[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6319585B2 - - Google Patents

Info

Publication number
JPS6319585B2
JPS6319585B2 JP59226574A JP22657484A JPS6319585B2 JP S6319585 B2 JPS6319585 B2 JP S6319585B2 JP 59226574 A JP59226574 A JP 59226574A JP 22657484 A JP22657484 A JP 22657484A JP S6319585 B2 JPS6319585 B2 JP S6319585B2
Authority
JP
Japan
Prior art keywords
diamond
volume
sintered body
powder
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59226574A
Other languages
Japanese (ja)
Other versions
JPS61104045A (en
Inventor
Tetsuo Nakai
Shuji Yatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59226574A priority Critical patent/JPS61104045A/en
Priority to DE8585110715T priority patent/DE3583567D1/en
Priority to US06/769,609 priority patent/US4636253A/en
Priority to EP85110715A priority patent/EP0174546B1/en
Priority to AU46632/85A priority patent/AU571419B2/en
Priority to KR1019850006553A priority patent/KR900002701B1/en
Publication of JPS61104045A publication Critical patent/JPS61104045A/en
Publication of JPS6319585B2 publication Critical patent/JPS6319585B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] この発明は、たとえば切削工具、掘削工具、線
引ダイスなどの種々の工具に用いられている、ダ
イヤモンド焼結体に関する。 [従来の技術] 現在、ダイヤモンドの含有量が70容量%以上で
ダイヤモンド粒子が互いに接合した工具用焼結体
が販売されている。これらの焼結体は、非鉄金
属、プラスチツクあるいはセラミツクの切削、ド
レツサ、ドリルビツトまたは伸線ダイスとして用
いられている。特に、非鉄金属の切削や銅線など
の比較的軟らかい線材を伸線用ダイスとして、こ
れらのダイヤモンド焼結体を用いた場合、その性
能は、非常に優れている。 これらのダイヤモンド焼結体は、通常、ダイヤ
モンド合成時の触媒であるCoなどの鉄族金属を
結合材として用いて焼結されるものであるため、
600℃以上の温度に加熱した場合、ダイヤモンド
がグラフアイト化し、劣化するという欠点を有し
ている。このダイヤモンド焼結体の耐熱性を向上
させるためには、特開昭53−114589号に記載され
ているように、加熱時にダイヤモンドのグラフア
イト化を促進するCoなどの鉄族金属を取り除け
ばよい。 しかしながら、ダイヤモンド焼結体からCoな
どの鉄族金属を溶出すると、ダイヤモンド焼結体
の強度は約20〜30%低下する。特に、ダイヤモン
ド焼結体をビツト用途として用いた場合、強度と
耐摩耗性と耐熱性とが要求されるが、特開昭53−
114589号に記載されているダイヤモンド焼結体を
用いたドリルビツトでは、ダイヤモンド焼結体の
強度不足のため、刃先が欠損し寿命が短くなると
いう欠点があつた。 本願発明者達は、先に特開昭59−35066号にお
いて、強度に優れ、耐摩耗性が良好であり、さら
に耐熱性に優れたダイヤモンド焼結体を提案し
た。この焼結体は、周期律表第4a,5a,6a族の
炭化物を結合材として用いて実質的に空孔の含有
量を減少させることにより、Co溶出による焼結
体の強度低下を抑制しようとしたものである。 [発明が解決しようとする問題点] しかしながら、特開昭59−35066号に開示した
ダイヤモンド焼結体は、確かに強度低下こそ少な
いが、1000℃を越える高温の下では、炭化物とダ
イヤモンドとの熱膨張差により劣化が生じること
がわかつた。したがつて、地熱井掘削のように刃
先が高温にさらされる用途では、未だ十分満足し
得るものではなかつた。 それゆえに、この発明の目的は、さらに耐熱性
に優れ、かつ強度および耐摩耗性に優れた工具用
ダイヤモンド焼結体を提供することにある。 [問題点を解決するための手段および作用] 本願発明者達は、より一層耐熱性の高いダイヤ
モンド焼結体を得るべく、鋭意研究を重ねた結
果、ダイヤモンド含有量が93容量%を越え、99容
量%以下であり、残部が周期律表第4a,5a,6a
族の金属もしくは炭化物および/または鉄族金属
0.1〜3容量%、空孔0.5容量%以上、7容量%以
下よりなり、あるいはこれに硼素および/または
硼化物0.005〜0.25容量%を含有したダイヤモン
ド焼結体は、耐熱性がより一層改善されるととも
に、耐摩耗性および強度に優れていることを見い
出した。 ダイヤモンド焼結体の耐熱性を向上させるに
は、前述したように結合材たる鉄族金属を除去す
ればよい。しかしながら、結合材が存在していた
場所は鉄族金属の除去により空孔となる。ところ
で、ダイヤモンド焼結体において、その強度と空
孔には、第1図に示す関係が存在する。すなわち
空孔の増加に従い、ダイヤモンド焼結体の強度は
低下するが、空孔が3%以上で強度が低下し始
め、4.5%以上8%以下の間で急激な強度低下が
生じ、8%以上では強度低下の割合は小さくなる
のである。 一般にダイヤモンド焼結体に必要とされる強度
は、その用途や加工物の強度等により異なる。た
とえば比較的軟らかい岩石の掘削や、セラミツク
スの切削等には市販の耐熱性焼結ダイヤモンドの
1.5倍以上の強度があれば、その性能は著しく改
善される。したがつて、このような用途には、空
孔の含有量は少なくとも7%以下でなければなら
ず、ダイヤモンドの含有量は93容量%以上の焼結
体が必要となる。空孔の含有量が5容量%未満で
あれば、ダイヤモンド焼結体の強度は市販の耐熱
性ダイヤモンド焼結体の約3倍以上となり、硬い
岩石の掘削や高硬度やセラミツクス等の切削に対
し優れた性能を示し、望ましい。 この発明のダイヤモンド焼結体の製造方法とし
ては、原料ダイヤモンド粉末を1300℃以上の高温
で加熱し、ダイヤモンド粉末の表面を黒鉛化する
ことと、粒度の異なるダイヤモンド粉末を混合し
たものを原料として用いることにより、ダイヤモ
ンドの含有量が93容量%を越える緻密な焼結体を
得ることが可能とされている。しかしながら、ダ
イヤモンド含有量が99容量%を越えると、鉄族金
属が不足し十分な強度のダイヤモンド焼結体を得
ることはできない。 この発明のダイヤモンド焼結体においては、第
1図にも示されているように空孔の含有量ができ
るだけ少ない方が好ましいが、強度の高い焼結体
を得るには前述したように鉄族金属も必要であ
る。したがつて、この発明では、最少0.5容量%
の空孔が存在する。 この発明のダイヤモンド焼結体の製造に用いる
ダイヤモンド粉末としては、平均最大粒径aのも
のを40〜60容量%、粒径a/2のものを30〜40容
量%、残部が粒径a/3〜a/1000の割合で混合
したものが、高いダイヤモンド含有量を得ること
ができるので好ましい。 この発明のダイヤモンド焼結体中には、種々の
粒度のダイヤモンドが含有されているが、周期律
表第4a,5a,6a族の金属もしくは炭化物が含有
されていない場合には、特に微粒ダイヤモンド粒
子近傍で鉄族金属の異常集積部が発生し、金属を
溶出した場合、この部分が空孔となる。したがつ
て、金属もしくは炭化物を含有させれば、強度は
さらに向上する。この鉄族金属および周期律表第
4a,5a,6a族の金属もしくは炭化物の含有量は、
0.1〜3容量%が好ましい。この含有量が3容量
%を越えると、ダイヤモンドとの熱膨張差による
亀裂の発生や、ダイヤモンドの黒鉛化が生じるた
め耐熱性が低下するからである。またこの含有量
はできるだけ少ない方が好ましいが、ダイヤモン
ド原料中に残存する鉄族金属などが事実上溶出不
可能であるため、最少0.1容量%の鉄族金属等は
焼結体に残存することになる。 この発明のダイヤモンド焼結体では、特に、炭
化物がWCあるいはこれと同一の結晶構造を有す
る(Mo,W)Cである場合に、靭性、耐摩耗性
および耐熱性に優れることがわかつている。 また、この発明の焼結体に、容量で0.005〜
0.25%の硼素または硼化物あるいはこれらの双方
を含有させた場合、その特性は一段と向上する。
通常、ダイヤモンド粒子は、超高圧高温下で、鉄
族金属などの触媒によるダイヤモンドの溶解ある
いは析出現象により焼結される。硼素または硼化
物の少なくとも一方を添加した場合、鉄族金属の
硼化物を生じ、融点が低下するのと、溶解析出速
度が増すためダイヤモンド粒子同士の結合部(ダ
イヤモンド・スケルトン部)が成長し、ダイヤモ
ンド粒子の保持力が向上したものと推測できる。
硼素あるいは硼化物の含有量が0.005%未満であ
ると、ダイヤモンド・スケルトン部の形成は遅
い。一方、硼素あるいは硼化物の含有量が0.25%
を越えると、ダイヤモンド・スケルトン部に多量
の硼素が侵入し、ダイヤモンド・スケルトン部の
強度が低下する。 この発明のダイヤモンド焼結体に用いるダイヤ
モンド粉末は、合成ダイヤモンドあるいは天然ダ
イヤモンドのいずれを用いることも可能である。 この発明のダイヤモンド焼結体の製造方法にお
いて、周期律表第4a,5a,6a族の金属もしくは
炭化物を金属ならびにFe,Co,Niなどの鉄族金
属粉末あるいはこれに硼素または硼化物を加えた
粉末を、ボールミルなどの手段を用い均一に混合
する。この鉄族金属は予め混合せずに、焼結時
に、鉄族金属からなる部材に接触させることによ
り溶浸させてもよい。 また、本願発明者達の先願(特願昭52−51881
号)に開示されているように、ボールミル時のポ
ツトとボールとを、混入する周期律表第4a,5a,
6a族の炭化物と鉄族金属との焼結体で作成して
おき、ダイヤモンド粉末をボールミル粉砕すると
同時に、ポツトとボールとから周期律表第4a,
5a,6a族の炭化物と鉄族金属との焼結体の微細
粉末を混入させる方法も採り得る。 混合された粉末を、1300℃以上の高温でダイヤ
モンドを一部黒鉛化し、しかる後超高圧・高温装
置に入れ、ダイヤモンドが安定な条件下で焼結す
る。このとき用いた鉄族金属と炭化物などの化合
物間に生じる共晶液相の出現温度以上で焼結する
必要がある。このようにして製造されたダイヤモ
ンド焼結体を、たとえば王水のような鉄族金属を
腐蝕し得る酸中に入れ鉄族金属を溶出して空孔を
形成する。 この発明のダイヤモンド焼結体の用途として
は、ビツトのほかに、伸線ダイス、セラミツク切
削加工用バイト、ドレツサなどが挙げられる。 [実施例] 以下、実施例により具体的に説明する。 実施例 1 平均粒度100μm,50μm,20μmおよび5〜
0.2μmのダイヤモンド粉末を、5:3:1:1の
割合で配合した後、WC―Co超硬合金製のポツト
とボールとを用いて5分間粉砕混合した。この粉
末を1400℃の温度で30分間、真空中で加熱した
後、Mo製の容器に充填し、Co板を完成粉末上に
載置して接触させ、超高圧・高温装置を用いて、
まず圧力を55kbを加え、引き続き1460℃の温度
に加熱し、10分間保持した。このようにして得ら
れた焼結体を容器より取出し、化学分析によりダ
イヤモンド、WCおよびCoの含有量を測定したと
ころ、それぞれ、96.5容量%、0.15容量%、3.35
容量%であつた。 次に、この焼結体を加熱王水中に入れCoを溶
出し、磁気天秤および化学分析により組成を調査
したところ、ダイヤモンド96.5容量%、WC0.14
容量%、Co0.4容量%、空孔2.96容量%であつた。
この試料の圧縮強度を測定したところ、380Kg/
mm2の強度を示した。 比較のために、最大のダイヤモンド粒度が同じ
であり、ダイヤモンド含有率が92.0容量%、空孔
7.7容量%、Co0.3容量%のものを試作し、その圧
縮強度を測定したところ、120Kg/mm2であつた。 次に、この発明の焼結体の耐熱性を試験するた
めに、真空中で1200℃に加熱し、30分間保持した
ところ、寸法変化や亀裂は全く生じなかつた。 実施例 2 平均粒度80μm,40μm,15μmおよび0.5μmの
ダイヤモンド粒子を、5:3:2:1の割合で配
合した。この粉末に、第1表に示す種々の鉄族金
属および周期律表第4a,5a,6a族の金属もしく
は炭化物を混合し、完成粉末とし、Ta製の容器
に充填した後、実施例1と同様にして、58kb、
1500℃の条件で焼結を行なつた。このようにして
得られた各焼結体をTa容器から取出し、加熱王
水中で処理した。次に、焼結体の空孔含有量を測
定した。この結果を第1表に合わせて示す。 しかる後、これらのダイヤモンド焼結体を、一
辺が3mmの立方体となるように切り出し、鋼のボ
デイにW,WC,Fe,Co,Ni,Cuの混合粉末よ
りなる高融点・高硬度マトリツクスを用いて1100
℃の温度で焼結し固定し、サーフエスセツトのコ
アビツトを作成した。 比較のために、市販の40〜60μmのダイヤモン
ド粉子よりなる焼結体から作成したコアビツト
(第1表に記号Xで示す。)、ならびに天然ダイヤ
モンドを使用して形成した焼結体のコアビツト
(第1表に記号Yで示す)を作成した。 上記第1表に示した試料AないしLと、Xおよ
びYにつき、それぞれ、1軸圧縮強度1600〜2000
Kg/cm2の花崗岩を900回転で掘削した。掘進速度
および寿命を第2表に示す。
[Industrial Application Field] The present invention relates to a diamond sintered body used in various tools such as cutting tools, drilling tools, and wire drawing dies. [Prior Art] Currently, sintered bodies for tools with a diamond content of 70% by volume or more and diamond particles bonded to each other are on sale. These sintered bodies are used for cutting nonferrous metals, plastics, or ceramics, and as dressers, drill bits, or wire drawing dies. In particular, when these diamond sintered bodies are used as dies for cutting non-ferrous metals or drawing relatively soft wire materials such as copper wires, their performance is extremely excellent. These diamond sintered bodies are usually sintered using an iron group metal such as Co, which is a catalyst during diamond synthesis, as a binder.
Diamond has the disadvantage that it turns into graphite and deteriorates when heated to a temperature of 600°C or higher. In order to improve the heat resistance of this diamond sintered body, it is possible to remove iron group metals such as Co, which promote graphitization of diamond during heating, as described in JP-A-53-114589. . However, when iron group metals such as Co are leached from the diamond sintered body, the strength of the diamond sintered body decreases by approximately 20 to 30%. In particular, when diamond sintered bodies are used for bit applications, strength, wear resistance, and heat resistance are required.
The drill bit using a diamond sintered body described in No. 114589 had the drawback that the cutting edge was damaged due to the lack of strength of the diamond sintered body, resulting in a shortened lifespan. The inventors of the present application previously proposed a diamond sintered body having excellent strength, good wear resistance, and further excellent heat resistance in JP-A No. 59-35066. This sintered body uses carbides from Groups 4a, 5a, and 6a of the periodic table as a binder to substantially reduce the pore content, thereby suppressing the decrease in strength of the sintered body due to Co elution. That is. [Problems to be Solved by the Invention] However, although the diamond sintered body disclosed in JP-A No. 59-35066 does not have much strength loss, at high temperatures exceeding 1000°C, the carbide and diamond deteriorate. It was found that deterioration occurs due to differences in thermal expansion. Therefore, it has not yet been fully satisfactory in applications where the cutting edge is exposed to high temperatures, such as geothermal well drilling. Therefore, an object of the present invention is to provide a diamond sintered body for tools that has further excellent heat resistance, strength, and wear resistance. [Means and effects for solving the problem] The inventors of the present application have conducted extensive research in order to obtain a diamond sintered body with even higher heat resistance. As a result, the diamond content exceeds 93% by volume, % by volume or less, and the remainder is 4a, 5a, 6a of the periodic table
group metals or carbides and/or iron group metals
A diamond sintered body consisting of 0.1 to 3% by volume, 0.5% to 7% by volume of pores, or containing 0.005 to 0.25% by volume of boron and/or boride has further improved heat resistance. It was discovered that it has excellent wear resistance and strength. In order to improve the heat resistance of the diamond sintered body, the iron group metal serving as the binder may be removed as described above. However, the locations where the binder was present become voids due to the removal of the iron group metal. By the way, in a diamond sintered body, the relationship shown in FIG. 1 exists between its strength and pores. In other words, as the number of pores increases, the strength of the diamond sintered body decreases, but when the number of vacancies exceeds 3%, the strength begins to decrease, and between 4.5% and 8%, a sharp decrease in strength occurs, and when the number of vacancies exceeds 8%, the strength decreases. In this case, the rate of decrease in strength becomes smaller. Generally, the strength required for a diamond sintered body differs depending on its use, the strength of the workpiece, etc. For example, commercially available heat-resistant sintered diamonds can be used for drilling relatively soft rocks or cutting ceramics.
If it is 1.5 times stronger, its performance will be significantly improved. Therefore, for such uses, the sintered body must have a pore content of at least 7% or less and a diamond content of 93% by volume or more. If the pore content is less than 5% by volume, the strength of the diamond sintered body will be approximately three times that of commercially available heat-resistant diamond sintered bodies, making it suitable for drilling hard rocks and cutting high-hardness materials and ceramics. Shows excellent performance and is desirable. The method for manufacturing the diamond sintered body of this invention involves heating raw diamond powder at a high temperature of 1300°C or higher to graphitize the surface of the diamond powder, and using a mixture of diamond powders with different particle sizes as the raw material. It is said that this makes it possible to obtain a dense sintered body with a diamond content of over 93% by volume. However, when the diamond content exceeds 99% by volume, iron group metals become insufficient and a diamond sintered body with sufficient strength cannot be obtained. In the diamond sintered body of this invention, it is preferable that the content of pores be as small as possible, as shown in FIG. Metal is also required. Therefore, in this invention, a minimum of 0.5% by volume
There are vacancies. The diamond powder used in the production of the diamond sintered body of the present invention includes 40 to 60% by volume of diamond powder with an average maximum particle size of a, 30 to 40% by volume of diamond powder with a particle size of a/2, and the remainder with a particle size of a/2. A mixture at a ratio of 3 to a/1000 is preferable because a high diamond content can be obtained. The diamond sintered body of the present invention contains diamonds of various particle sizes, but when it does not contain metals or carbides of Groups 4a, 5a, and 6a of the periodic table, particularly fine diamond particles may be present. If an abnormal accumulation of iron group metal occurs in the vicinity and the metal is eluted, this part becomes a void. Therefore, if metal or carbide is contained, the strength will be further improved. This iron group metal and periodic table number
The content of metals or carbides of groups 4a, 5a, and 6a is
0.1 to 3% by volume is preferred. If this content exceeds 3% by volume, cracks will occur due to the difference in thermal expansion with diamond, and diamond will become graphitized, resulting in a decrease in heat resistance. In addition, it is preferable that this content be as low as possible, but since iron group metals remaining in the diamond raw material are practically impossible to elute, a minimum of 0.1% by volume of iron group metals, etc. will remain in the sintered body. Become. It has been found that the diamond sintered body of the present invention has excellent toughness, wear resistance, and heat resistance, especially when the carbide is WC or (Mo, W)C having the same crystal structure as WC. In addition, the sintered body of this invention has a capacity of 0.005~
When containing 0.25% boron and/or boride, the properties are further improved.
Generally, diamond particles are sintered under ultra-high pressure and high temperature by a diamond dissolution or precipitation phenomenon using a catalyst such as an iron group metal. When at least one of boron and borides is added, borides of iron group metals are formed, which lowers the melting point and increases the melt deposition rate, which causes the bonding parts between diamond particles (diamond skeleton parts) to grow. It can be inferred that the holding power of the diamond particles was improved.
When the boron or boride content is less than 0.005%, the formation of the diamond skeleton is slow. On the other hand, the content of boron or boride is 0.25%
If the value exceeds 1, a large amount of boron will enter the diamond skeleton, and the strength of the diamond skeleton will decrease. The diamond powder used in the diamond sintered body of the present invention can be either synthetic diamond or natural diamond. In the method for producing a diamond sintered body of the present invention, metals or carbides of Groups 4a, 5a, and 6a of the periodic table are mixed with metals and powders of iron group metals such as Fe, Co, and Ni, or boron or borides are added thereto. The powders are mixed uniformly using a ball mill or other means. The iron group metal may be infiltrated by contacting the member made of the iron group metal during sintering without being mixed in advance. In addition, the inventors' earlier application (Japanese Patent Application No. 52-51881)
4a, 5a, 5a,
A sintered body of group 6a carbide and iron group metal is prepared, and at the same time diamond powder is ground in a ball mill, the pot and ball are used to form a sintered body of 4a of the periodic table.
A method of mixing fine powder of a sintered body of carbides of groups 5a and 6a and iron group metals may also be adopted. The mixed powder is heated to a high temperature of over 1,300°C to partially graphitize the diamond, and then placed in an ultra-high pressure and high temperature device to sinter under conditions where the diamond is stable. It is necessary to sinter at a temperature higher than the temperature at which a eutectic liquid phase appears between the iron group metal used at this time and a compound such as a carbide. The diamond sintered body thus produced is placed in an acid capable of corroding iron group metals, such as aqua regia, to elute iron group metals and form pores. Applications of the diamond sintered body of the present invention include wire drawing dies, ceramic cutting tools, dressers, etc. in addition to bits. [Example] Hereinafter, the present invention will be specifically explained using examples. Example 1 Average particle size 100μm, 50μm, 20μm and 5~
Diamond powder of 0.2 μm was mixed in a ratio of 5:3:1:1, and then ground and mixed for 5 minutes using a pot and ball made of WC-Co cemented carbide. After heating this powder at a temperature of 1400℃ for 30 minutes in a vacuum, it is filled into a Mo container, a Co plate is placed on top of the finished powder, and brought into contact with it, using an ultra-high pressure and high temperature device.
First, a pressure of 55 kb was applied, followed by heating to a temperature of 1460°C and holding for 10 minutes. The sintered body thus obtained was taken out from the container and the content of diamond, WC and Co was measured by chemical analysis, and the contents were 96.5% by volume, 0.15% by volume, and 3.35% by volume, respectively.
It was % by volume. Next, this sintered body was placed in heated aqua regia to elute the Co, and the composition was investigated using a magnetic balance and chemical analysis, and it was found that diamond was 96.5% by volume and WC was 0.14%.
% by volume, Co was 0.4% by volume, and pores were 2.96% by volume.
When we measured the compressive strength of this sample, it was 380Kg/
It showed the strength of mm 2 . For comparison, the maximum diamond grain size is the same, the diamond content is 92.0% by volume, and the void
A sample containing 7.7% by volume and 0.3% by volume of Co was produced and its compressive strength was measured and found to be 120Kg/mm 2 . Next, in order to test the heat resistance of the sintered body of the present invention, it was heated to 1200°C in vacuum and held for 30 minutes, and no dimensional changes or cracks occurred at all. Example 2 Diamond particles with average particle sizes of 80 μm, 40 μm, 15 μm and 0.5 μm were blended in a ratio of 5:3:2:1. This powder was mixed with various iron group metals shown in Table 1 and metals or carbides of groups 4a, 5a, and 6a of the periodic table, and the powder was filled into a Ta container. Similarly, 58kb,
Sintering was performed at 1500℃. Each of the sintered bodies thus obtained was taken out of the Ta container and treated in heated aqua regia. Next, the pore content of the sintered body was measured. The results are also shown in Table 1. After that, these diamond sintered bodies were cut into cubes with sides of 3 mm, and a high melting point, high hardness matrix made of a mixed powder of W, WC, Fe, Co, Ni, and Cu was used for the steel body. 1100
It was sintered and fixed at a temperature of °C to create the core bit of Surf Esset. For comparison, COREBIT (indicated by symbol (indicated by symbol Y in Table 1) was created. Uniaxial compressive strength of 1600 to 2000 for samples A to L, X and Y shown in Table 1 above, respectively.
Kg/cm 2 granite was drilled at 900 revolutions. The digging speed and life are shown in Table 2.

【表】 *3:酸処理後の空孔体積
[Table] *3: Pore volume after acid treatment

【表】【table】

【表】 実施例 3 平均粒度0.8μmのダイヤモンド粉末と、硼素粉
末とをWC―Co超硬合金のボツトとボールとを用
いて粉砕・混合した。この粉末と、平均粒度
60μm,30μmおよび10μmのダイヤモンド粉末と
を、1:5:3:1の割合で混合し、しかる後
1450℃の温度で1時間、真空中で加熱し、実施例
1と同様にして55kb,1450℃の条件下で焼結を
した。この焼結体を分析したところ、ダイヤモン
ド96.2容量%、Co3.45容量%、Ni0.1容量%、
WC0.2容量%、ならびに硼素0.5容量%よりなる
焼結体であることが認められた。この焼結体を加
熱王水中で処理したところ、3.3容量%の空孔が
生じた。 この焼結体を用いて、ビツカース硬度2300のア
ルミナセラミツクスを切削速度:60m/分、切込
み:0.3mm、送り:0.05mm/回転で、水溶性の切
削油を用いて15分間切削した。 比較のために、粒度40μm〜60μmであり、空孔
が8容量%存在する市販の耐熱性ダイヤモンドを
用いて切削した。 その結果、この発明の焼結体の逃げ面摩耗幅は
0.15mmであつたのに対に、市販の耐熱性ダイヤモ
ンドの逃げ面摩耗幅は0.58mmであつた。 実施例 4 粒度の異なるダイヤモンド粒子の配合比および
黒鉛化処理条件を変えることにより、最大粒径が
60μmであり、ダイヤモンド含有量の異なる種々
のダイヤモンド焼結体を実施例3と同様にして作
成し、しかる後酸処理を行ない耐熱性ダイヤモン
ド焼結体を準備した。各焼結体のダイヤモンドお
よび空孔含有量を第3表に示す。
[Table] Example 3 Diamond powder with an average particle size of 0.8 μm and boron powder were ground and mixed using a WC-Co cemented carbide bottle and ball. This powder and average particle size
60μm, 30μm and 10μm diamond powders are mixed in a ratio of 1:5:3:1, and then
It was heated in vacuum at a temperature of 1450°C for 1 hour, and sintered at 55 kb and 1450°C in the same manner as in Example 1. Analysis of this sintered body revealed that diamond was 96.2% by volume, Co was 3.45% by volume, Ni was 0.1% by volume,
It was confirmed that the sintered body was composed of 0.2% by volume of WC and 0.5% by volume of boron. When this sintered body was treated in heated aqua regia, 3.3% by volume of pores were generated. Using this sintered body, alumina ceramics with a Vickers hardness of 2300 was cut for 15 minutes using water-soluble cutting oil at a cutting speed of 60 m/min, depth of cut: 0.3 mm, and feed: 0.05 mm/rotation. For comparison, commercially available heat-resistant diamond with a particle size of 40 μm to 60 μm and 8% by volume of pores was used for cutting. As a result, the flank wear width of the sintered body of this invention is
In contrast, the flank wear width of commercially available heat-resistant diamond was 0.58 mm. Example 4 The maximum particle size was changed by changing the blending ratio of diamond particles with different particle sizes and the graphitization treatment conditions.
Various diamond sintered bodies having a diameter of 60 μm and different diamond contents were prepared in the same manner as in Example 3, and then subjected to acid treatment to prepare heat-resistant diamond sintered bodies. Table 3 shows the diamond and pore contents of each sintered body.

【表】 第3表に示されている各焼結体M…Rを、切削
加工用のチツプとして加工し、圧縮強度1000〜
1100Kg/cm2の安山岩を、切削速度:200m/分、
切込み:1mm、送り:0.3mm/回転湿式で20分間
切削し、逃げ面摩耗幅を測定した。結果を第2表
に示す。 第2図から明らかなように、空孔容積が7容量
%以下である、試料M,N,O,Pでは、逃げ面
摩耗幅が、空孔が7容量%以上の試料Q,Rに比
べてはるかに少ないことがわかる。 実施例 5 平均粒度50μm,25μm,10μmおよび0.5μmの
ダイヤモンド粉末を、55:30:10:5の割合で混
合した。このダイヤモンド粉末と第4a,5a,6a
族の遷移元素を第4表に示す割合で配合し混合し
た後、1500℃で30分間真空中で加熱し完成粉末と
した。この完成粉末を実施例1と同様にしてMo
製の容器に充填した後、Co板を完成粉末上に載
置し、圧力50kb・温度1500℃で15分間焼結した。 これらの焼結ダイヤモンドをMo製の容器から
取出して分析した結果および、王水に100時間入
れて金属を溶出した後に分析した結果を第5表に
示す。 次に、王水処理後の焼結ダイヤモンドを用い
て、ビツカース硬度2300のアルミナ丸棒を、切削
速度80m/分、切込み0.2mm、送り0.1mm/回転で
30分間切削した。このときの逃げ面摩耗幅も第5
表に示す。
[Table] Each sintered body M...R shown in Table 3 was processed as a chip for cutting, and the compressive strength was 1000~
Cutting speed: 200m/min for andesite of 1100Kg/ cm2 .
Wet cutting was performed for 20 minutes at a depth of cut of 1 mm and a feed rate of 0.3 mm/rotation, and the flank wear width was measured. The results are shown in Table 2. As is clear from Figure 2, the flank wear width of samples M, N, O, and P, in which the pore volume is 7% by volume or less, is greater than that of samples Q, R, in which the pores are 7% by volume or more. It turns out that there are far fewer. Example 5 Diamond powders with average particle sizes of 50 μm, 25 μm, 10 μm and 0.5 μm were mixed in a ratio of 55:30:10:5. This diamond powder and No. 4a, 5a, 6a
After compounding and mixing the group transition elements in the proportions shown in Table 4, the mixture was heated in vacuum at 1500° C. for 30 minutes to obtain a finished powder. This finished powder was treated with Mo in the same manner as in Example 1.
After filling the powder into a manufactured container, a Co plate was placed on top of the finished powder and sintered at a pressure of 50 kb and a temperature of 1500°C for 15 minutes. Table 5 shows the results of analysis of these sintered diamonds after they were taken out of the Mo container and the results of analysis after placing them in aqua regia for 100 hours to elute the metal. Next, using the sintered diamond treated with aqua regia, an alumina round bar with a Bitkers hardness of 2300 was cut at a cutting speed of 80 m/min, depth of cut of 0.2 mm, and feed of 0.1 mm/rotation.
Cut for 30 minutes. The flank wear width at this time is also 5th.
Shown in the table.

【表】【table】

【表】【table】

【表】 実施例 6 0.7μmのダイヤモンド粉末と硼素粉末を第6表
に示す割合で配合した。これらの粉末を超硬合金
製のポツトとボールを用いて30分間混合し、この
粉末と粒度50μm,25μm,6μmのダイヤモンド粉
末をそれそれ5:50:30:15の割合で配合した
後、1600℃で10分間10-5torrの真空中で処理し
た。 次に、これらの完成粉末を実施例1と同様にし
て焼結した後、容器を取除いた。これらの焼結体
を王水に150時間入れて金属を溶出し、その後に
分析した結果を第6表に示す。これらの焼結ダイ
ヤモンドを用いて、ビツカース硬度1700の常圧焼
結した窒化硅素の丸棒を、切削速度100m/分、
切込0.2mm、送り0.3mm/回転、乾式で20分間切削
した。この結果も第6表に示す。
[Table] Example 6 0.7 μm diamond powder and boron powder were blended in the proportions shown in Table 6. These powders were mixed for 30 minutes using a cemented carbide pot and ball, and this powder and diamond powder with particle sizes of 50 μm, 25 μm, and 6 μm were mixed in a ratio of 5:50:30:15, and then 1600 ℃ for 10 minutes in a vacuum of 10 −5 torr. Next, these finished powders were sintered in the same manner as in Example 1, and then the container was removed. These sintered bodies were placed in aqua regia for 150 hours to elute the metal, and the results of subsequent analysis are shown in Table 6. Using these sintered diamonds, a pressureless sintered silicon nitride round bar with a Bitkers hardness of 1700 was cut at a cutting speed of 100 m/min.
Dry cutting was performed for 20 minutes with a depth of cut of 0.2 mm and a feed rate of 0.3 mm/rotation. The results are also shown in Table 6.

【表】 [発明の効果] 以上のように、この発明によれば、耐熱性、強
度および耐摩耗性がより一層向上された工具用ダ
イヤモンド焼結体を得ることが可能となる。
[Table] [Effects of the Invention] As described above, according to the present invention, it is possible to obtain a diamond sintered body for tools with further improved heat resistance, strength, and wear resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、結合相を溶出した耐熱ダイヤモンド
焼結体における圧縮強度と空孔容積との関係を表
わす図である。第2図は、耐熱性ダイヤモンド焼
結体の安山岩切削試験結果を示す図である。
FIG. 1 is a diagram showing the relationship between compressive strength and pore volume in a heat-resistant diamond sintered body from which the binder phase has been eluted. FIG. 2 is a diagram showing the results of an andesite cutting test on a heat-resistant diamond sintered body.

Claims (1)

【特許請求の範囲】 1 ダイヤモンド含有量が93容量%を越え、かつ
99容量%以下であり、残部が周期律表第4a,5a,
6a族の金属もしくは炭化物と、鉄族金属との少
なくとも一方を合計で0.1〜3容量%、ならびに
空孔0.5容量%以上7容量%以下よりなることを
特徴とする、工具用ダイヤモンド焼結体。 2 前記ダイヤモンド含有量が95容量%を越え99
容量%以下であり、残部の空孔が0.5容量%以上
5容量%未満である、特許請求の範囲第1項記載
の工具用ダイヤモンド焼結体。 3 周期律表第4a,5a,6a族の炭化物が、WCま
たはWCと同一の結晶構造を有する(MoW)C
である、特許請求の範囲第1項または第2項記載
の工具用ダイヤモンド焼結体。 4 ダイヤモンドの含有量が93容量%を越え99容
量%以下であり、残部が周期律表第4a,5a,6a
族の金属もしくは炭化物および鉄族金属の少なく
とも一方を合計で0.1〜3容量%、空孔0.5容量%
以上7容量%以下、ならびに硼素および硼化物の
少なくとも一方を合計で0.005〜0.25容量%より
なることを特徴とする、工具用ダイヤモンド焼結
体。 5 前記ダイヤモンド含有量が95容量%を越え、
99容量%以下であり、残部の空孔が0.5容量%以
上5容量%未満である、特許請求の範囲第4項記
載の工具用ダイヤモンド焼結体。 6 前記周期律表第4a,5a,6a族の炭化物がWC
またはWCと同一の結晶構造を有する(MoW)
Cである、特許請求の範囲第4項または第5項記
載の工具用ダイヤモンド焼結体。
[Claims] 1. The diamond content exceeds 93% by volume, and
99% by volume or less, and the remainder is from periodic table 4a, 5a,
1. A diamond sintered body for tools, characterized in that the total content of at least one of a group 6a metal or carbide and an iron group metal is 0.1 to 3% by volume, and vacancies are 0.5% to 7% by volume. 2 The diamond content exceeds 95% by volume and 99
% by volume or less, and the remaining pores are 0.5% by volume or more and less than 5% by volume, the diamond sintered body for tools according to claim 1. 3 Carbides of groups 4a, 5a, and 6a of the periodic table have the same crystal structure as WC or WC (MoW)C
A diamond sintered body for a tool according to claim 1 or 2. 4 Diamond content is more than 93% by volume and less than 99% by volume, and the remainder is from Periodic Table 4a, 5a, 6a
A total of 0.1 to 3% by volume of at least one of group metals or carbides and iron group metals, and 0.5% by volume of vacancies.
A diamond sintered body for a tool, characterized in that the total content of at least one of boron and boride is 0.005 to 0.25% by volume. 5 The diamond content exceeds 95% by volume,
The diamond sintered body for tools according to claim 4, wherein the pores are 99% by volume or less, and the remaining pores are 0.5% by volume or more and less than 5% by volume. 6 The carbides of groups 4a, 5a, and 6a of the periodic table are WC
or has the same crystal structure as WC (MoW)
The diamond sintered body for tools according to claim 4 or 5, which is C.
JP59226574A 1984-09-08 1984-10-26 Diamond sintered body for tool and production thereof Granted JPS61104045A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59226574A JPS61104045A (en) 1984-10-26 1984-10-26 Diamond sintered body for tool and production thereof
DE8585110715T DE3583567D1 (en) 1984-09-08 1985-08-26 SINTERED DIAMOND TOOL BODY AND METHOD FOR PRODUCING IT.
US06/769,609 US4636253A (en) 1984-09-08 1985-08-26 Diamond sintered body for tools and method of manufacturing same
EP85110715A EP0174546B1 (en) 1984-09-08 1985-08-26 Diamond sintered body for tools and method of manufacturing the same
AU46632/85A AU571419B2 (en) 1984-09-08 1985-08-26 Diamond sintered for tools and method of manufacture
KR1019850006553A KR900002701B1 (en) 1984-09-08 1985-09-07 Diamond sintered body for tools and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59226574A JPS61104045A (en) 1984-10-26 1984-10-26 Diamond sintered body for tool and production thereof

Publications (2)

Publication Number Publication Date
JPS61104045A JPS61104045A (en) 1986-05-22
JPS6319585B2 true JPS6319585B2 (en) 1988-04-23

Family

ID=16847296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59226574A Granted JPS61104045A (en) 1984-09-08 1984-10-26 Diamond sintered body for tool and production thereof

Country Status (1)

Country Link
JP (1) JPS61104045A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270840A (en) * 1987-04-28 1988-11-08 東レ株式会社 Shuttleless loom for mix fabric
JP2010228073A (en) * 2009-03-30 2010-10-14 Sumitomo Electric Hardmetal Corp Diamond sintered body for cutting tool containing coarse grain diamond particle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590113B2 (en) * 1987-07-15 1997-03-12 住友電気工業株式会社 Bonding tool material and manufacturing method thereof
WO2008096314A2 (en) * 2007-02-05 2008-08-14 Element Six (Production) (Pty) Ltd Polycrystalline diamond (pcd) materials
US9701043B2 (en) 2012-04-24 2017-07-11 Tokyo Seimitsu Co., Ltd. Dicing blade
WO2013187510A1 (en) 2012-06-15 2013-12-19 株式会社東京精密 Dicing device and dicing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100981A (en) * 1980-12-12 1982-06-23 Sumitomo Electric Industries Diamond sintered body for dice and manufacture
JPS57100982A (en) * 1980-12-12 1982-06-23 Sumitomo Electric Industries Diamond sintered body for tool and manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100981A (en) * 1980-12-12 1982-06-23 Sumitomo Electric Industries Diamond sintered body for dice and manufacture
JPS57100982A (en) * 1980-12-12 1982-06-23 Sumitomo Electric Industries Diamond sintered body for tool and manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270840A (en) * 1987-04-28 1988-11-08 東レ株式会社 Shuttleless loom for mix fabric
JP2010228073A (en) * 2009-03-30 2010-10-14 Sumitomo Electric Hardmetal Corp Diamond sintered body for cutting tool containing coarse grain diamond particle

Also Published As

Publication number Publication date
JPS61104045A (en) 1986-05-22

Similar Documents

Publication Publication Date Title
KR900002701B1 (en) Diamond sintered body for tools and method of manufacturing the same
EP0181258B1 (en) Improved cubic boron nitride compact and method of making
JP5680567B2 (en) Sintered body
EP0383861B1 (en) Diamond compact possessing low electrical resistivity
JP5456948B2 (en) Method for producing polycrystalline cubic boron nitride cutting tool insert
JPS5935066A (en) Diamond sintered body for tool and manufacture
JPS6167740A (en) Diamond sintered body for tools and its manufacture
JPH0530897B2 (en)
JPS6355161A (en) Manufacture of industrial diamond sintered body
EP1551581A1 (en) Sintered body with high hardness for cutting cast iron and the method for producing the same
EP0816304A2 (en) Ceramic bonded cubic boron nitride compact
JPS6319585B2 (en)
JPH083131B2 (en) Method for manufacturing diamond sintered body for tool
JPH0368938B2 (en)
JPS62105911A (en) Hard diamond mass and production thereof
JPS6350401B2 (en)
JPS6137221B2 (en)
JPH0377151B2 (en)
JPS6157381B2 (en)
JPS639009B2 (en)
JPS60152649A (en) High hardness sintered body of diamond and its manufacture
JP2001240932A (en) Wear resistant tool material and its production method
JPS6242989B2 (en)
JPS63201064A (en) Cubic boron nitride base superhigh pressure sintering material for cutting tool
JPS62275062A (en) High hardness diamond sintered body and manufacture

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term