[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6318353B2 - - Google Patents

Info

Publication number
JPS6318353B2
JPS6318353B2 JP19490383A JP19490383A JPS6318353B2 JP S6318353 B2 JPS6318353 B2 JP S6318353B2 JP 19490383 A JP19490383 A JP 19490383A JP 19490383 A JP19490383 A JP 19490383A JP S6318353 B2 JPS6318353 B2 JP S6318353B2
Authority
JP
Japan
Prior art keywords
electrode
glass powder
external
electrostrictive
electrostrictive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19490383A
Other languages
Japanese (ja)
Other versions
JPS6086883A (en
Inventor
Atsushi Ochi
Kazuaki Uchiumi
Masanori Suzuki
Mitsuhiro Midorikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58194903A priority Critical patent/JPS6086883A/en
Priority to EP83307867A priority patent/EP0113999B1/en
Priority to DE8383307867T priority patent/DE3373594D1/en
Publication of JPS6086883A publication Critical patent/JPS6086883A/en
Priority to US06/940,210 priority patent/US4681667A/en
Publication of JPS6318353B2 publication Critical patent/JPS6318353B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 本発明は縦効果を利用した電歪効果素子の製造
法に関するものであり、その目的は露出した電極
の一部を選択的にかつ高い信頼度でガラス膜によ
つて被い、絶縁することである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an electrostrictive effect element using a longitudinal effect, and its purpose is to selectively and reliably cover a portion of an exposed electrode with a glass film. It is to cover and insulate.

これを目的として本発明者等は先に帯電したガ
ラス粉末を含む懸濁液を用いた電気泳動法により
絶縁パターンを形成することを特徴とする工法を
提案している。第1図〜第6図によつてその概略
を説明する。第1図、第2図はガラス被膜を付け
る前の電歪材料積層体の内部電極の露出した端面
を示す外観図である。第3図、第4図は帯状のガ
ラス粉末を付着した電歪材料と内部電極との積層
体の端面を同じく表側と裏側から見た外観図であ
る。16で示す内部電極は全て仮設外部電極12
に接続しており帯電したガラス粉末を含む懸濁液
中で対向電極と外部電極12との間に直流電圧を
印加することにより内部電極露出部16とその周
辺のセラミツク上に帯状にガラス粉末11が付着
する。裏側の端面においては仮設外部電極14に
接続している内部電極13とその周辺のセラミツ
ク上にガラス粉末15が付着する。これを焼成固
着させることにより内部電極露出部とその周辺の
セラミツク上に一層おきにガラス被膜が形成され
る。両端を除去し素子の最終形状に切断し、外部
電極を形成すれば多数の内部電極を一層おきに接
続することができる。第5図はガラス被膜を形成
した電歪材料積層体の切断位置(点線部分)を示
す外観図である。第6図は電気的接続を行なつた
電歪効果素子である。17は外部電極で13で示
す内部電極は全てこの外部電極に接続している。
16で示す内部電極は全て裏側の外部電極に接続
している。プラス側端子19およびマイナス側端
子20の間に電圧を印加すれば上、下の保護膜部
を除く電歪材料全体に内部電極に垂直方向の電界
とそれに伴う歪が発生して電歪効果素子として動
作する。
For this purpose, the present inventors have proposed a construction method characterized by forming an insulating pattern by electrophoresis using a suspension containing electrically charged glass powder. The outline will be explained with reference to FIGS. 1 to 6. FIGS. 1 and 2 are external views showing the exposed end faces of the internal electrodes of the electrostrictive material laminate before the glass coating is applied. FIGS. 3 and 4 are external views of the end faces of a laminate of an electrostrictive material to which band-shaped glass powder is adhered and internal electrodes, as seen from the front and back sides. All internal electrodes indicated by 16 are temporary external electrodes 12
By applying a DC voltage between the counter electrode and the external electrode 12 in a suspension containing electrically charged glass powder, glass powder 11 is applied in a strip shape onto the exposed internal electrode part 16 and the ceramic around it. is attached. On the back end surface, glass powder 15 adheres to the internal electrode 13 connected to the temporary external electrode 14 and the ceramic around it. By firing and fixing this, a glass film is formed every other layer on the exposed portions of the internal electrodes and the ceramic around them. By removing both ends, cutting into the final shape of the device, and forming external electrodes, a large number of internal electrodes can be connected every other layer. FIG. 5 is an external view showing the cutting position (dotted line area) of the electrostrictive material laminate on which the glass coating is formed. FIG. 6 shows an electrostrictive effect element with electrical connections. Reference numeral 17 denotes an external electrode, and all internal electrodes indicated by 13 are connected to this external electrode.
All internal electrodes indicated by 16 are connected to external electrodes on the back side. When a voltage is applied between the positive side terminal 19 and the negative side terminal 20, an electric field in a direction perpendicular to the internal electrode and the accompanying strain are generated in the entire electrostrictive material except for the upper and lower protective film parts, and the electrostrictive effect element is activated. operates as

この方法の問題点として、電気泳動付着の時に
ガラスの付着してはいけない部分、すなわち後で
形成される外部電極に接続させる内部電極の露出
部にわずかにガラス粉が付着し、焼成後不要の薄
いガラス膜で被われてしまうことである。第7図
は不要なガラス膜の固着した端面上に外部電極を
形成した電歪効果素子の断面図である。図中番号
11,15は本来の絶縁被膜。21は不要のガラ
ス膜を示す。これが形成されると内部電極13は
外部電極17に接続されず、内部電極16は外部
電極18に接続されない。19,20はそれぞれ
マイナス側およびプラス側の外部端子を示してい
る。
The problem with this method is that a small amount of glass powder adheres to the parts of the glass that should not be attached during electrophoretic deposition, that is, to the exposed parts of the internal electrodes that will be connected to the external electrodes that will be formed later. It is covered with a thin glass film. FIG. 7 is a sectional view of an electrostrictive element in which external electrodes are formed on the end face to which an unnecessary glass film is fixed. Numbers 11 and 15 in the figure are the original insulation coatings. 21 indicates an unnecessary glass film. When this is formed, the internal electrode 13 is not connected to the external electrode 17, and the internal electrode 16 is not connected to the external electrode 18. Reference numerals 19 and 20 indicate negative and positive external terminals, respectively.

余計な部分にもガラス粉末が付着する原因は、
セラミツク材料の誘電率が高く、誘電分極のため
に付着させない内部電極を含めて電歪材料全体の
電位が付着させるべき内部電極の電位とほぼ同じ
になるからである。比誘電率2700の電歪材料積層
体に電気泳動法を適用した場合について、第3図
にもとづいて説明する。帯電したガラス粉末を含
む懸濁液に前記積層体および対向電極板を設置
し、仮設外部電極12′と対向電極板との間に
20Vの直流電圧を印加した。その時対向電極と内
部電極露出部13との間の電位差も17Vとかなり
大きく、帯電したガラス粉末の一部は付着させて
はいけない内部電極露出部13の上にも付着して
しまつた。本発明の目的はこのような欠点を除い
た電歪効果素子の製造方法を提供することであ
る。
The reason why glass powder adheres to unnecessary parts is
This is because the dielectric constant of the ceramic material is high, and the potential of the entire electrostrictive material including the internal electrodes that are not attached due to dielectric polarization is approximately the same as the potential of the internal electrodes that are to be attached. A case in which the electrophoresis method is applied to an electrostrictive material laminate having a dielectric constant of 2700 will be explained based on FIG. 3. The laminate and the counter electrode plate are placed in a suspension containing electrically charged glass powder, and a layer is placed between the temporary external electrode 12' and the counter electrode plate.
A DC voltage of 20V was applied. At that time, the potential difference between the counter electrode and the internal electrode exposed portion 13 was quite large, 17 V, and some of the charged glass powder also adhered to the internal electrode exposed portion 13, which should not be allowed to adhere. An object of the present invention is to provide a method for manufacturing an electrostrictive element that eliminates such drawbacks.

本発明は帯電したガラス粉末を含む懸濁液中で
電歪材料と内部電極との積層体の端面の内部電極
近傍にガラス粉を付着させる際、この余計な部分
への付着を防ぐためにガラス粉末を付着させない
内部電極の電位を対向電極と同電位か又はそれに
近い電位にすることである。対向電極と同電位あ
るいは同電位に近づけるためには対向電極に接続
するか、導電物質からなるアンテナを付着させな
い内部電極をまとめた仮設外部電極から出して対
向電極の近傍に設置することにより実現可能にな
る。第8図、第9図は接続する場合とアンテナを
出す場合の電気泳動装置と電歪材料積層体の配置
およびそれらの接続方法を示す外観図である。た
だし、第9図は上方からの図である。12は付着
させるべき内部電極をまとめた仮設外部電極、1
4は付着させない方の内部電極をまとめた仮設外
部電極である。第8図においては仮設外部電極1
4は導線32により対向電極31に接続されてい
る。第9図においては仮設外部電極14からアン
テナ35が出て対向電極の近傍までのびている。
33は直流電源、34は懸濁液を保持する容器で
ある。これにより外部電極に接続される方の内部
電極上にはガラス粉は全く付着せず焼成すること
により目的とした第3図、第4図に示すようなガ
ラス被膜の絶縁パターンが得られ、切断後外部電
極を形成することにより電歪効果素子は完全に電
気的に接続される。
In the present invention, when glass powder is attached near the internal electrode on the end face of a laminate of an electrostrictive material and an internal electrode in a suspension containing charged glass powder, the glass powder is The potential of the internal electrodes to which no particles are attached is set to be the same potential as the counter electrode or a potential close to it. In order to have the same potential or close to the same potential as the counter electrode, this can be achieved by connecting it to the counter electrode, or by taking it out from a temporary external electrode made up of internal electrodes that do not have an antenna made of conductive material attached and placing it near the counter electrode. become. FIG. 8 and FIG. 9 are external views showing the arrangement of the electrophoretic device and the electrostrictive material laminate and the method of connecting them when connected and when the antenna is taken out. However, FIG. 9 is a view from above. 12 is a temporary external electrode made up of internal electrodes to be attached; 1
Reference numeral 4 denotes a temporary external electrode made up of the internal electrodes that are not attached. In Fig. 8, temporary external electrode 1
4 is connected to the counter electrode 31 by a conducting wire 32. In FIG. 9, the antenna 35 comes out from the temporary external electrode 14 and extends to the vicinity of the counter electrode.
33 is a DC power source, and 34 is a container that holds the suspension. As a result, no glass powder adheres to the internal electrode that is connected to the external electrode, and by firing, the desired insulation pattern of the glass coating as shown in Figures 3 and 4 can be obtained, and the glass coating can be cut. By forming the rear external electrode, the electrostrictive element is completely electrically connected.

次に実施例に従つて本発明の方法を説明する。 Next, the method of the present invention will be explained according to Examples.

マグネシウムニオブ酸鉛(Pb(Mg1/3Nb2/3)
O3)およびチタン酸鉛(PbTiO3)を主成分とす
る電歪材料予焼粉末に微量の有機バインダを添加
し、これを有機溶媒中に分散させたスラリーを準
備した。通常の積層セラミツクコンデンサの製造
に使用されるキヤステイング製膜装置によりこの
スラリーをマイラーフイルム上に数百ミクロンの
厚さに塗布し乾燥させた。これをフイルムから剥
離し、電歪材料グリーンシートを得た。一部のグ
リーンシートには更に内部電極として白金ペース
トをスクリーン印刷した。これらのグリーンシー
トを数10枚重ね、熱プレスにより圧着一体化した
後1250℃で焼成し、電歪材料積層体を得た。これ
を内部電極が一層おきに表面に露出するような位
置で切断し2つの仮設外部電極を塗布焼付けし、
更に側面を切断して内部電極を露出させた。この
ようにして得られた電歪材料積層体を電気泳動法
に適用する。第1図、第2図はこの電歪材料積層
体の内部電極の露出した端面を示す斜視図であ
る。多数の内部電極13,16は一層おきに交互
に2つの仮設外部電極14,12にそれぞれ接続
している。
Magnesium lead niobate (Pb (Mg1/3Nb2/3)
A slurry was prepared by adding a small amount of an organic binder to an electrostrictive material pre-fired powder containing lead titanate (PbTiO 3 ) and lead titanate (PbTiO 3 ) as main components, and dispersing this in an organic solvent. This slurry was coated onto a Mylar film to a thickness of several hundred microns using a casting film forming apparatus used in the manufacture of ordinary multilayer ceramic capacitors and dried. This was peeled off from the film to obtain an electrostrictive material green sheet. Some of the green sheets were further screen-printed with platinum paste as internal electrodes. Several ten of these green sheets were stacked, pressed together by heat press, and then fired at 1250°C to obtain an electrostrictive material laminate. This was cut at a position where the internal electrodes were exposed on the surface every other layer, and two temporary external electrodes were coated and baked.
Furthermore, the side surface was cut to expose the internal electrodes. The electrostrictive material laminate thus obtained is applied to electrophoresis. FIGS. 1 and 2 are perspective views showing exposed end faces of internal electrodes of this electrostrictive material laminate. A large number of internal electrodes 13, 16 are alternately connected to two temporary external electrodes 14, 12 at every other layer.

次に帯電したガラス粉末を含む懸濁液を以下の
方法で作製する。ホウケイ酸亜鉛系結晶化ガラス
粉末30g、エタノール290ml、5%ヨウ素エタノ
ール溶液10mlを高速ホモジナイザーで混合する。
ヨウ素が電解質の役割を果たし、ガラス粉末はプ
ラスに帯電している。30分間超音波をかけた後、
30分間静置して沈澱物を除去し残りの懸濁液を使
用する。
Next, a suspension containing charged glass powder is prepared by the following method. Mix 30 g of zinc borosilicate crystallized glass powder, 290 ml of ethanol, and 10 ml of 5% iodine ethanol solution using a high-speed homogenizer.
Iodine acts as an electrolyte, and the glass powder is positively charged. After applying ultrasound for 30 minutes,
Leave to stand for 30 minutes to remove the precipitate and use the remaining suspension.

次に第8図に従つて電気泳動装置の構成と接続
方法とを説明する。
Next, the configuration and connection method of the electrophoresis device will be explained with reference to FIG.

前記電歪材料積層体の内部電極が露出した端面
の片面を粘着テープで被い懸濁液にぬれるのを防
いだ後前記懸濁液を満たした容器34に沈める。
積層体の付着させたい端面の前方1cmの距離のと
ころに付着させたい端面よりひとまわり大きなス
テンレス製対向電極板31を沈める。対向電極板
を直流電源のプラス端子に接続し、仮設外部電極
14を対向電極に接続し同電位とする。12で示
す仮設外部電極をマイナス端子に接続し、
20V300秒間電圧を印加する。終了後懸濁液から
引き上げ乾燥させると、第3図に示すように、内
部電極露出部の上とその周辺の電歪材料表面に巾
200ミクロンのガラス粉末の付着11が得られた。
One side of the exposed end surface of the electrostrictive material laminate is covered with an adhesive tape to prevent it from getting wet with the suspension, and then the electrostrictive material laminate is submerged in a container 34 filled with the suspension.
A counter electrode plate 31 made of stainless steel, which is slightly larger than the end surface to which the laminate is to be attached, is submerged at a distance of 1 cm in front of the end surface to which the laminate is to be attached. The counter electrode plate is connected to the positive terminal of a DC power supply, and the temporary external electrode 14 is connected to the counter electrode to have the same potential. Connect the temporary external electrode indicated by 12 to the negative terminal,
Apply voltage of 20V for 300 seconds. When the electrostrictive material is removed from the suspension and dried, a wide area is formed on the surface of the electrostrictive material above and around the exposed internal electrodes, as shown in Figure 3.
A deposit of 200 microns of glass powder 11 was obtained.

裏面の粘着テープを取り除いた後、705℃で10
分間保持することにより焼成しガラス被膜を電歪
材料に固着させた。
After removing the adhesive tape on the back, heat at 705℃ for 10
The glass film was baked by holding for a minute to fix the glass film to the electrostrictive material.

次に反対側の面にガラス被膜を形成する。まず
既に被膜を形成した面を粘着テープで被い保護し
た後、図中番号14で示す仮設外部電極を直流電源
のマイナス端子に接続し一回目と同様な方法で電
圧を印加して13で示す内部電極の露出部とその
周辺のセラミツク上にガラス粉末を付着させる。
これを一回目と同様に焼成して帯状のガラス被膜
を形成する。
Next, a glass coating is formed on the opposite side. First, protect the surface on which the film has already been formed by covering it with adhesive tape, then connect the temporary external electrode indicated by number 14 in the figure to the negative terminal of the DC power supply, and apply voltage in the same way as the first time, indicated by number 13. Glass powder is deposited on the exposed parts of the internal electrodes and the ceramic around them.
This is fired in the same manner as the first time to form a band-shaped glass coating.

以上のように表側と裏側にガラス被膜を形成し
た電歪材料積層体を第5図の点線で示す位置で切
断する。両端の仮設外部電極のついた小片2個は
使用できず、それらを除く小片が電歪効果素子と
なる。
The electrostrictive material laminate with the glass coating formed on the front and back sides as described above is cut at the position shown by the dotted line in FIG. 5. The two small pieces with temporary external electrodes on both ends cannot be used, and the other small pieces serve as electrostrictive elements.

得られた電歪効果素子は第6図に示すように2
つの外部電極を表側と裏側に形成することにより
容易に電気的に接続され、2つの外部端子19,
20の間に電圧を印加すると上、下の保護膜部を
除く電歪材料全体に均一な電界が生じ、1000分の
1程度の歪を発生する。
The obtained electrostrictive effect element has a shape of 2 as shown in FIG.
By forming two external electrodes on the front side and the back side, electrical connection is easily made, and two external terminals 19,
When a voltage is applied between 20 and 20, a uniform electric field is generated in the entire electrostrictive material except for the upper and lower protective film parts, and a strain of about 1/1000 is generated.

電気的に接続された電歪効果素子は側面の内部
電極露出部を含めて全体をエポキシ樹脂でコート
し耐湿性、絶縁性を持たせる。
The electrically connected electrostrictive effect element is coated entirely with epoxy resin, including the exposed internal electrodes on the sides, to provide moisture resistance and insulation.

本発明の方法により電歪材料積層体端面の内部
電極露出部に高い信頼度で選択的にガラス粉末を
付着させることができるようになつた。これを焼
成、固着させることにより露出電極上に目的とす
る絶縁パターンを精度よく形成でき、その結果、
外部電極、外部端子との接続が良好になつた。
By the method of the present invention, it has become possible to selectively adhere glass powder to the internal electrode exposed portions of the end faces of the electrostrictive material laminate with high reliability. By firing and fixing this, the desired insulation pattern can be formed on the exposed electrode with high precision, and as a result,
Connection with external electrodes and external terminals has become better.

本発明の方法を用いて絶縁被膜を形成した場
合、接続不良が25%から3%に減少した。
When the insulating coating was formed using the method of the present invention, connection failures were reduced from 25% to 3%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は電気泳動法を適用する目的で
仮設外部電極12および14を設けた電歪材料積
層体の表側と裏側の端面を示す外観図である。図
中番号13,16は内部電極露出部である。第3
図、第4図は内部電極露出部の一部とその周辺の
セラミツク上にガラス粉末を付着させた電歪材料
積層体を示す外観図。図中番号11,15は付着
したガラス粉末を示す。第5図はガラス粉末を付
着後焼成固着させた積層体と、その切断位置を示
す外観図である。第6図は電気的に接続された電
歪効果素子を示す図。図中番号17は外部電極、
19,20は外部接続端子をそれぞれ示す。 第7図は不要なガラス膜が形成されたために電
気的接続が不可能となつた電歪効果素子の断面
図。図中番号21は不要のガラス被膜を示す。 第8図は付着させない内部電極の電位を対向電
極と同電位にする場合の電気泳動装置の接続方法
を示す外観図である。図中番号31は対向電極
板、32は仮設外部電極14と対向電極板とを接
続する導線を示す。33,34はそれぞれ直流電
源と容器を示す。第9図は付着させない方の内部
電極の電位を対向電極の電位に近づける場合の電
気泳動装置の接続方法を示す上方からの外観図で
ある。図中番号35はアンテナを示す。
FIGS. 1 and 2 are external views showing the front and back end faces of an electrostrictive material laminate provided with temporary external electrodes 12 and 14 for the purpose of applying electrophoresis. Numbers 13 and 16 in the figure are internal electrode exposed parts. Third
FIG. 4 is an external view showing an electrostrictive material laminate in which glass powder is adhered to a part of the internal electrode exposed portion and the surrounding ceramic. Numbers 11 and 15 in the figure indicate attached glass powder. FIG. 5 is an external view showing a laminate in which glass powder is attached and fixed by firing, and its cutting position. FIG. 6 is a diagram showing electrically connected electrostrictive elements. Number 17 in the figure is an external electrode,
19 and 20 indicate external connection terminals, respectively. FIG. 7 is a cross-sectional view of an electrostrictive element in which electrical connection is impossible due to the formation of an unnecessary glass film. Number 21 in the figure indicates an unnecessary glass coating. FIG. 8 is an external view showing a method of connecting an electrophoresis device when the potential of the internal electrode to which no material is attached is set to the same potential as that of the counter electrode. In the figure, numeral 31 indicates a counter electrode plate, and 32 indicates a conductive wire connecting the temporary external electrode 14 and the counter electrode plate. 33 and 34 indicate a DC power source and a container, respectively. FIG. 9 is an external view from above showing a method of connecting an electrophoresis device when the potential of the internal electrode to which no adhesion is made approaches the potential of the counter electrode. Number 35 in the figure indicates an antenna.

Claims (1)

【特許請求の範囲】[Claims] 1 帯電したガラス粉末を含む懸濁液中で、電歪
材料と内部電極との積層体の端面に露出した内部
電極の一部とその周辺の電歪材料上に選択的に前
記ガラス粉末を付着させる工程を有する電歪効果
素子の製造方法において、前記工程でガラス粉末
を付着させない内部電極の電位を対向電極と同電
位か又はそれに近い電位にすることを特徴とする
電歪効果素子の製造方法。
1. In a suspension containing charged glass powder, the glass powder is selectively attached to a part of the internal electrode exposed at the end face of the laminate of the electrostrictive material and the internal electrode and the electrostrictive material around it. In the method for manufacturing an electrostrictive effect element, the potential of the internal electrode to which no glass powder is attached is set to the same potential as that of the counter electrode or a potential close to it in the step. .
JP58194903A 1982-12-22 1983-10-18 Manufacture of electrostrictive-effect element Granted JPS6086883A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58194903A JPS6086883A (en) 1983-10-18 1983-10-18 Manufacture of electrostrictive-effect element
EP83307867A EP0113999B1 (en) 1982-12-22 1983-12-22 Method of producing electrostrictive effect element
DE8383307867T DE3373594D1 (en) 1982-12-22 1983-12-22 Method of producing electrostrictive effect element
US06/940,210 US4681667A (en) 1982-12-22 1986-12-10 Method of producing electrostrictive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58194903A JPS6086883A (en) 1983-10-18 1983-10-18 Manufacture of electrostrictive-effect element

Publications (2)

Publication Number Publication Date
JPS6086883A JPS6086883A (en) 1985-05-16
JPS6318353B2 true JPS6318353B2 (en) 1988-04-18

Family

ID=16332248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58194903A Granted JPS6086883A (en) 1982-12-22 1983-10-18 Manufacture of electrostrictive-effect element

Country Status (1)

Country Link
JP (1) JPS6086883A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2830724B2 (en) * 1993-12-20 1998-12-02 日本電気株式会社 Manufacturing method of piezoelectric actuator
JP5304159B2 (en) * 2008-10-08 2013-10-02 株式会社村田製作所 Manufacturing method of multilayer ceramic capacitor

Also Published As

Publication number Publication date
JPS6086883A (en) 1985-05-16

Similar Documents

Publication Publication Date Title
JPS62274681A (en) Electrostrictive effect element
JPS6317355B2 (en)
EP0167392A2 (en) Method of producing electrostrictive effect element
JPH0564873B2 (en)
JPH0256826B2 (en)
JPS6318353B2 (en)
JPH0666483B2 (en) Electrostrictive effect element
JPS60178678A (en) Manufacture of electronic component of ceramic lamination
JPH0256827B2 (en)
JPH10290031A (en) Laminated-type piezo-electric actuator and manufacture thereof
JPS6132835B2 (en)
JPS6318352B2 (en)
JPS59122200A (en) Method for connecting electrically internal electrode of electrostrictive element
JPH05267743A (en) Manufacture of laminated piezoelectric actuator
JPH06181343A (en) Laminated displacement element and manufacture thereof
JPS6086881A (en) Manufacture of electrostrictive-effect element
JPH0420248B2 (en)
JPH02137280A (en) Electrostriction effect element and its manufacture
JPH0256829B2 (en)
JPH0256828B2 (en)
JPH06112546A (en) Multilayer piezoelectric element and its manufacture
JP2613408B2 (en) Multilayer piezoelectric actuator
JPS6359275B2 (en)
JPS6214483A (en) Manufacture of electrostrictive effect element
JPS6225475A (en) Electrostrictive effect element and manufacture thereof