JPS6320316B2 - - Google Patents
Info
- Publication number
- JPS6320316B2 JPS6320316B2 JP23462782A JP23462782A JPS6320316B2 JP S6320316 B2 JPS6320316 B2 JP S6320316B2 JP 23462782 A JP23462782 A JP 23462782A JP 23462782 A JP23462782 A JP 23462782A JP S6320316 B2 JPS6320316 B2 JP S6320316B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- corrosion
- alloy
- alloy plating
- steel plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005260 corrosion Methods 0.000 claims description 91
- 230000007797 corrosion Effects 0.000 claims description 90
- 229910000831 Steel Inorganic materials 0.000 claims description 78
- 239000010959 steel Substances 0.000 claims description 78
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 26
- 238000010422 painting Methods 0.000 claims description 20
- 238000000576 coating method Methods 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 13
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 12
- 239000010410 layer Substances 0.000 description 91
- 238000007747 plating Methods 0.000 description 70
- 239000000956 alloy Substances 0.000 description 31
- 229910045601 alloy Inorganic materials 0.000 description 31
- 229910007567 Zn-Ni Inorganic materials 0.000 description 26
- 229910007614 Zn—Ni Inorganic materials 0.000 description 26
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 20
- 230000000694 effects Effects 0.000 description 14
- 239000003973 paint Substances 0.000 description 11
- 229910001297 Zn alloy Inorganic materials 0.000 description 10
- 238000012360 testing method Methods 0.000 description 9
- 239000002356 single layer Substances 0.000 description 8
- 239000011701 zinc Substances 0.000 description 8
- 239000010960 cold rolled steel Substances 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 5
- 230000004580 weight loss Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000004070 electrodeposition Methods 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 238000005536 corrosion prevention Methods 0.000 description 3
- 230000003628 erosive effect Effects 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 3
- 229910000368 zinc sulfate Inorganic materials 0.000 description 3
- 229960001763 zinc sulfate Drugs 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 238000007591 painting process Methods 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910007570 Zn-Al Inorganic materials 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating Methods And Accessories (AREA)
Description
【発明の詳細な説明】
本発明は、自動車車体腐蝕の一形態である穴あ
き腐蝕(perforation)に対して有効な、第1層
Ni含有Zn合金めつき・第2層Fe含有Zn合金めつ
きの2層構造を有する塗装後の耐蝕性に優れた表
面処理鋼板に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a first layer that is effective against perforation, which is a form of automobile body corrosion.
This invention relates to a surface-treated steel sheet that has a two-layer structure of Ni-containing Zn alloy plating and a second layer Fe-containing Zn alloy plating, and has excellent corrosion resistance after painting.
近年、自動車車体の腐蝕が大きな問題となつて
おり、この自動車車体の腐蝕は大きく分けて、(1)
外観の劣化、(2)安全及び機能劣化の2つの側面か
ら考慮されるべきであるが、従来は、(1)の点が重
視されており、このため車体用鋼板と車体用塗料
塗膜との密着性あるいは塗装後の腐蝕による塗膜
のふくれ現象などが注目されていた。しかしなが
ら、最近、特に衝突安全性等の(2)の点が大きくク
ローズアツプされてきており、軽量化のための車
体用鋼板の薄肉化とも関連して、対策が必要とな
つてきている。。 Corrosion of automobile bodies has become a major problem in recent years, and corrosion of automobile bodies can be broadly divided into (1)
Deterioration of appearance and (2) safety and functional deterioration should be taken into consideration, but conventionally, emphasis has been placed on point (1), and for this reason, the difference between car body steel plates and car body paint coatings should be considered. Attention has been focused on the adhesion of the paint and the blistering phenomenon of the paint film due to corrosion after painting. However, in recent years, point (2), such as collision safety, has been receiving a lot of attention, and countermeasures have become necessary in conjunction with thinner steel plates for vehicle bodies to reduce weight. .
しかして、安全及び機能劣化の腐蝕の形態は、
自動車用鋼板の平面的な広がりをもつた板厚の減
少を伴なう腐蝕と、狭い平面的範囲内で板厚方向
に穴があく穴あき腐蝕の2つがあり、前者は鋼板
の腐蝕減量で、後者は鋼板の最大侵蝕深さで耐蝕
性が評価され、従つて、自動車用鋼板としてこの
2つの評価の高いことが、安全及び機能劣化を防
止する点から要求されている。 Therefore, the form of corrosion that causes safety and functional deterioration is
There are two types of corrosion: corrosion that involves a reduction in the thickness of an automobile steel plate over a flat area, and pitting corrosion, where holes are formed in the thickness direction within a narrow planar area. The corrosion resistance of the latter is evaluated based on the maximum corrosion depth of the steel plate, and therefore, high evaluations in these two areas are required for automotive steel plates from the viewpoint of safety and prevention of functional deterioration.
一方、自動車用鋼板は自動車に用いられる場合
に、裸の鋼板で用いられるよりも塗装されて用い
られるケースが多くなつてきており、これは、塗
装技術の進歩により従来は塗料の回らなかつた車
体の袋構造部等にも電着塗装などによつて塗料が
回るようになつたためで、このことは鋼板が裸の
ままで使用されるより、塗装された形で腐蝕環境
にさらされる可能性が大きくなつたことを意味し
ている。 On the other hand, when automotive steel sheets are used in automobiles, they are increasingly being painted rather than being used as bare steel sheets, and due to advancements in painting technology, car bodies that previously could not be coated with paint are now being used. This is because paint can now be applied to the bag structure, etc. through electrodeposition coating, and this means that steel plates are more likely to be exposed to a corrosive environment in a painted form than if they were used bare. It means getting bigger.
従つて、前記したような腐蝕の形態と考え合せ
ると、鋼板は裸の状態ではなく、塗装された後の
鋼板の耐蝕性、即ち、腐蝕減量及び最大侵蝕深さ
の両者の改善が重要な技術的課題となつてきてお
り、そして、鋼板が裸の状態における耐蝕性と塗
装後の鋼板の耐蝕性とは一致せず、裸の鋼板の耐
蝕性がよくても塗装鋼板の耐蝕性が良好であると
は必ずしもいうことができない。その理由は、塗
装後の鋼板の腐蝕は塗膜のピンホールあるいは引
掻き傷、更には走行中の異物の衝突による傷によ
つて生じ、その腐蝕が塗膜という物理的な存在が
あるために裸の鋼板の腐蝕の場合とは化学的ある
いは電気的に異なつた機構・形態で進行するから
である。従つて、従来の裸の鋼板の耐蝕性を研究
するのとは全然別の観点から塗装後の鋼板の耐蝕
性を研究する必要性が生じたのである。 Therefore, considering the above-mentioned forms of corrosion, it is important to improve the corrosion resistance of the steel plate after it has been painted rather than in its bare state, that is, to improve both the corrosion weight loss and the maximum corrosion depth. The corrosion resistance of a bare steel plate and the corrosion resistance of a painted steel plate do not match, and even if the corrosion resistance of a bare steel plate is good, the corrosion resistance of a painted steel plate is not the same. It cannot necessarily be said that there is. The reason for this is that corrosion of steel plates after painting occurs due to pinholes or scratches in the paint film, or even scratches caused by collisions with foreign objects while driving, and the corrosion is caused by the physical presence of the paint film, which causes the corrosion to occur when the paint film is exposed. This is because corrosion proceeds through a chemically or electrically different mechanism and form from that of steel plates. Therefore, it became necessary to study the corrosion resistance of coated steel plates from a completely different perspective from the conventional study of the corrosion resistance of bare steel plates.
従来における自動車用防錆鋼板としては、基材
である鋼に対し犠性防蝕効果を有する単一層の
ZnあるいはZn合金めつきが多用されている。 Conventional rust-preventing steel sheets for automobiles are made of a single layer that has a sacrificial corrosion-preventing effect on the base steel.
Zn or Zn alloy plating is often used.
しかして本発明者等は、このような従来からよ
く知られているZnめつき鋼板について、塗装後
の耐蝕性の見地から種々検討した結果、塗装後の
穴あき腐蝕=最大侵蝕深さの点では良好であるも
のの、板厚の減少を伴なう腐蝕=腐蝕減量の点で
はその減量が大き過ぎるため、単一層のZnめつ
きあるいはZn合金めつき層では、最大侵蝕深さ
及び腐蝕減量の両者に対する特性を満足できない
ということを発見した。 However, the present inventors conducted various studies on the well-known Zn-plated steel sheets from the viewpoint of corrosion resistance after painting, and found that hole corrosion after painting = maximum corrosion depth. However, in terms of corrosion accompanied by a decrease in plate thickness = corrosion loss, the loss is too large, so in a single layer of Zn plating or Zn alloy plating layer, the maximum corrosion depth and corrosion loss are It was discovered that the characteristics for both cannot be satisfied.
そして、本発明者等は複数層からなるZn合金
めつき層について研究を重ねた結果、第1層とし
てNiを含有するZn―Ni合金めつき層と、更にそ
の上の第2層としてFeを含有するZn―Fe合金め
つき層の2層のめつきを組合せること、及び、第
1層のNi含有量、第2層のFe含有量を特定する
ことにより、更に、第1層と第2層の付着量の量
的関係を特定することにより、最大侵蝕深さと腐
蝕減量の両者に対する特性に優れた鋼板が得られ
るということを見出し、本発明に係る塗装後の耐
蝕性に優れた表面処理鋼板を完成したのである。 As a result of repeated research on Zn alloy plating layers consisting of multiple layers, the present inventors found that the first layer was a Zn-Ni alloy plating layer containing Ni, and the second layer above was a Zn-Ni alloy plating layer containing Fe. By combining the plating of the two contained Zn-Fe alloy plating layers and specifying the Ni content in the first layer and the Fe content in the second layer, it is possible to By specifying the quantitative relationship between the adhesion amounts of the two layers, it was discovered that a steel plate with excellent properties for both maximum corrosion depth and corrosion loss could be obtained, and the present invention developed a surface with excellent corrosion resistance after painting. They completed the process of producing treated steel sheets.
即ち、本発明に係る塗装後の耐蝕性に優れた表
面処理鋼板の特徴とするところは、鋼板の片面ま
たは両面に第1層としてNiを2wt%〜7wt%含有
するZn―Ni合金電気めつき層を有し、その上の
第2層としてFeを65wt%以上含有するZn―Fe合
金電気めつき層を有することにある。 That is, the surface-treated steel sheet with excellent corrosion resistance after painting according to the present invention is characterized by electroplating of a Zn--Ni alloy containing 2wt% to 7wt% of Ni as a first layer on one or both sides of the steel sheet. The second layer thereon is a Zn--Fe alloy electroplated layer containing 65 wt% or more of Fe.
また、第2層のZn―Fe合金電気めつき層の付
着量を2g/m2以上とし、更に、第1層のZn―Ni
合金電気めつき層の付着量に対する第2層のZn
―Fe合金電気めつき層の付着量の比率(第2層
付着量/第1層付着量)を0.1〜1.0とするのであ
る。 In addition, the adhesion amount of the second layer Zn-Fe alloy electroplated layer is 2 g/m2 or more , and the Zn-Ni alloy layer of the first layer is
Zn of the second layer relative to the amount of alloy electroplated layer
-The ratio of the amount of the Fe alloy electroplated layer (second layer amount/first layer amount) is set to 0.1 to 1.0.
本発明に係る塗装後の耐蝕性に優れた表面処理
鋼板(以下単に本発明鋼板ということがある。ま
た、電気めつきを単にめつきということもある。)
について詳細に説明する。 Surface-treated steel sheet with excellent corrosion resistance after painting according to the present invention (hereinafter sometimes simply referred to as the steel sheet of the present invention. Also, electroplating is sometimes simply referred to as plating).
will be explained in detail.
本発明鋼板は、鋼板の片面または両面に、2種
類のZn合金電気めつき層を2層設けるものであ
り、単一層のZnあるいはZn合金電気めつきでは
最大侵蝕深さ及び腐蝕減量の両者に対して満足で
きなかつた優れた特性を有しているのである。 The steel sheet of the present invention has two types of Zn alloy electroplated layers on one or both sides of the steel sheet, and single-layer Zn or Zn alloy electroplating is difficult to achieve both maximum corrosion depth and corrosion loss. However, it has excellent properties that cannot be satisfied with other materials.
本発明鋼板における、鋼板基体上の第1層の
Zn合金めつき層は、最大侵蝕深さ及び腐蝕減量
を決定する重要なめつき層であり、塗装がなく、
めつき処理された鋼板の裸耐蝕性からみて、Zn
―Ni合金めつきが他のZn合金めつきより高耐蝕
性であることから最適なめつきであり、例えば、
塗装後の腐蝕減量からみて、Zn―Fe合金めつき、
Zn―Al合金めつき、Zn―Cr合金めつき等のZn合
金めつきではZn―Ni合金めつきに比し腐蝕減量
が大きいのである。 In the steel plate of the present invention, the first layer on the steel plate substrate
The Zn alloy plating layer is an important plating layer that determines the maximum corrosion depth and corrosion loss.
In terms of bare corrosion resistance of plated steel sheets, Zn
-Ni alloy plating is the most suitable plating because it has higher corrosion resistance than other Zn alloy plating.For example,
Judging from the corrosion loss after painting, Zn-Fe alloy plating,
Zn alloy plating such as Zn-Al alloy plating and Zn-Cr alloy plating has a larger corrosion loss than Zn-Ni alloy plating.
しかして、最大侵蝕深さと腐蝕減量に対する塗
装後の耐蝕性を優れたものにするのには、Zn―
Ni合金めつき層の、Ni含有量に負うところが多
く、即ち、Ni含有量が7wt%を越えると最大侵蝕
深さが大きくなり、耐穴あき特性が劣化し、ま
た、Ni含有量が2wt%未満では腐蝕減量が増大す
る。よつて、第1層のZn―Ni合金めつき層のNi
含有量は2wt%〜7wt%とする。 Therefore, in order to achieve excellent corrosion resistance after painting in terms of maximum corrosion depth and corrosion loss, Zn-
This is largely due to the Ni content of the Ni alloy plating layer; in other words, when the Ni content exceeds 7wt%, the maximum corrosion depth increases and the puncture resistance deteriorates; If it is less than that, the corrosion weight loss will increase. Therefore, the Ni of the first Zn-Ni alloy plating layer
The content is 2wt% to 7wt%.
次に、本発明鋼板における第1層のZn―Ni合
金めつき層の上の第2層のZn―Fe合金めつき層
は、第1層のZn―Ni合金めつき層の防蝕効果の
持続時間を保持する作用を果す上で重要なもので
あり、第1層のZn―Ni合金めつき層が塗装後の
耐蝕性に優れていても時間の経過につれて耐蝕性
が劣化するようでは、防蝕効果の点から好ましく
なく、従つて、第1層のZn―Ni合金めつき層の
上に更に第2層としてZn―Fe合金めつき層を設
けて、経済的劣化を生じさせないようにするので
ある。 Next, the second Zn-Fe alloy plating layer on the first Zn-Ni alloy plating layer in the steel sheet of the present invention maintains the corrosion-preventing effect of the first Zn-Ni alloy plating layer. This is important in maintaining time, and even if the first Zn-Ni alloy plating layer has excellent corrosion resistance after painting, if the corrosion resistance deteriorates over time, corrosion protection may be necessary. This is not desirable in terms of effectiveness, and therefore, a second Zn-Fe alloy plating layer is provided on top of the first Zn-Ni alloy plating layer to prevent economic deterioration. be.
また、このZn―Fe合金めつきは、塗料の塗膜
との密着性が他の合金めつきより優れており、第
1層のZn―Ni合金めつきとの相乗作用で鋼板に
対する犠性防蝕の効果を保持する時間を長くする
ことができる。この犠性防蝕効果は、塗装後の耐
蝕性、特に最大侵蝕深さの防止の向上に寄与する
もので、この犠性防蝕効果が小さければ鋼板の板
厚方向への腐蝕が促進され、最大侵蝕深さが大き
くなる。さらに、第2層のZn―Fe合金めつき層
は犠性防蝕効果の外に塗装後の耐蝕性を有してい
るものである。従つて、上記した種々の効果を奏
させるには、第2層のZn―Fe合金めつき層のFe
含有量は67wt%以上でなければならず、また、
65wt%未満の含有では著しく腐蝕減量が増加す
るようになる。この理由は、Zn含有量が35wt%
を越えると、Znの犠牲防蝕作用が極端に進行し、
逆に、第1層のZn―Ni合金めつき層との相乗作
用が失なわれると共に、それ自身の耐蝕性を損な
うものと推察される。 In addition, this Zn-Fe alloy plating has better adhesion to the paint film than other alloy platings, and has a synergistic effect with the first layer of Zn-Ni alloy plating to prevent sacrificial corrosion on steel sheets. The effect can be maintained for a longer time. This sacrificial corrosion prevention effect contributes to improving the corrosion resistance after painting, especially preventing the maximum corrosion depth.If this sacrificial corrosion prevention effect is small, corrosion in the thickness direction of the steel plate will be accelerated, and the maximum corrosion depth will be increased. Depth increases. Furthermore, the second Zn--Fe alloy plating layer has not only a sacrificial corrosion-preventing effect but also corrosion resistance after painting. Therefore, in order to achieve the various effects described above, the Fe of the second Zn-Fe alloy plating layer must be
The content must be at least 67wt%, and
If the content is less than 65 wt%, the corrosion loss will significantly increase. The reason for this is that the Zn content is 35wt%
If the
On the contrary, it is presumed that the synergistic effect with the first layer of Zn--Ni alloy plating layer is lost and its own corrosion resistance is impaired.
この外、本発明鋼板において、塗装後の耐蝕性
を一層向上させるために第2層のZn―Fe合金め
つき層の付着量を2g/m2以上とし、かつ、第1
層のZn―Ni合金めつき層の付着量と第2層のZn
―Fe合金めつきの付着量との比率(第2層付着
量/第1層付着量)0.1〜1.0とするのがよく、厳
しい腐蝕環境に対しては、0.4〜0.9の範囲とする
のがよい。 In addition, in the steel sheet of the present invention, in order to further improve the corrosion resistance after coating, the amount of the second Zn-Fe alloy plating layer is set to 2 g/m 2 or more, and the first layer
Adhesion amount of Zn-Ni alloy plating layer and Zn of second layer
- The ratio of the Fe alloy plating to the deposited amount (second layer deposited amount/first layer deposited amount) is preferably 0.1 to 1.0, and for severe corrosive environments, it is recommended to be in the range of 0.4 to 0.9. .
この第2層のZn―Fe合金めつき層の付着量を
2g/m2以上とするのは、付着量が2g/m2未満で
はZn―Ni合金めつき層単一の場合に近似するた
めに、塗装後の最大侵蝕深さ=穴あき深さが増大
してこれらの腐蝕防止効果が期待できず、また、
第1層のZn―Ni合金めつき層及び第2層のZn―
Fe合金めつき層の総付着量は、一般的には、鋼
板の使用される腐蝕環境により決定されるが、腐
蝕環境が厳しい場合には40g/m2あるいはそれ以
上に厚目に付着させる必要があり、それ程厳しく
ない腐蝕環境では鋼板の加工性や溶接性を考慮し
て20g/m2程度の薄目の付着量とするのがよい。 The adhesion amount of this second Zn-Fe alloy plating layer is
The reason why the coating amount is 2 g/m 2 or more is that if the coating amount is less than 2 g/m 2 , it will approximate the case of a single Zn-Ni alloy plating layer, so the maximum corrosion depth after painting = hole depth will increase. Therefore, these corrosion prevention effects cannot be expected, and
First layer of Zn-Ni alloy plating layer and second layer of Zn-
The total amount of Fe alloy plating layer deposited is generally determined by the corrosive environment in which the steel plate is used, but if the corrosive environment is severe, it is necessary to deposit it thickly at 40 g/m 2 or more. Therefore, in less severe corrosive environments, it is best to use a thin coating weight of about 20 g/m 2 in consideration of the workability and weldability of the steel plate.
次に、第1層のZn―Ni合金めつき層の付着量
と第2層のZn―Fe合金めつき付着量の比率につ
いて説明すると、この比率が0.1未満の場合、あ
るいは、1.0を越える場合、何れの場合でも最大
侵蝕深さを防止する効果を保証するのが困難とな
る。 Next, we will explain the ratio between the amount of Zn--Ni alloy plating in the first layer and the amount of Zn--Fe alloy plating in the second layer.If this ratio is less than 0.1 or exceeds 1.0, In either case, it is difficult to guarantee the effect of preventing the maximum erosion depth.
本発明に係る塗装後の耐蝕性に優れた表面処理
鋼板の実施例を説明する。 An example of a surface-treated steel sheet with excellent corrosion resistance after painting according to the present invention will be described.
実施例 1
板厚0.8mmの冷間圧延鋼板を常法にて、電解脱
脂、酸洗後以下に示す条件で第1層のZn―Ni合
金電気めつきを施した。Example 1 A cold rolled steel plate having a thickness of 0.8 mm was electrolytically degreased and pickled using a conventional method, and then a first layer of Zn--Ni alloy was electroplated under the conditions shown below.
めつき浴組成:硫酸亜鉛、硫酸ニツケル
めつき浴温度:60℃
めつき浴PH:1.5
電流密度:30A/dm2
陽極:Pt
このめつき処理条件によつて、浴組成を調整す
ることにより付着量を17g/m2と一定としたが、
Ni含有量の異なるZn―Ni合金電気めつき鋼板を
作つた。Plating bath composition: Zinc sulfate, nickel sulfate Plating bath temperature: 60℃ Plating bath PH: 1.5 Current density: 30A/dm 2 Anode: Pt Based on these plating processing conditions, adhesion can be achieved by adjusting the bath composition. The amount was set constant at 17g/ m2 , but
Zn-Ni alloy electroplated steel sheets with different Ni contents were fabricated.
このNi含有量の異なるZn―Ni合金電気めつき
鋼板を水洗後、以下に示すめつき条件により第2
層のZn―Fe合金電気めつきを施した。 After washing these Zn-Ni alloy electroplated steel sheets with different Ni contents, a second plated plate was applied under the plating conditions shown below.
A layer of Zn-Fe alloy was electroplated.
めつき浴組成:硫酸第1鉄、硫酸亜鉛、硫酸ア
ンモニウム
めつき浴温度:60℃
めつき浴PH:2.0
電流密度:30A/dm2
めつき付着量:7g/m2
Zn―Fe合金電気めつき層のFe含有量
:85wt%
このように、第1層及び第2層の合金電気めつ
きを施した鋼板を、自動車用塗装工程に従い、浸
漬法りん酸亜鉛処理、カチオン電着塗装を行なつ
た後、塗膜に素地に達するクロスカツトを入れ、
5%塩水噴霧(50℃×16Hr)→乾燥(50℃×
3Hr)→5%塩水浸漬(50℃×16Hr)→自然放
置(2Hr)の腐蝕サイクルからなる複合試験を30
サイクル行なつた。Plating bath composition: ferrous sulfate, zinc sulfate, ammonium sulfate Plating bath temperature: 60℃ Plating bath PH: 2.0 Current density: 30A/dm 2 Plating coverage: 7g/m 2 Zn-Fe alloy electroplating Fe content of the layer: 85wt% In this way, the steel sheets subjected to the alloy electroplating of the first and second layers were subjected to immersion zinc phosphate treatment and cationic electrodeposition coating according to the automotive painting process. After that, a cross cut is made in the coating film to reach the substrate.
5% salt water spray (50℃×16Hr) → Drying (50℃×
A composite test consisting of a corrosion cycle of 3 hours) → 5% salt water immersion (50℃ x 16 hours) → natural standing (2 hours) was conducted for 30 days.
I did the cycle.
試験後鋼板の塗膜、錆を除去した後、ダイアル
ゲージで腐蝕穴の深さを測定し、最大侵蝕深さを
求めた。その結果を第1図に示す。第1図におい
て、供試材は7種類であり、〇印は第1層のZn
―Ni合金めつき層のNi含有量が2wt%%、3.8wt
%%、6.5wt%%の本発明鋼板を示し、●印は
0.5wt%、8.5wt%、11wt%、14wt%のNi含有量
で本発明鋼板のNi含有量の範囲を逸脱している
比較材を示してある。なお、第1図に△印の単一
層のZn―Ni合金めつき層を有する鋼板を本発明
鋼板と同様に自動車塗装工程処理及び複合サイク
ル試験を行ない、この鋼板(めつき付着量:
24g/m2、Ni含有量を○印、及び●印と同様に変
化させたもの。)の結果も示してある。この第1
図からわかる通り、第1層のZn―Ni合金めつき
層のNi含有量が7wt%を越えている比較材及び
Zn―Ni単一層合金めつき鋼板とも、本発明鋼板
に比して最大侵蝕深さが大となつており、本発明
鋼板は最大侵蝕深さに対する耐蝕性が優れている
ことが証明されている。 After removing the paint film and rust from the steel plate after the test, the depth of the corrosion hole was measured using a dial gauge to determine the maximum corrosion depth. The results are shown in FIG. In Figure 1, there are seven types of test materials, and the circle mark indicates the Zn of the first layer.
-Ni content of Ni alloy plating layer is 2wt%, 3.8wt
%%, 6.5wt%% of the present invention steel plate, ● mark indicates
Comparative materials with Ni contents of 0.5wt%, 8.5wt%, 11wt%, and 14wt%, which are outside the range of the Ni content of the steel sheet of the present invention, are shown. In addition, a steel plate having a single layer of Zn-Ni alloy plating layer marked with △ in Fig. 1 was subjected to an automobile painting process and a combined cycle test in the same manner as the steel plate of the present invention, and this steel plate (plating amount:
24g/m 2 , the Ni content was changed in the same way as marked with ○ and marked with ●. ) results are also shown. This first
As can be seen from the figure, comparative materials and
The maximum corrosion depth of both the Zn-Ni single layer alloy coated steel sheets is larger than that of the steel sheet of the present invention, proving that the steel sheet of the present invention has excellent corrosion resistance at the maximum corrosion depth. .
また、塗膜、錆を除去したZn―Fe合金めつき
層及びZn―Ni合金めつき層を有する鋼板の重量
を測定し、複合サイクル試験による鋼板の腐蝕減
量を測定した結果を第2図に示す。この第2図か
ら明らかであるが、第1層のZn―Ni合金めつき
層のNi含有量が2wt%未満では急激な腐蝕減量の
増加傾向が生じ、2wt%を越える本発明鋼板にお
いては腐蝕減量に対する耐蝕性にすぐれているこ
とがわかる。 In addition, the weight of the steel plate with the Zn-Fe alloy plating layer and the Zn-Ni alloy plating layer with the paint film and rust removed was measured, and the corrosion loss of the steel plate was measured by a combined cycle test. The results are shown in Figure 2. show. As is clear from FIG. 2, when the Ni content of the first Zn-Ni alloy plated layer is less than 2wt%, the corrosion weight loss tends to increase rapidly, and when the Ni content exceeds 2wt%, the corrosion loss occurs in the steel sheet of the present invention. It can be seen that it has excellent corrosion resistance against weight loss.
実施例 2
板厚0.8mmの冷間圧延鋼板に実施例1の同様の
方法により、第1層Zn―Ni合金めつき層(付着
量:20g/m2、Ni含有量:6.5wt%)、第2層Zn―
Fe合金めつき層(付着量:4g/m2、Fe含有量:
85wt%)を有する本発明鋼板を作り、めつき層
の鋼板に対する犠牲防蝕効果について調査した。
その結果を第3図に示す。また、試験装置の概略
図を第6図に示す。第6図の試験装置において、
Aは本発明鋼板(アノード)、Bは裸の冷間圧延
鋼板(カソード)であり、これらを100Ωの抵抗
を介して接続し、Cの5%NaCl水溶液(PH:7、
室温)に浸漬し、冷間圧延鋼板からめつき鋼板へ
流れる電流をDのポテンシヨメータにより電位差
として測定するものである。この2枚の鋼板は斜
線部S(cm2)を除いてNaCl水溶液に対しシールさ
れており、カツプリング電流は次式により計算さ
れる。Example 2 A first Zn--Ni alloy plating layer (deposition amount: 20 g/m 2 , Ni content: 6.5 wt%) was applied to a cold-rolled steel plate with a thickness of 0.8 mm using the same method as in Example 1. 2nd layer Zn-
Fe alloy plating layer (coating amount: 4g/m 2 , Fe content:
A steel plate of the present invention having a corrosion resistance of 85 wt%) was produced, and the sacrificial corrosion protection effect of the plating layer on the steel plate was investigated.
The results are shown in FIG. Moreover, a schematic diagram of the test apparatus is shown in FIG. In the test apparatus shown in Fig. 6,
A is the steel plate of the present invention (anode), B is a bare cold-rolled steel plate (cathode), these are connected through a 100Ω resistor, and C is a 5% NaCl aqueous solution (PH: 7,
(room temperature), and the current flowing from the cold-rolled steel sheet to the plated steel sheet is measured as a potential difference using a potentiometer D. These two steel plates are sealed from the NaCl aqueous solution except for the shaded area S (cm 2 ), and the coupling current is calculated by the following equation.
カツプリング電流(A/cm2)
=抵抗により生じる電位差(V)/100Ω÷S(cm2)
第3図において、鋼板の浸漬時間の経過に伴な
うカツプリング電流の減少は、めつき層の鋼板に
対する犠牲防蝕効果の減少を示しており、○印は
本発明鋼板であり、△印は比較材としてのZn―
Ni合金めつき単一層を有する鋼板(付着量:
20g/m2、Ni含有量:6.5wt%)である。Coupling current (A/cm 2 ) = Potential difference generated by resistance (V) / 100Ω ÷ S (cm 2 ) In Figure 3, the decrease in coupling current as the steel plate immerses time elapses, ○ indicates the steel plate of the present invention, and △ indicates the Zn-
Steel plate with single layer of Ni alloy plating (coating amount:
20g/m 2 , Ni content: 6.5wt%).
第3図から明らかであるが、本発明鋼板は犠牲
防蝕効果が約168時間持続しているが、Zn―Ni合
金めつき単一層の比較材は約108時間しか持続せ
ず、本発明鋼板はめつき層が鋼板を保護する犠牲
防蝕効果はその保持時間が非常に長時間にわたつ
て保持時間に優れている。 As is clear from FIG. 3, the sacrificial corrosion protection effect of the steel plate of the present invention lasts for about 168 hours, but the comparative material with a single layer of Zn-Ni alloy plating lasts only about 108 hours, and the sacrificial corrosion protection effect of the steel plate of the present invention lasts only about 108 hours. The sacrificial anti-corrosion effect of the coating layer that protects the steel plate has an excellent retention time over a very long period of time.
実施例 3
板厚0.8mmの冷間圧延鋼板に実施例1と同様な
方法により、第1層のZn―Nii合金電気めつきを
行ない(付着量:17g/m2、Ni含有量:6.5wt
%)、次いで、この第1層のZn―Ni合金めつき層
の上に設ける第2層は、Fe含有量が23wt%、
45wt%、69wt%、85wt%と異なるZn―Fe合金電
気めつき層を付着量を7g/m2に一定とした。な
お、Fe含有量の調整はめつき浴の硫酸亜鉛の量
を調整することにより行なつた。Example 3 A first layer of Zn-Nii alloy was electroplated on a cold-rolled steel plate with a thickness of 0.8 mm using the same method as in Example 1 (coating amount: 17 g/m 2 , Ni content: 6.5 wt).
%), then the second layer provided on the first layer of Zn-Ni alloy plating layer has an Fe content of 23 wt%,
The deposited amount of different Zn-Fe alloy electroplated layers of 45wt%, 69wt%, and 85wt% was kept constant at 7g/ m2 . The Fe content was adjusted by adjusting the amount of zinc sulfate in the plating bath.
これらのめつき鋼板を実施例1と同様な方法に
より、浸漬法りん酸塩処理、カチオン電着塗装を
行なつた後、複合サイクル試験を30サイクル実施
し、鋼板の腐蝕減量を調査した。この結果を第4
図に示す。この第4図において、○印は第2層の
Zn―Fe合金めつき層のFe含有量が69wt%、85wt
%の本発明鋼板で、●印はFe含有量が23wt%、
45wt%の比較材であり、第4図からわかるよう
に、Fe含有量が65wt%以上の本発明鋼板は腐蝕
減量に対して優れた特性を有しており、逆に、
Fe含有量が65wt%未満の比較材は劣つているこ
とは明らかである。 These plated steel plates were subjected to dipping phosphate treatment and cationic electrodeposition coating in the same manner as in Example 1, and then a combined cycle test was conducted for 30 cycles to investigate the weight loss due to corrosion of the steel plates. This result is the fourth
As shown in the figure. In this figure 4, the circle mark indicates the second layer.
Fe content of Zn-Fe alloy plating layer is 69wt%, 85wt
% of the steel sheet of the present invention, the ● mark indicates that the Fe content is 23wt%,
As can be seen from Fig. 4, the steel sheet of the present invention with an Fe content of 65 wt% or more has excellent properties against corrosion loss.
It is clear that comparative materials with Fe content of less than 65 wt% are inferior.
実施例 4
板厚0.8mmの冷間圧延鋼板を実施例1と同様な
方法で、第1図のZn―Ni合金電気めつき層(Ni
含有量:6.5wt%)、第2層のZn―Fe合金電気め
つき層(Fe含有量:85wt%)の本発明鋼板を作
成した。この時の二層の合計付着量は24g/m2と
一定にし、第1層Zn―Ni合金めつき層と第2層
Zn―Fe合金めつき層の付着量の比率の異なる鋼
板とした。即ち、第2層付着量/第1層付着量の
比率を、0(Zn―Ni合金めつき単一層)、0.2、
0.4、0.7、1.0、1.4、2.0と変化させた。Example 4 A cold-rolled steel plate with a thickness of 0.8 mm was coated with a Zn-Ni alloy electroplated layer (Ni
A steel plate of the present invention was prepared with a second Zn-Fe alloy electroplated layer (Fe content: 85 wt%). At this time, the total deposited amount of the two layers was kept constant at 24g/ m2 , and the first layer Zn-Ni alloy plated layer and the second layer
Steel sheets with different ratios of the amount of Zn-Fe alloy plating layer deposited were used. That is, the ratio of second layer adhesion amount/first layer adhesion amount is 0 (Zn-Ni alloy plated single layer), 0.2,
It was changed to 0.4, 0.7, 1.0, 1.4, and 2.0.
これらの鋼板を実施例1と同様の方法で、浸漬
法りん酸塩処理、カチオン電着塗装後、複合サイ
クル試験を30サイクル実施し、最大侵蝕深さを測
定した。その結果を第5図に示す。この第5図か
ら明らかであるが、第1層第2層の付着量の比率
が0.1〜1.0の範囲において最大侵蝕深さが最低と
なり、この範囲が再大侵蝕深さに対する効果が優
れていることがわかる。 These steel plates were subjected to immersion phosphate treatment and cationic electrodeposition coating in the same manner as in Example 1, and then subjected to a combined cycle test for 30 cycles to measure the maximum corrosion depth. The results are shown in FIG. It is clear from Fig. 5 that the maximum erosion depth is the lowest when the ratio of the adhesion amount of the first layer to the second layer is in the range of 0.1 to 1.0, and this range has an excellent effect on the depth of re-major erosion. I understand that.
以上説明したように、本発明に係る塗装後の耐
蝕性に優れた表面処理鋼板は上記の構成を有して
いるものであるから、塗装後の腐蝕減量及び最大
腐蝕深さに対して優れた効果があり、特に、自動
車用の防錆鋼板として最適のもので、工業的に極
めて有用である。 As explained above, the surface-treated steel sheet with excellent corrosion resistance after painting according to the present invention has the above structure, so it has excellent corrosion resistance after painting and maximum corrosion depth. It is particularly effective as a rust-proof steel plate for automobiles, and is extremely useful industrially.
第1図はZn―Ni合金めつき層のNi含有量と最
大侵蝕深さの関係を示す図、第2図はZn―Ni合
金めつき層のNi含有量と腐蝕減量との関係を示
す図、第3図はカツプリング電流の時間的変化を
示す図、第4図は第2層Zn―Fe合金めつき層の
Fe含有量と腐蝕減量との関係を示す図、第5図
は(第2層Zn―Fe合金めつき層付着量/第1層
Zn―Ni合金めつき層付着量)の比率と最大侵蝕
深さとの関係を示す図、第6図はカツプリング電
流測定装置の概略図である。
A……本発明鋼板、B……冷間圧延鋼板、C…
…NaCl水溶液、D……ポテンシヨメータ、S…
…露出部。
Figure 1 is a diagram showing the relationship between the Ni content of the Zn-Ni alloy plating layer and the maximum corrosion depth, and Figure 2 is a diagram showing the relationship between the Ni content and corrosion loss of the Zn-Ni alloy plating layer. , Figure 3 shows the temporal change in coupling current, and Figure 4 shows the change in the coupling current over time.
Figure 5 shows the relationship between Fe content and corrosion loss.
Figure 6 is a diagram showing the relationship between the ratio of Zn--Ni alloy plating layer (amount of adhesion) and maximum corrosion depth, and is a schematic diagram of a coupling current measuring device. A...Steel plate of the present invention, B...Cold rolled steel plate, C...
...NaCl aqueous solution, D...potentiometer, S...
...Exposed part.
Claims (1)
2wt%〜7wt%含有するZn―Ni合金電気めつき層
を有し、その上の第2層としてFeを65wt%以上
含有するZn―Fe合金電気めつき層を有すること
を特徴とする塗装後の耐蝕性に優れた表面処理鋼
板。 2 第2層のZn―Fe合金電気めつき層の付着量
が2g/m2以上で、かつ、第1層のZn―Ni合金電
気めつき層の付着量に対する第2層のZn―Fe合
金電気めつき層の付着量の比率(第2層付着量/
第1層付着量)が0.1〜1.0である特許請求の範囲
第1項に記載の塗装後の耐蝕性に優れた表面処理
鋼板。[Claims] 1. Ni is applied as a first layer on one or both sides of a steel plate.
After painting, which is characterized by having a Zn--Ni alloy electroplated layer containing 2 wt% to 7 wt%, and a Zn--Fe alloy electroplated layer containing 65 wt% or more of Fe as a second layer thereon. A surface-treated steel sheet with excellent corrosion resistance. 2. The amount of Zn--Fe alloy electroplated layer of the second layer is 2 g/m2 or more, and the amount of Zn--Fe alloy of the second layer is relative to the amount of electroplated Zn--Ni alloy layer of the first layer. Ratio of electroplated layer adhesion amount (second layer adhesion amount/
The surface-treated steel sheet with excellent corrosion resistance after painting as claimed in claim 1, wherein the coating weight of the first layer is 0.1 to 1.0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23462782A JPS59116393A (en) | 1982-12-23 | 1982-12-23 | Surface-treated steel sheet with superior corrosion resistance after coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23462782A JPS59116393A (en) | 1982-12-23 | 1982-12-23 | Surface-treated steel sheet with superior corrosion resistance after coating |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59116393A JPS59116393A (en) | 1984-07-05 |
JPS6320316B2 true JPS6320316B2 (en) | 1988-04-27 |
Family
ID=16973995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23462782A Granted JPS59116393A (en) | 1982-12-23 | 1982-12-23 | Surface-treated steel sheet with superior corrosion resistance after coating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59116393A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4835066A (en) * | 1986-01-25 | 1989-05-30 | Nisshin Steel Co., Ltd. | Plated steel sheet having excellent coating performance |
JPS62228498A (en) * | 1986-03-29 | 1987-10-07 | Nisshin Steel Co Ltd | Plated steel sheet for painting |
-
1982
- 1982-12-23 JP JP23462782A patent/JPS59116393A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59116393A (en) | 1984-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1211409A (en) | Steel sheet electroplated with zinc-nickel alloy and iron layers | |
JPS6320316B2 (en) | ||
JPS6213590A (en) | Surface-treated steel sheet having excellent coating property, adhesion after coating and corrosion resistance and its production | |
US4490438A (en) | Steel sheet with multilayer electroplating and method of producing same | |
KR950000909B1 (en) | Electroplated steel sheet having a plurality of coatings, excellent in workability, corrosion resistance and water-resistant paint adhesivity | |
JP2000309880A (en) | Corrosion resistant surface treated steel sheet | |
JPH0571675B2 (en) | ||
JPH072997B2 (en) | Zinc-based plated steel sheet with excellent corrosion resistance and paintability | |
JP2712924B2 (en) | Zinc-nickel-chromium alloy electroplated steel sheet with excellent corrosion resistance, plating adhesion, chemical conversion treatment and coating film adhesion | |
JPH01290797A (en) | Composite electroplated steel sheet having superior corrosion resistance | |
JPH0273980A (en) | Double-plated steel sheet having high corrosion resistance | |
JPS6134520B2 (en) | ||
KR920010776B1 (en) | High corrosion resistant steel sheets with two layer being of alloy metal and process for making | |
JP2619440B2 (en) | Surface-treated steel sheet with excellent workability and paintability | |
KR920010778B1 (en) | Excellant coating adhesive phosphate coating and water proof adhesive plating steel sheets and process for making | |
JPS6240398A (en) | Double-plated steel sheet having high corrosion resistance | |
JPH0125393B2 (en) | ||
JP2000313967A (en) | Surface treated steel sheet excellent in corrosion resistance | |
KR930007927B1 (en) | Two-layer plating alloy steel sheet of high corrosion resistance and method for producing the same | |
KR920010777B1 (en) | Electroplating steel sheet with two layer being of alloy metal and process for making | |
JP2000313965A (en) | High corrosion resistance surface treated steel sheet and its production | |
JPS61119694A (en) | Production of electroplated steel plate | |
JPS60211094A (en) | Surface treated steel sheet having high corrosion resistance | |
JP3358468B2 (en) | Zinc-based composite plated metal sheet and method for producing the same | |
JPH0472077A (en) | Improvement of low-temperature chipping resistance of plated steel sheet |