JPS6320880A - Manufacture of thermoelement for electronic wristwatch - Google Patents
Manufacture of thermoelement for electronic wristwatchInfo
- Publication number
- JPS6320880A JPS6320880A JP61165743A JP16574386A JPS6320880A JP S6320880 A JPS6320880 A JP S6320880A JP 61165743 A JP61165743 A JP 61165743A JP 16574386 A JP16574386 A JP 16574386A JP S6320880 A JPS6320880 A JP S6320880A
- Authority
- JP
- Japan
- Prior art keywords
- materials
- heat insulating
- type
- type thermoelectric
- thermoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 48
- 239000011810 insulating material Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims description 12
- 239000003822 epoxy resin Substances 0.000 abstract description 4
- 229920000647 polyepoxide Polymers 0.000 abstract description 4
- 239000013078 crystal Substances 0.000 abstract description 3
- 238000010030 laminating Methods 0.000 abstract description 3
- 238000005498 polishing Methods 0.000 abstract description 2
- 238000005245 sintering Methods 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- PZZOEXPDTYIBPI-UHFFFAOYSA-N 2-[[2-(4-hydroxyphenyl)ethylamino]methyl]-3,4-dihydro-2H-naphthalen-1-one Chemical compound C1=CC(O)=CC=C1CCNCC1C(=O)C2=CC=CC=C2CC1 PZZOEXPDTYIBPI-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000005404 monopole Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/852—Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/17—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Electromechanical Clocks (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は電子腕時計のエネルギー源として利用する電子
腕時計の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an electronic wristwatch that is used as an energy source for the electronic wristwatch.
本発明は得られる温度差が小さくて、しかも限られた素
子容積のため、微細な熱電素子を数十個も形成する必要
がある電子腕時計のエネルギー源としての熱電素子の製
造方法において、板状のN形及びP形熱電材料と、有機
樹脂、ガラス、雲母。The present invention is applicable to a method for manufacturing a thermoelectric element as an energy source for an electronic wristwatch, which requires the formation of dozens of minute thermoelectric elements due to the small temperature difference obtained and limited element volume. N-type and P-type thermoelectric materials, organic resins, glass, and mica.
磁器などのような熱伝導率の小さい断熱材を、積層する
ことにより、単独では強度の小さい熱電材料を微細な素
子に加工子ることを可能とし、しかも積層よ、研削f&
(!”工程。利用、より、数十個。By laminating heat insulating materials with low thermal conductivity, such as porcelain, it is possible to process thermoelectric materials, which alone have low strength, into fine elements.
(!”Process. Use, more, dozens of pieces.
微細な熱電素子を1個1個組立てる必要がなく、効率的
に形成し、しかも′@、掻形酸形成っきや物理的蒸着や
、ホトリングラフィとの組合せで容易に可能とするもの
である。It is not necessary to assemble minute thermoelectric elements one by one, and it is possible to form them efficiently, and it is also possible to do so easily by combining with acid forming plating, physical vapor deposition, or photolithography. be.
電子腕時計において、体温と環境との温度差を利用した
熱電素子と蓄電器や2次電池との組合せにより半永久電
源を得ることが考えられるが、この場合、必要な電流は
平均1μA程度と極めて小さくてよいが、電圧は少なく
とも1v程度は必要であり、しかも腕時計を腕からはず
した場合を想定すると、温度差が生じていない場合でも
できるだけ長時間作動し、かつ、急速充電が可能なため
には、できるだけ得られる電圧と電流は大きいことが好
ましい。In an electronic wristwatch, it is possible to obtain a semi-permanent power source by combining a thermoelectric element that uses the temperature difference between body temperature and the environment with a capacitor or a secondary battery, but in this case, the required current is extremely small at about 1 μA on average. However, the voltage needs to be at least 1V, and assuming that the watch is removed from the wrist, in order to operate for as long as possible even when there is no temperature difference, and to be able to charge quickly, It is preferable that the voltage and current obtained are as large as possible.
ところで、腕時計において熱電素子が得ることのできる
温度差はせいぜい1〜3°C程度と小さく、しかもその
面積は最大61程度が望ましい。By the way, the temperature difference that a thermoelectric element can obtain in a wristwatch is as small as about 1 to 3 degrees Celsius at most, and its area is desirably about 61 degrees at most.
ところで、熱雷材料のゼーベック係数は200〜400
μv / k程度であり、かつ抵抗率はゼーベ、/り係
数の大きいものほど太き(なる。By the way, the Seebeck coefficient of thermal lightning material is 200 to 400.
The resistivity is approximately μv/k, and the resistivity becomes thicker as the Seebe/R coefficient becomes larger.
常温付近で最も優れた性能指数をもつものとして、(B
i、5b)t(Te、5e)s系熱電材料があるが、こ
の材料でも、N形及びP形ともゼーベック係数は200
μv/に、抵抗率は10−コΩ(至)程度である。As having the best figure of merit near room temperature, (B
i, 5b)t(Te, 5e)s-based thermoelectric materials, but even this material has a Seebeck coefficient of 200 for both N-type and P-type.
μv/, the resistivity is on the order of 10 −Ω (maximum).
従って、例えば温度差2℃で電圧2vを得るためにはN
形及びP彩画素子数は5000個という極めて大きな数
となる。Therefore, for example, to obtain a voltage of 2 V with a temperature difference of 2°C, N
The shape and number of P-color pixel elements is extremely large, 5000.
このため電子腕時計の熱電素子の製造方法としては、電
子通信技術研究報告CP MB2−76にみられるごと
<、薄膜プロセスにより形成することが考えられる。Therefore, as a method for manufacturing thermoelectric elements for electronic wristwatches, it is conceivable to form them by a thin film process as seen in Electronic Communication Technology Research Report CP MB2-76.
ご発明が解決しようとする問題点〕
電子腕時計用熱電素子の製造方法として薄膜プロセスを
利用した場合、得られる膜厚に限度があり、しかも砥抗
が大きくなるため、生ずる電流が小さいという欠点があ
り、また雪掻の形成などでも容易でない。[Problems to be Solved by the Invention] When a thin film process is used to manufacture thermoelectric elements for electronic wristwatches, there is a limit to the film thickness that can be obtained, and furthermore, the abrasive resistance becomes large, so the current generated is small. It is also difficult to form snow plows.
焼結体、溶製材、単結晶などから0.1 imXQ、1
龍×3龍程度の素子を作り、これを組立てることも考え
られるが、このような素子は強度が弱く、しかもこのよ
うな微小な素子を数十個も並べることは事実上不可能で
ある。0.1 imXQ, 1 from sintered bodies, ingots, single crystals, etc.
It is conceivable to make elements of the size of three dragons and assemble them, but such elements have weak strength, and it is virtually impossible to arrange dozens of such minute elements.
そこで本発明は、数十個の微小な素子を1個1個組立て
ることなく、効率的に腕時計用熱電素子を形成すること
を可能とするものである。Therefore, the present invention makes it possible to efficiently form a thermoelectric element for a wristwatch without assembling dozens of minute elements one by one.
本発明では、電子腕時計用熱電素子の製造において、板
状のN形及びP形熱電材料と断熱材を、断熱材−N形熱
電材料−断熱材−P形熱電材料の順に交互に積層し、次
にこの積層体に一定間隔で溝を形成し、その後、この溝
に断熱材を充填し、その後、同一熱電材料の連結部を除
去することにより、断熱材に囲まれ、孤立したN形及び
P形熱電素子を形成する。In the present invention, in manufacturing a thermoelectric element for an electronic wristwatch, plate-shaped N-type and P-type thermoelectric materials and heat insulating materials are alternately laminated in the order of heat insulating material - N-type thermoelectric material - heat insulating material - P-type thermoelectric material, Next, grooves are formed in this laminate at regular intervals, and then the grooves are filled with a heat insulating material, and then the connecting parts of the same thermoelectric material are removed, so that isolated N-type and A P-type thermoelectric element is formed.
熱電材料は強度に優れ、熱伝導率の小さな有機樹脂、ガ
ラス、雲母、磁器などの断熱材を積層することにより微
細な加工も可能となり、しかも積6層状態で加工するの
で、実質的に一度に多数の加工及び組立が実現でき、微
小で強度の弱い素子を1個1個取扱う必要がなくなる。Thermoelectric materials have excellent strength and can be processed finely by laminating heat insulating materials such as organic resins, glass, mica, and porcelain with low thermal conductivity.Moreover, since they are processed in a stacked state of 6 layers, it is essentially possible to process them at once. A large number of processes and assemblies can be performed, and there is no need to handle minute and weak elements one by one.
以下本発明の実施例を図面に基づき説明する。 Embodiments of the present invention will be described below based on the drawings.
板状に加工した(Bi、5b)z(Se、Te)z系の
P形熱電材料及びN形熱電材料、エポキシ樹脂の断熱材
を用意し、第1図+a+に斜視図で示すように断熱材1
−N形熱電材料2−断熱材、1−P形熱電材料3の順に
繰り返し、所定数積層し、これを第1図(blに斜視図
で示すように一定間隔で溝を形成し、第1図telに斜
視図に示すように、lf1層母体から切り離した。その
後、溝の部分にエポキシ樹脂を充填して断熱材とした。Prepare plate-shaped (Bi, 5b)z (Se, Te)z-based P-type thermoelectric material and N-type thermoelectric material, and epoxy resin insulation material, and heat insulation as shown in the perspective view in Figure 1+a+. Material 1
- N type thermoelectric material 2 - heat insulating material, 1 - P type thermoelectric material 3 are repeated in the order of a predetermined number of layers, and grooves are formed at regular intervals as shown in the perspective view in Figure 1 (bl). As shown in the perspective view in Figure 1, it was separated from the lf1 layer matrix.Thereafter, the grooves were filled with epoxy resin to serve as a heat insulating material.
その後、下端の同一熱電材料の連結部を研磨により除去
し、第1図fdlに示すように、断熱材1にN形熱電材
料2及びP形熱電材料3が一定に配列した熱電素子を製
作した。Thereafter, the connection part of the same thermoelectric material at the lower end was removed by polishing, and a thermoelectric element was manufactured in which the N-type thermoelectric material 2 and the P-type thermoelectric material 3 were arranged in a constant manner on the heat insulating material 1, as shown in Fig. 1 fdl. .
その後、スパッタにより全面に1極材料を形成し、エツ
チングにより所定のパターンの11i4を形成し、N形
熱電材料及びP形熱電材料を直列に結合した。(第2図
)
このようにして全素子数7000個で、全体の寸法30
m* X20ma x3.5 IIの熱電素子を製造し
た。Thereafter, a monopole material was formed on the entire surface by sputtering, and a predetermined pattern of 11i4 was formed by etching to connect the N-type thermoelectric material and the P-type thermoelectric material in series. (Figure 2) In this way, the total number of elements is 7000, and the overall size is 30.
A thermoelectric element of m*×20max×3.5 II was manufactured.
この熱電素子は温度差2.3℃において生した電圧は2
.97Vであった。This thermoelectric element generates a voltage of 2 at a temperature difference of 2.3°C.
.. It was 97V.
以上述べたように、本発明では、熱電材料と断熱材を積
層し、その後、一定間隔で溝を形成し、その溝に断熱材
を充填した後、同一熱電材料の連結部を除去するという
工程により、単結晶、ン容製材、焼結材などの熱電材料
を利用して、微小な数十個の熱電素子を比較的容易に実
現でき、腕時計などの低温度差で、容積の小さな熱電素
子の供給が可能となる。As described above, in the present invention, a thermoelectric material and a heat insulating material are laminated, grooves are formed at regular intervals, the grooves are filled with a heat insulating material, and the connecting portions of the same thermoelectric material are removed. Using thermoelectric materials such as single crystals, solid lumber, and sintered materials, it is relatively easy to create dozens of tiny thermoelectric elements. It becomes possible to supply
第1図Fa+は熱電材料と断熱材料の積層状態を示す斜
視図であり、第1図山)は積層後の溝を形成した状態を
示す斜視図であり、第1図Telは積層母体より、溝を
形成した部分を切り離した状態を示す斜視図であり、第
1図+dlは溝に断熱材を充填し、同一熱電材料の連結
部を除去した状態を示す斜視図であり、第2図は所定の
電極を形成した熱電素子の斜視図である。
l・・・断熱材
2・・・N形熱電材料
3・・・P形熱電材料
4・・・電極
以上
出願人 セイコー電子工業株式会社
+、、−,;;j、“。
一′つFig. 1 Fa+ is a perspective view showing a laminated state of thermoelectric material and heat insulating material, Fig. 1 ridge) is a perspective view showing a state in which grooves are formed after lamination, and Fig. 1 Tel is a perspective view showing a laminated state of a thermoelectric material and a heat insulating material. FIG. 1 is a perspective view showing a state in which the groove-formed portion is cut away; FIG. FIG. 2 is a perspective view of a thermoelectric element with predetermined electrodes formed thereon. l...Insulating material 2...N-type thermoelectric material 3...P-type thermoelectric material 4...Electrode and above Applicant Seiko Electronics Co., Ltd.
Claims (1)
造方法において、 板状のN形およびP形熱電材料および断熱材を、断熱材
−N形熱電材料−断熱材−P形熱電材料の順に交互に積
層する工程と、 この積層体に一定間隔で溝を形成し、次にこの溝に断熱
材を充填する工程と、 その後、熱電材料の連結部を除去する工程とを有する電
子腕時計用熱電素子の製造方法。[Claims] In a method for manufacturing a thermoelectric element used as an energy source for an electronic wristwatch, plate-shaped N-type and P-type thermoelectric materials and a heat insulating material are combined into a heat insulating material - an N-type thermoelectric material - a heat insulating material - a P-type thermoelectric material. An electronic method comprising the steps of: stacking the materials alternately in this order; forming grooves at regular intervals in the stack; then filling the grooves with a heat insulating material; and then removing the connecting portions of the thermoelectric material. A method for manufacturing a thermoelectric element for a wristwatch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61165743A JPH0828531B2 (en) | 1986-07-15 | 1986-07-15 | Method for manufacturing thermoelectric element for electronic wrist watch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61165743A JPH0828531B2 (en) | 1986-07-15 | 1986-07-15 | Method for manufacturing thermoelectric element for electronic wrist watch |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6320880A true JPS6320880A (en) | 1988-01-28 |
JPH0828531B2 JPH0828531B2 (en) | 1996-03-21 |
Family
ID=15818233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61165743A Expired - Fee Related JPH0828531B2 (en) | 1986-07-15 | 1986-07-15 | Method for manufacturing thermoelectric element for electronic wrist watch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0828531B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0679289A1 (en) * | 1993-01-12 | 1995-11-02 | Massachusetts Institute Of Technology | Superlattice structures particularly suitable for use as thermoelectric cooling materials |
WO1998022984A1 (en) * | 1996-11-15 | 1998-05-28 | Citizen Watch Co., Ltd. | Method of manufacturing thermionic element |
WO1999007024A1 (en) * | 1997-08-01 | 1999-02-11 | Citizen Watch Co., Ltd. | Thermoelectric element and method for manufacturing the same |
US6060656A (en) * | 1997-03-17 | 2000-05-09 | Regents Of The University Of California | Si/SiGe superlattice structures for use in thermoelectric devices |
US6969679B2 (en) | 2003-11-25 | 2005-11-29 | Canon Kabushiki Kaisha | Fabrication of nanoscale thermoelectric devices |
JP2006290832A (en) * | 2005-04-13 | 2006-10-26 | Noevir Co Ltd | Skin lotion |
-
1986
- 1986-07-15 JP JP61165743A patent/JPH0828531B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0679289A1 (en) * | 1993-01-12 | 1995-11-02 | Massachusetts Institute Of Technology | Superlattice structures particularly suitable for use as thermoelectric cooling materials |
EP0679289A4 (en) * | 1993-01-12 | 1997-10-01 | Massachusetts Inst Technology | Superlattice structures particularly suitable for use as thermoelectric cooling materials. |
WO1998022984A1 (en) * | 1996-11-15 | 1998-05-28 | Citizen Watch Co., Ltd. | Method of manufacturing thermionic element |
US6232542B1 (en) | 1996-11-15 | 2001-05-15 | Citizen Watch Co., Ltd. | Method of fabricating thermoelectric device |
US6441296B2 (en) | 1996-11-15 | 2002-08-27 | Citizen Watch Co., Ltd. | Method of fabricating thermoelectric device |
US6441295B2 (en) | 1996-11-15 | 2002-08-27 | Citizen Watch Co. Ltd. | Method of fabricating thermoelectric device |
US6060656A (en) * | 1997-03-17 | 2000-05-09 | Regents Of The University Of California | Si/SiGe superlattice structures for use in thermoelectric devices |
WO1999007024A1 (en) * | 1997-08-01 | 1999-02-11 | Citizen Watch Co., Ltd. | Thermoelectric element and method for manufacturing the same |
US6310383B1 (en) | 1997-08-01 | 2001-10-30 | Citizen Watch Co., Ltd. | Thermoelectric element and method for manufacturing the same |
US6329217B1 (en) | 1997-08-01 | 2001-12-11 | Citizen Watch Co., Ltd. | Thermoelectric device and method of fabricating the same |
US6969679B2 (en) | 2003-11-25 | 2005-11-29 | Canon Kabushiki Kaisha | Fabrication of nanoscale thermoelectric devices |
JP2006290832A (en) * | 2005-04-13 | 2006-10-26 | Noevir Co Ltd | Skin lotion |
Also Published As
Publication number | Publication date |
---|---|
JPH0828531B2 (en) | 1996-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4078392B1 (en) | Power generation method using thermoelectric power generation element, thermoelectric power generation element and manufacturing method thereof, and thermoelectric power generation device | |
US8455751B2 (en) | Thermoelectric devices and applications for the same | |
WO2011065185A1 (en) | Thermoelectric conversion module and method for manufacturing same | |
US20080230105A1 (en) | Electric power generation method using thermoelectric power generation element, thermoelectric power generation element and method of producing the same, and thermoelectric power generation device | |
US8940571B2 (en) | Thermoelectric conversion element | |
JP2008205181A (en) | Thermoelectric module | |
JP3803365B2 (en) | Method for manufacturing crystal film, method for manufacturing substrate with crystal film, and method for manufacturing thermoelectric conversion element | |
JP4668233B2 (en) | Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion module | |
JPS6320880A (en) | Manufacture of thermoelement for electronic wristwatch | |
KR101586551B1 (en) | Structure useful for producing a thermoelectric generator, thermoelectric generator comprising same and method for producing same | |
JP2602646B2 (en) | Manufacturing method of thermoelectric element for electronic watch | |
JP2654504B2 (en) | Manufacturing method of thermoelectric element for electronic watch | |
JP4925964B2 (en) | Multilayer thermoelectric conversion element and method for manufacturing the same | |
JP2756960B2 (en) | Manufacturing method of thermoelectric element for electronic watch | |
JP4584355B2 (en) | Thermoelectric power generation device and power generation method using the same | |
JPH10313134A (en) | Manufacture of thermoelectric module | |
US20130319491A1 (en) | Electricity generation method using thermoelectric generation element, thermoelectric generation element and manufacturing method thereof, and thermoelectric generation device | |
JP2527541B2 (en) | Method for manufacturing thermoelectric element for electronic wrist watch | |
JP2542497B2 (en) | Method for manufacturing thermoelectric element for electronic wrist watch | |
JPH01165183A (en) | Manufacture of thermoelectric device | |
JP4882855B2 (en) | Thermoelectric conversion module and manufacturing method thereof | |
JP2542498B2 (en) | Method for manufacturing thermoelectric element for electronic wrist watch | |
JPH085572Y2 (en) | Thermoelectric element | |
JP2893258B1 (en) | Thermoelectric element and method of manufacturing the same | |
KR20180028157A (en) | Thermoelectric element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |