[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63210048A - Hydraulic fine powder material and manufacture - Google Patents

Hydraulic fine powder material and manufacture

Info

Publication number
JPS63210048A
JPS63210048A JP62044822A JP4482287A JPS63210048A JP S63210048 A JPS63210048 A JP S63210048A JP 62044822 A JP62044822 A JP 62044822A JP 4482287 A JP4482287 A JP 4482287A JP S63210048 A JPS63210048 A JP S63210048A
Authority
JP
Japan
Prior art keywords
hydraulic
fine powder
powder material
slag
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62044822A
Other languages
Japanese (ja)
Other versions
JP2548558B2 (en
Inventor
小出 儀治
小崎 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Cement Co Ltd
Original Assignee
Nittetsu Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Cement Co Ltd filed Critical Nittetsu Cement Co Ltd
Priority to JP62044822A priority Critical patent/JP2548558B2/en
Publication of JPS63210048A publication Critical patent/JPS63210048A/en
Application granted granted Critical
Publication of JP2548558B2 publication Critical patent/JP2548558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水硬性微粉末材料およびその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a hydraulic fine powder material and a method for producing the same.

従来の技術 従来のセメント工業において水硬性材料であるセメント
の粉砕はボールミルによる閉回路方式が主流であり、実
用セメントの粉末度もブレーン比表面積で3,000〜
4,000al19 (最大粒径100〜60μm )
である。セメントを高微粉末に粉砕する!方法として粉
砕助剤による方法があるが、この方法を用いてもブレー
ン比表面積で6,000 d/9程度であり、コストが
高くなることやその特性から用途が一部に限られている
。その理由は、製品の粒度が広範囲にわたること、粉砕
の熱エネルギーにより石膏の形態変化を生じ品質に悪影
響をおよぼすこと等によ′る。また、高炉セメントに用
いられるスラグ微粉末については、竪型ローラーミルに
よる微粉砕が試みられているが、被粉砕物が微粉砕され
るに従い、ローラーとテーブルの間隙への噛み込みが悪
くなり、循環物のショートIfスが生じるため、ボール
ミルと同様に粉末度はたかだかブレーン比表面積で6.
000 cJ/p程度である。ボールミルおよび竪型ロ
ーラーミルによる閉回路粉砕系は、いずれもセパレータ
ーを系内1(具備しており、系全体を粉砕工程と称して
いるが、セメント系のような水硬性材料では、ブレーン
比表面積6.000 d79以上の微粉の最大粒径、粒
度範囲を積極的1で制御できる閉回路粉砕系の微粉砕シ
ステムは、いまだに出現していない。
Conventional technology In the conventional cement industry, the mainstream of grinding cement, which is a hydraulic material, is a closed-circuit method using a ball mill, and the fineness of practical cement is 3,000 to 3,000 in Blaine specific surface area.
4,000al19 (maximum particle size 100-60μm)
It is. Grind cement into highly fine powder! As a method, there is a method using a grinding aid, but even if this method is used, the Blaine specific surface area is about 6,000 d/9, and its use is limited due to the high cost and its characteristics. The reasons for this are that the particle size of the product varies over a wide range, and that the thermal energy of crushing causes morphological changes in the gypsum, which adversely affects quality. In addition, attempts have been made to pulverize slag powder used in blast furnace cement using a vertical roller mill, but as the material to be pulverized becomes pulverized, it becomes difficult to get caught in the gap between the roller and the table. Due to the occurrence of short Ifs in the circulating material, the fineness is at most 6.0% in terms of Blaine specific surface area, similar to ball mills.
000 cJ/p. Closed-circuit grinding systems using ball mills and vertical roller mills are both equipped with separators within the system (1), and the entire system is called the grinding process, but for hydraulic materials such as cement, Blaine specific surface area A closed-circuit pulverization system that can actively control the maximum particle size and particle size range of fine powder of 6.000 d79 or more has not yet appeared.

本発明者らは、すでに特許請求範囲第111項記載の水
硬性原材料(以下水硬性原材料と記す)をボールミルで
ブレーン比表面積3,000〜6,000c4/9に粉
砕した後、気流分級機により分級点をIOμm程度とし
て分級することにより、粒径が15μm以下で90重量
鴨以丘含有する優れた水硬性微粉末材料が得られること
を確認した。
The present inventors have already ground the hydraulic raw material described in Claim 111 (hereinafter referred to as hydraulic raw material) in a ball mill to a Blaine specific surface area of 3,000 to 6,000c4/9, and then used an air classifier to It was confirmed that by classifying at a classification point of approximately 10 μm, an excellent hydraulic fine powder material having a particle size of 15 μm or less and containing 90% by weight of grains could be obtained.

この方法によって得られた水硬性微粉末材料は、水硬性
が高いこと、整粒された粒度分布を生かすととKより、
種々の特性を兼備したモルタル・コンクリート・グラウ
ト材の主要組成分として非常に有効であるとの知見を得
ている。本発明者らは、これらの知見に基づき、この製
造方法によって得られた水硬性微粉末材料から、昭和5
5年に注入硬化特性をもつグラウト材[商品名 8鐵ス
ーパーファイン」や、スラグ微粉末系セメント強化材「
商品名 日鐵スピリッツ」等を開発した。
The hydraulic fine powder material obtained by this method has high hydraulic properties and takes advantage of the well-regulated particle size distribution.
It has been found that it is extremely effective as a main component of mortar, concrete, and grout materials that have a variety of properties. Based on these findings, the present inventors have developed a hydraulic fine powder material obtained by this manufacturing method.
Grout material with injection hardening properties in 5 years [Product name 8 Iron Super Fine] and fine slag powder based cement reinforcement material [Product name: 8 Iron Super Fine]
Developed products such as "Nippon Steel Spirits".

発明が解決しようとする問題点 しかし、この製造方法は、ボールミルによる粉砕工程と
気流分級機による分級工程の2つの工程を具備すること
から、分級工程の処理量が小さくマスバランスが合わな
いために輸送および貯蔵設備を必要とすること、分級前
の水硬性材料には粗粉を多く含むため収率が低く、分級
後の粗粉の処理にも設備が必要となる等、設備コストが
高くなるうえ、製造工程の電力原単位も高いという欠点
がある。また、ガラス質高炉スラグ(以下スラグと記す
)のような均質の水硬性原材料の単味分級は問題ないが
、複数の水硬性化合物から成るセメントクリンカ−や数
種の水硬性原材料が混合されたものは、構成化合物およ
び水硬性原材料の被粉砕性に差があるため、ボールミル
で粉砕されて得た水硬性材料とそれを分級した後の水硬
性微粉末材料の組成は異なる。そのため、目的の水硬性
微粉末材料を得るための水硬性原材料の調合が難がしく
、管理しすらいという難点もある。
Problems to be Solved by the Invention However, since this manufacturing method includes two steps: a pulverization step using a ball mill and a classification step using an air classifier, the throughput of the classification step is small and the mass balance does not match. Equipment costs are high because transportation and storage equipment is required, the yield is low because the hydraulic material before classification contains a large amount of coarse powder, and equipment is also required to process the coarse powder after classification. Moreover, there is a drawback that the power consumption rate of the manufacturing process is also high. In addition, although there is no problem in single classification of homogeneous hydraulic raw materials such as glassy blast furnace slag (hereinafter referred to as slag), there is no problem in classifying homogeneous hydraulic raw materials such as glassy blast furnace slag (hereinafter referred to as slag). Since there are differences in the pulverizability of the constituent compounds and hydraulic raw materials, the composition of the hydraulic material obtained by crushing with a ball mill and the hydraulic fine powder material after classification are different. Therefore, it is difficult to mix and manage hydraulic raw materials to obtain the desired hydraulic fine powder material.

問題点を解決するための手段 そこで、本発明者らはかかる実情な踏えて従来の製造方
法にはない直接粉砕工程のみで所要の水硬性微粉末材料
を得ることを目的に微粉砕実験を重ねた結果、乾式媒体
攪拌ミルによる閉回路粉砕方式により、その目的を達成
することができた。
Means to Solve the Problems In view of the above-mentioned circumstances, the present inventors have conducted repeated pulverization experiments with the aim of obtaining the required hydraulic fine powder material using only a direct pulverization process, which is not available in conventional manufacturing methods. As a result, we were able to achieve this objective by using a closed circuit pulverization method using a dry media stirring mill.

すなわち本発明は、ボールミルによる粉砕工程と気流分
級[Kよる分級工程の2つの工程を具備した製造方法C
以下、従来の製造方法と記す)によって製造された水硬
性微粉末材料と同質以との水硬性微粉末材料を、従来の
製造方法とは全く異なる乾式媒体攪拌ミルによる閉回路
粉砕方式で微粉砕して得る製造方法である。
That is, the present invention provides a manufacturing method C comprising two steps: a pulverization step using a ball mill and a classification step using air current classification [K].
Hydraulic fine powder material of the same quality as the hydraulic fine powder material manufactured by the conventional manufacturing method) is finely pulverized using a closed circuit pulverization method using a dry media stirring mill, which is completely different from the conventional manufacturing method. This is a manufacturing method obtained by

乾式媒体攪拌ミルの特徴として、■粉砕媒体圧を大きく
とった摩砕作用のみの粉砕作用のため、ボールミルのよ
うなりッション作用が起らず連続粉砕が可能である。■
ミル本体内に充填した粉砕媒体を攪拌軸で攪拌するだけ
なので粉砕動力が少ない。■摩砕作用のみによる粉砕作
用のため、粉砕温度のL昇が少ない。■原料供給量やミ
ル本体内の通過気流速度の加減により粒度の調整が容易
である等が挙げられる。
The characteristics of the dry media agitation mill are as follows: (1) Since the grinding action is based only on the grinding action using a high grinding media pressure, continuous grinding is possible without the cushioning action that occurs in ball mills. ■
Since the grinding media filled in the mill body is simply stirred by the stirring shaft, the grinding power is low. ■Since the grinding action is based only on the grinding action, the rise in the grinding temperature is small. ■ Particle size can be easily adjusted by adjusting the feed rate of raw materials and the air flow rate inside the mill body.

以下に本発明方法を示す。The method of the present invention is shown below.

貯蔵ホッペー等に貯蔵された水硬性原材料は抽出機によ
って引き出され、乾式媒体攪拌ミルへ供給される。この
時、水硬性原材料へ粉砕助剤(ジエチレングリコール、
トリエタノールアミン等)を添加す石のが好ましい。供
給された水硬性原材料は、乾式媒体攪拌ミルで摩砕作用
(でより微粉砕されてから、系内のセパレーターで分級
され、粒径が15j’m以下で90重量%以1含有する
微粉は系外へ排出され、貯蔵サイロに水硬性微粉末材料
として貯蔵される。
Hydraulic raw materials stored in a storage hopper or the like are drawn out by an extractor and fed to a dry media stirred mill. At this time, grinding aids (diethylene glycol,
Triethanolamine, etc.) is preferably added to the stone. The supplied hydraulic raw materials are finely pulverized by a grinding action in a dry media agitation mill, and then classified by a separator in the system. It is discharged from the system and stored in a storage silo as hydraulic fine powder material.

一方、セパレーターで分級された粗粉は乾式媒体攪拌ミ
ルへ戻されて再粉砕される。このように本発明の製造方
法は、乾式媒体攪拌ミル1(より閉回路粉砕方式で微粉
砕することを特徴としている。
On the other hand, the coarse powder classified by the separator is returned to the dry media stirring mill and re-pulverized. As described above, the manufacturing method of the present invention is characterized in that fine pulverization is carried out using the dry medium stirring mill 1 (closed circuit pulverization method).

実  施  例 以下実施例に基づき説明する。Example The following will be explained based on examples.

実施例1.2.3.4に使用されている各水硬性原材料
は、同一ロッドのものであり、各化学成分は表■に示す
とおりである。
Each hydraulic raw material used in Example 1.2.3.4 is from the same rod, and each chemical composition is as shown in Table 3.

第1表 使用した水硬性原材料の化学成分実施例1 乾燥したスラグをスラグ供給量に対して粉砕助剤(ジエ
チレングリコール)を0.1重量鳴添加して、乾式媒体
攪拌ミルの1種であるタワーミル(′a名 日本タワー
ミル■製KD−100型)で微粉砕し、セパレーターを
経て本発明品のスラグ微粉末を得た。
Table 1 Chemical composition of hydraulic raw materials used Example 1 A tower mill, which is a type of dry media stirring mill, was prepared by adding 0.1 weight of a grinding aid (diethylene glycol) to dried slag based on the amount of slag supplied. (KD-100 model manufactured by Nippon Tower Mill ■) and passed through a separator to obtain a fine slag powder of the present invention.

一方、比較のため同一スラグなセメント用ボールミルで
ll助剤(ジエチレングリコール)ラスラグ供給量に対
して0.1重量鴨添加してブレーン比表面積4.200
 J/P K粉砕し、気流分級機により分級点をおよそ
109mとして比較用スラグ微粉末を得た。本発明のス
ラグ微粉末と比較用スラグ微粉末およびブレーン比表面
#i44,200t)し′グの汎用スラグ粉末の各粒度
をレーザー回折法〔■セイシン企業 SK LASER
MICRON 5IZBR使用〕により測定した結果を
第1図に示す。本発明のスラグ微粉末と比較用スラグ微
粉末の粒度はほぼ同じく15μm以下の含有量が97重
量%以1であった。
On the other hand, for comparison, using the same slag in a cement ball mill, the Blaine specific surface area was 4.200 by adding 0.1 weight of duckweed to the amount of ll auxiliary agent (diethylene glycol) slag supplied.
J/PK pulverization was performed using an air classifier to obtain a slag fine powder for comparison at a classification point of approximately 109 m. The particle sizes of the fine slag powder of the present invention, the comparative fine slag powder, and the general-purpose slag powder of Blaine specific surface #i44,200t) were determined by laser diffraction method [■Seishin Enterprise SK LASER
FIG. 1 shows the results measured using MICRON 5IZBR. The particle size of the fine slag powder of the present invention and the fine slag powder for comparison were almost the same, and the content of particles of 15 μm or less was 97% by weight or more.

本発明品のスラグ微粉末のセメント混和材としての効果
を探く゛るため、ブレーン比表面i3.1201し′2
の普通ポルトランドセメント(以下OPと記す)の50
重量%を本発明のスラグ微粉末で置換した材料(以下N
Tと記す)とOPの50重量%な比較用スラグ微粉末で
置換した材料(以下NSと記す)、およびOPの50重
量%を汎用スラグ粉末で置換した材料(以下NBと記す
)を用いて、JISR5201に基づきモルタル強さ試
験を行なった。
In order to explore the effect of the fine slag powder of the present invention as a cement admixture, Blaine specific surface i3.1201'2
50 of Ordinary Portland Cement (hereinafter referred to as OP)
The material (hereinafter referred to as N
Using a material (hereinafter referred to as NS) in which 50% by weight of OP was replaced with comparative fine slag powder (hereinafter referred to as T) and a material in which 50% by weight of OP was replaced with general-purpose slag powder (hereinafter referred to as NB). A mortar strength test was conducted based on JISR5201.

その結果を第2表に示す。The results are shown in Table 2.

第2表より、NTモルタルとNSモルタルは、材令3日
でN8モルタルと02モルタルの圧縮強度を1回り、材
令28日では約1.4〜1.5倍の強度になることが確
認された。また、NTモルタルは材令3日および7日の
強度はNSモルタルに比べて高い。これは、摩砕作用の
み((よる微粉砕のために、メカノケミカル効果により
表面の活性度が向上するためと考えられる。以りの実施
例から、本発明のスラグ微粉末は比較用スラグ微粉末と
同等具Eの高品質であることがわかった。
From Table 2, it is confirmed that the compressive strength of NT mortar and NS mortar is about 1 times the compressive strength of N8 mortar and 02 mortar at 3 days old, and about 1.4 to 1.5 times stronger at 28 days old. It was done. Furthermore, the strength of NT mortar at 3 and 7 days of age is higher than that of NS mortar. This is thought to be due to the mechanochemical effect that improves the surface activity due to the pulverization caused by the attrition action alone. It was found that the powder and the same material E were of high quality.

なお、本発明の製造方法によって製造されたスラグ微粉
末の製造工程の電力原単位は、従来の製造方法によって
製造された比較用スラグ微粉末の製造工程の電力原単位
に此ぺて、およそ30%低減され、本発明の効果が顕著
であることが確認された。
Note that the power consumption rate of the manufacturing process of the slag fine powder manufactured by the manufacturing method of the present invention is approximately 30% higher than that of the manufacturing process of the comparison slag fine powder manufactured by the conventional manufacturing method. %, and it was confirmed that the effect of the present invention is remarkable.

実施例2 0ツドミルにて最大粒径5Ifi+以下に粉砕したポル
トランドセメントクリンカ−とスラグおよび石膏を第3
表に示す配合で実施例1で用いたクワ−ミルに供給し、
供給量に対して粉砕助剤(ジエチレングリコール)をO
,1iiii%添加して微粉砕し粒径が15μm以下で
95重量%以上を含有する本発明の水硬性微粉末材料T
−1,T−2、T−3、T−4(以下T−1、T−2、
T−3、T−4と記す)を得た。
Example 2 Portland cement clinker, slag, and gypsum pulverized to a maximum particle size of 5 Ifi+ or less in a mill
Supplied to the clay mill used in Example 1 with the formulation shown in the table,
Add grinding aid (diethylene glycol) to the supplied amount.
, 1iii% of the hydraulic fine powder material T of the present invention, which is finely pulverized and has a particle size of 15 μm or less and contains 95% by weight or more.
-1, T-2, T-3, T-4 (hereinafter T-1, T-2,
(denoted as T-3 and T-4) were obtained.

比較用として、セメント用ボールミルでポルトランドセ
メントクリンカ−とスラグおよび石膏を第3表1c示す
配合で、供給量に対して粉砕助剤(ジエチレングリコー
ル)を0,1重量鴨添加して微粉砕し、ブレーン比表面
積6.00Oct/F程度の比較用水硬性微粉末材料B
−1,B−2、B−3゛、B−4(以下B−1、B−2
、B−3、B−4と記す)を得た。
For comparison, Portland cement clinker, slag, and gypsum were finely pulverized in a cement ball mill with the composition shown in Table 3 1c, and a grinding aid (diethylene glycol) was added to the feed amount by 0.1% by weight. Hydraulic fine powder material B for comparison with a specific surface area of about 6.00Oct/F
-1, B-2, B-3゛, B-4 (hereinafter B-1, B-2
, B-3, and B-4) were obtained.

第3表 水硬性微粉材料の配合および粒度また、B−1
材料の粉砕電力原単位を100%とした粉砕電力原単位
指数も第3表1で示した。
Table 3: Composition and particle size of hydraulic fine powder material, B-1
Table 3 also shows the grinding power consumption index, where the grinding power consumption of the material is taken as 100%.

第3表の水硬性微粉末材料を用いて、JIS R520
1に基づいてモルタル強さ試験を行なった。
Using the hydraulic fine powder material in Table 3, JIS R520
A mortar strength test was conducted based on 1.

その結果を第4表に示す。The results are shown in Table 4.

第4表 モルタル強さ試験結実 現在、ブレーン比表面積が6.000 aA/f 、材
令1日の圧縮強度で220 KP/A程度の超早強ポル
トランドセメントが、工期の短縮や一時的補修工事に使
用されているが、セメント用ボールミルでは限界に近い
ブレーン比表面積まで微粉砕するため効率が悪く、コス
トが高くなるなど問題が多い。
Table 4: Mortar strength test At present, ultra-early strength Portland cement with a Blaine specific surface area of 6.000 aA/f and a 1-day compressive strength of about 220 KP/A is suitable for shortening construction periods and temporary repair work. However, ball mills for cement have many problems, such as inefficiency and high cost as they are finely pulverized to a Blaine specific surface area that is close to the limit.

しかし、本発明の製造方法によれば、スラグの配合が3
0%でも十分に高い初期強度の水硬性微粉末材料が、低
コストで得られることが確認された。
However, according to the manufacturing method of the present invention, the slag composition is 3.
It was confirmed that a hydraulic fine powder material with sufficiently high initial strength even at 0% can be obtained at low cost.

以上の実施例により、本発明の製造方法においては、数
種の水硬性原材料を混合微粉砕することが可能であり、
得られた水硬性微粉末材料は高い水硬性を発揮すること
がわかった。また、実施例1で得た本発明のスラグ微粉
末と、実施例2で得られた本発明のT−1を混合するこ
とによっても所要品質の水硬性微粉末材料が得られると
いう知見を得た。
According to the above examples, in the production method of the present invention, it is possible to mix and finely pulverize several types of hydraulic raw materials,
It was found that the obtained hydraulic fine powder material exhibited high hydraulic properties. Furthermore, it was found that a hydraulic fine powder material of the required quality can also be obtained by mixing the fine slag powder of the present invention obtained in Example 1 and T-1 of the present invention obtained in Example 2. Ta.

実施例3 0ツドミルにて最大粒径5■以下に粉砕したポルトラン
ドセメントクリンカ−を43重量%、スラグな53重量
%、石膏を4重量%配合した水硬性原材料を実施例1で
用いたタワーミルに供給し、供給量に対して粉砕助剤(
ジエチレングリコール)を0.1重量%添加して、粒径
が15μm以下で100重量%を含有する本発明の水硬
性微粉末材料(以下TS−1と記す)を得た。比較用と
して、本発明の製造方法と同一配合の水硬性原材料を、
実戦ボールミルで供給量1(対して粉砕助剤(ジエチレ
ングリコール)を0.1重量%添加してブレーン比表面
積5,820 cd/9に微粉砕して得た水硬性微粉末
材料(以下B5−1と記す)、さらにB5−1を気流分
級機で分級点をおよそ10μmとして分級して、比較用
水硬性微粉末材料(以下B5−2と記す)を得た。
Example 3 Hydraulic raw materials containing 43% by weight of Portland cement clinker, 53% by weight of slag, and 4% by weight of gypsum, which were ground to a maximum particle size of 5 cm or less in a 0.0 mm mill, were added to the tower mill used in Example 1. Grinding aid (
A hydraulic fine powder material (hereinafter referred to as TS-1) of the present invention containing 100% by weight and a particle size of 15 μm or less was obtained by adding 0.1% by weight of diethylene glycol). For comparison, hydraulic raw materials with the same formulation as in the production method of the present invention,
Hydraulic fine powder material (hereinafter referred to as B5-1) obtained by finely pulverizing the supply amount 1 (to which 0.1% by weight of a grinding aid (diethylene glycol) with a practical ball mill to a Blaine specific surface area of 5,820 cd/9) B5-1 was further classified using an air classifier at a classification point of approximately 10 μm to obtain a hydraulic fine powder material for comparison (hereinafter referred to as B5-2).

本発明と比較用水硬性微粉末材料の粒度分布を第2図に
示す。本実施例で得た各水硬性微粉末材料の注入特性を
比較するため、直径が551+III+、長さが300
mの透明アクリル樹脂管の下部に高さ+00簡の注入砂
11!(fi浦標準砂0.1問〜0.3 tram 、
空隙率=42%)を作り、丘部の漏斗より注入ミルクを
自然流下させ、注入砂層へ注入ミルクが浸透する長さく
浸透長)を測定した。その結果は、第5表のとおシであ
る。
The particle size distribution of the present invention and the comparative hydraulic fine powder material are shown in FIG. In order to compare the injection characteristics of each hydraulic fine powder material obtained in this example, the diameter was 551+III+ and the length was 300mm.
Injected sand 11 height + 00 cm at the bottom of the transparent acrylic resin tube of m! (fiura standard sand 0.1 question ~ 0.3 tram,
A porosity of 42% was created, and the injected milk was allowed to flow down by gravity from the funnel on the hill, and the length (penetration length) that the injected milk permeated into the injected sand layer was measured. The results are shown in Table 5.

第5表 注入試験結果 第5表より、本発明品のTS−1は、比較量(BS−2
)と同等の゛注入性が得られ、細砂地盤への浸透注入が
可能であることが確認された。
Table 5: Injection test results From Table 5, the comparative amount (BS-2
), and it was confirmed that infiltration into fine sandy ground is possible.

また、実施例1で得た本発明品のスラグ微粉末において
も同様の注入試験を行なったが、浸透長が100 mと
いう結果が得られ、その水利活性から凝集速度も遅く、
優れた注入特性をもつことがわかった。なお、本実施例
から本発明によって得られたTS−1の製造工程の電力
原単位は、比較量B5−2の製造工程の電力原単位に比
べて、およそ15%低減され、本発明の効果が確認され
た。
A similar injection test was also conducted on the fine slag powder of the present invention obtained in Example 1, and the result was that the penetration length was 100 m, and the aggregation rate was slow due to its water use activity.
It was found to have excellent injection properties. In addition, from this example, the power consumption rate of the manufacturing process of TS-1 obtained by the present invention is reduced by approximately 15% compared to the power consumption rate of the manufacturing process of comparative quantity B5-2, which shows the effect of the present invention. was confirmed.

実施例4 従来、スラグ粉末がゲルタイムを調節でき、強度低下の
ない水ガラス系グラウトとしてMS工法として知られて
いるが、粒度が徂いため注入対象地盤の制約があり、水
注入相比を1ばて注入性を高めようとすると、材料分離
が生じ、さらには強度低下を招く結果となる。そこで本
実施例では、実施例1で得られた本発明品のスラグ微粉
末のゲルタイムの調節効果を調べるため、実施例3で得
た本発明品のTS−1の1部をスラグ微粉末で置換した
水硬性微粉末材料08−1.08−2、G5−3.08
−4 (以下08−1、G5−2.08−3、G5−4
と記す)について、第6表に示した実験を行なった。
Example 4 Conventionally, the MS method is known as a water glass grout in which slag powder can adjust the gel time and does not reduce strength, but due to the different particle sizes, there are restrictions on the ground to be poured, and the water injection phase ratio has to be set to 1. If an attempt is made to improve the injectability, material separation will occur, which will further result in a decrease in strength. Therefore, in this example, in order to investigate the effect of adjusting the gel time of the fine slag powder of the present invention obtained in Example 1, a part of the TS-1 of the present invention obtained in Example 3 was treated with fine slag powder. Substituted hydraulic fine powder material 08-1.08-2, G5-3.08
-4 (hereinafter 08-1, G5-2.08-3, G5-4
), the experiments shown in Table 6 were conducted.

第6表よシ、本発明品のスラグ微粉末は、高粉末度にも
かかわらず、ゲルタイムの調節が可能で高強度が維持で
きることがm認された。
As shown in Table 6, the fine slag powder of the present invention was found to be able to control gel time and maintain high strength despite its high degree of fineness.

また、実施例1で得られた比較用スラグ微粉末において
も同じ実験を行なったが、本発明品と同等の特性をもつ
ことが確認された。
Further, the same experiment was conducted on the comparative fine slag powder obtained in Example 1, and it was confirmed that the powder had properties equivalent to those of the product of the present invention.

なお、ポルトランドセメントクリンカ−を含むグラウト
材は、電解質を含む水に出会うと急速(で反応して凝集
沈殿現象を起こすことが知られている。このことは、実
施例3で用いた注入試験器具の注入砂層を海水で満たし
てから、第5表と同一条件で実施例3で得た本発明品の
TS−1のミルクを注入すると15調の浸透長しか得ら
れないことからもわかる。しかし、実施例1で得られた
本発明品のスラグ微粉材料は、同様の注入試験で100
鰭の浸透長が得られた。
It is known that grout material containing Portland cement clinker reacts rapidly when it encounters water containing electrolyte, causing a coagulation and precipitation phenomenon. This can be seen from the fact that when the injected sand layer of 1 is filled with seawater and then the milk of TS-1, the product of the present invention obtained in Example 3, is injected under the same conditions as in Table 5, a penetration length of only 15 steps is obtained.However, , the slag fine powder material of the present invention obtained in Example 1 was found to be 100% in the same injection test.
Fin penetration length was obtained.

従って、電解質を含む海水および温泉水に満たされた地
廟へのグラウト材として、実施例1で得られた本発明品
のスラグ微粉末は有用であり、さらに”は強度・耐久性
の点で石膏を添加した方がより好ましいという知見を得
た。
Therefore, the fine slag powder of the present invention obtained in Example 1 is useful as a grouting material for mausoleums filled with seawater and hot spring water containing electrolytes. It was found that it is more preferable to add gypsum.

本実施例では、実施例1で得られた本発明品のスラグ微
粉末は、従来のグラウト材の適用範囲を大きく広げるす
く゛れた特性をもつことがわかった。
In this example, it was found that the fine slag powder of the present invention obtained in Example 1 has excellent characteristics that greatly expand the range of application of conventional grout materials.

発明の効果 本発明によれば以下のような効果がある。Effect of the invention According to the present invention, there are the following effects.

■本発明によって得られたスラグ微粉末は、従来の製造
方法で得られたスラグ微粉末と比べて、同等以との高い
水和硬化特性をもつと同時に、グラウト材としても適用
範囲の広い優れた特性をもつ。
■Compared to fine slag powder obtained by conventional manufacturing methods, the fine slag powder obtained by the present invention has high hydration hardening properties equivalent to or higher than that of fine slag powder obtained by conventional manufacturing methods. It has certain characteristics.

■本発明によれば、スラグ単味の微粉砕のみならず、数
種の水硬性原材料を配合した材料の混合微粉砕も可能で
あり、得られた水硬性微粉末材料は優れた早期水利性、
注入性をもつ。
■According to the present invention, it is possible not only to finely grind slag alone, but also to mix and finely grind materials containing several types of hydraulic raw materials, and the obtained hydraulic fine powder material has excellent early water availability. ,
Has injectability.

また、本発明の製造方法によれば、 ■水硬性原材料のtoo ii量鴨を水硬性微粉末材料
として得ることができるため、従来の製造方法と比較し
て、製造工程の電力原単位がスラグ微粉末の場合、およ
そ30%、数種の水硬性原材料から成る水硬性微粉末材
料においては、およそ15%低減され、コスト低減効果
がある。
In addition, according to the manufacturing method of the present invention, since it is possible to obtain duck as a hydraulic fine powder material, the power consumption rate of the manufacturing process is lower than that of slag compared to the conventional manufacturing method. In the case of fine powder, it is reduced by about 30%, and in the case of hydraulic fine powder material made of several types of hydraulic raw materials, it is reduced by about 15%, which has a cost reduction effect.

■摩砕による粉砕工程のみであるため、粉砕温度が低い
ので石膏の形態変化がない。
■Since the grinding process involves only grinding, the grinding temperature is low, so there is no change in the form of the gypsum.

■微粉砕部の水硬性原材料と微粉砕後の水硬性微粉末材
料の組成が同一であるため、水硬性原材料の調合が容易
である。
■Since the composition of the hydraulic raw material in the pulverization section and the hydraulic fine powder material after pulverization are the same, it is easy to mix the hydraulic raw material.

■所要の水硬性微粉末材料の粒度の範囲を原材料の供給
量やミル体内の通過気流速度の加減によシ、容易に調節
することができる。
■The particle size range of the required hydraulic fine powder material can be easily adjusted by controlling the feed rate of raw materials and the air flow rate inside the mill.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1で得られた汎用スラグ粉末Aと比較
用スラグ微粉末Bおよび本発明のスラグ微粉末Cの粒度
分布、第2図は実施例3で得られた比較用水硬性微粉末
材料(BS−1)Dと比較用水硬性微粉末材料(BS−
2)−B、および本発明の水硬性微粉末材料(TS−1
)Fの粒度分布を示す説明図である。
Figure 1 shows the particle size distribution of general-purpose slag powder A obtained in Example 1, comparative fine slag powder B, and fine slag powder C of the present invention, and Figure 2 shows the comparative hydraulic fine powder obtained in Example 3. Powder material (BS-1) D and comparative hydraulic fine powder material (BS-
2)-B, and the hydraulic fine powder material of the present invention (TS-1
) is an explanatory diagram showing the particle size distribution of F.

Claims (3)

【特許請求の範囲】[Claims] (1)ガラス質高炉スラグ、セメントクリンカー、石膏
各単独もしくは、これらの混合物を微粉砕して得られた
微粉末であって、その粒径が15μm以下で90重量%
以上含有する水硬性微粉末材料。
(1) Fine powder obtained by pulverizing vitreous blast furnace slag, cement clinker, and gypsum alone or a mixture thereof, with a particle size of 15 μm or less and 90% by weight.
Hydraulic fine powder material containing the above.
(2)上記の水硬性微粉末材料を用いることを特徴とし
た高強度・高耐久性モルタル・コンクリート用組成物、
超早強セメント、グラウト材の製造方法。
(2) A composition for high strength and high durability mortar/concrete characterized by using the above-mentioned hydraulic fine powder material,
A method for producing ultra-early strength cement and grout.
(3)特許請求の範囲第(1)項記載の水硬性原材料を
微粉砕機で閉回路方式により直接微粉砕することを特徴
とした水硬性微粉末材料の製造方法。
(3) A method for producing a hydraulic fine powder material, which comprises directly pulverizing the hydraulic raw material according to claim (1) using a pulverizer in a closed circuit system.
JP62044822A 1987-02-26 1987-02-26 Method for producing hydraulic fine powder Expired - Lifetime JP2548558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62044822A JP2548558B2 (en) 1987-02-26 1987-02-26 Method for producing hydraulic fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62044822A JP2548558B2 (en) 1987-02-26 1987-02-26 Method for producing hydraulic fine powder

Publications (2)

Publication Number Publication Date
JPS63210048A true JPS63210048A (en) 1988-08-31
JP2548558B2 JP2548558B2 (en) 1996-10-30

Family

ID=12702144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62044822A Expired - Lifetime JP2548558B2 (en) 1987-02-26 1987-02-26 Method for producing hydraulic fine powder

Country Status (1)

Country Link
JP (1) JP2548558B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320646A (en) * 1992-05-26 1993-12-03 Denki Kagaku Kogyo Kk Flame-resisting grout for binding rock bed
JPH06145662A (en) * 1992-11-05 1994-05-27 Nippon Chem Ind Co Ltd Ground grouting agent and its grouting execution method
JPH06287555A (en) * 1993-03-31 1994-10-11 Onoda Cement Co Ltd Solidifier for organic soft ground
JPH11157895A (en) * 1997-12-03 1999-06-15 Sumitomo Osaka Cement Co Ltd Irritant for retarding soil stabilizer and retarding stabilizer containing the same
JP2000502314A (en) * 1995-12-15 2000-02-29 モンサント・カンパニー Methods for controlling improved rheological properties in cement systems.
JP2001233645A (en) * 2000-02-24 2001-08-28 Taiheiyo Material Kk Ultrafine particle cement
JP2008074669A (en) * 2006-09-21 2008-04-03 Sumitomo Osaka Cement Co Ltd Hardened cement and manufacturing method thereof
JP2016516662A (en) * 2013-03-18 2016-06-09 ザクリトエ アクツヨネルノエ オブスチェストゥヴォ “イメトストゥロイ” Nanocement and production method of nanocement
JP2018168009A (en) * 2017-03-29 2018-11-01 三菱マテリアル株式会社 Method for producing portland cement for controlling drying shrinkage strain

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767051A (en) * 1980-10-06 1982-04-23 Onoda Cement Co Ltd Hydraulic composition
JPS5867781A (en) * 1981-10-19 1983-04-22 Sumitomo Cement Co Ltd Preparation of grauting material based on ultrafine portland cement
JPS61205648A (en) * 1984-11-13 1986-09-11 山陽国策パルプ株式会社 Preparation of high early strength cement slurry

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767051A (en) * 1980-10-06 1982-04-23 Onoda Cement Co Ltd Hydraulic composition
JPS5867781A (en) * 1981-10-19 1983-04-22 Sumitomo Cement Co Ltd Preparation of grauting material based on ultrafine portland cement
JPS61205648A (en) * 1984-11-13 1986-09-11 山陽国策パルプ株式会社 Preparation of high early strength cement slurry

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320646A (en) * 1992-05-26 1993-12-03 Denki Kagaku Kogyo Kk Flame-resisting grout for binding rock bed
JPH06145662A (en) * 1992-11-05 1994-05-27 Nippon Chem Ind Co Ltd Ground grouting agent and its grouting execution method
JPH06287555A (en) * 1993-03-31 1994-10-11 Onoda Cement Co Ltd Solidifier for organic soft ground
JP2000502314A (en) * 1995-12-15 2000-02-29 モンサント・カンパニー Methods for controlling improved rheological properties in cement systems.
JPH11157895A (en) * 1997-12-03 1999-06-15 Sumitomo Osaka Cement Co Ltd Irritant for retarding soil stabilizer and retarding stabilizer containing the same
JP2001233645A (en) * 2000-02-24 2001-08-28 Taiheiyo Material Kk Ultrafine particle cement
JP2008074669A (en) * 2006-09-21 2008-04-03 Sumitomo Osaka Cement Co Ltd Hardened cement and manufacturing method thereof
JP2016516662A (en) * 2013-03-18 2016-06-09 ザクリトエ アクツヨネルノエ オブスチェストゥヴォ “イメトストゥロイ” Nanocement and production method of nanocement
JP2018168009A (en) * 2017-03-29 2018-11-01 三菱マテリアル株式会社 Method for producing portland cement for controlling drying shrinkage strain

Also Published As

Publication number Publication date
JP2548558B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
JP5562863B2 (en) How to process pozzolana
JP3230378B2 (en) Cement composition
JP3230390B2 (en) Method for producing cement composition
JPH0411496B2 (en)
KR101917513B1 (en) Ferronickel slag grinding aid, concrete composition for reducing heat of hydration comprising ferronickel slag and method for preparing the same
JPS63210048A (en) Hydraulic fine powder material and manufacture
JPH11147750A (en) Cement composition
JP3423913B2 (en) Ultra fine cement
JPH05147984A (en) Production of high strength cement
EP2085366A2 (en) Method for producing hydraulic binding agent in a form of activated fly ash, activated fly ash, hydraulic binding agent, sulfur or cement concrete, mineral-asphalt mixture and application of the activated fly ash
JP2626820B2 (en) Manufacturing method of high fine powder blast furnace cement
JPS61205648A (en) Preparation of high early strength cement slurry
JPH09255378A (en) Super fine particle injecting material and its production
US20040134387A1 (en) Additives for the building industry obtained from plant by-products or waste and manufacturing process thereof
JP3619389B2 (en) Method for producing blast furnace slag fine aggregate
JPH0354139A (en) Admixture material for concrete and production thereof
JPH06287555A (en) Solidifier for organic soft ground
JP2869489B2 (en) Hardened spheroidized cement, method for producing the same, and composition for producing the same
JPH0633057A (en) Grout for improving soil
JP3305414B2 (en) How to use demolition concrete waste
JP6347509B2 (en) Manufacturing method of high-strength cementitious hardened
JPH02298366A (en) Grinding adjuvant of mineral substance
JP3583323B2 (en) Blast furnace slag fine aggregate, method for producing the same, and fine aggregate for concrete or mortar
JP2001302296A (en) Admixture for cement and cement composition containing the same
JPS61270240A (en) Manufacture of hydraulic material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term