[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63181492A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS63181492A
JPS63181492A JP1467987A JP1467987A JPS63181492A JP S63181492 A JPS63181492 A JP S63181492A JP 1467987 A JP1467987 A JP 1467987A JP 1467987 A JP1467987 A JP 1467987A JP S63181492 A JPS63181492 A JP S63181492A
Authority
JP
Japan
Prior art keywords
ridges
type
groove
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1467987A
Other languages
Japanese (ja)
Inventor
Akio Yoshikawa
昭男 吉川
Takashi Sugino
隆 杉野
Masaru Wada
優 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1467987A priority Critical patent/JPS63181492A/en
Publication of JPS63181492A publication Critical patent/JPS63181492A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To suppress the crack development in the vicinity of an active layer and operate on a low electric current by having a structure where an N-type on a P-type substrate comprising a protruding mesa has two ridge forms that are adjacent to each other at the opposite side of the substrate and by preparing a groove part reaching the substrate between two ridges where an end of the groove and an end of the protruding mesa in the same direction to the center of the groove are separated, thereby forming multilayer thin films having a double-hetero structure including the active layer on the conductive substrate including the ridges. CONSTITUTION:Stripe-like protruding ridges are prepared on a P-type GaAs substrate 11 in the direction of <ITO> and an N-type GaAs current blocking layer 12 grows on the ridges. After the growth surface is treated by washing, the stripe-like protruding ridges that are adjacent to each other, thereby interposing the groove between the ridges in the direction of <ITO>, are provided and the groove between the ridges reaches the ridges. After washing the surface, a P-type AlxGa1-xAs layer 13, an AlyGa1-yAs active layer 14, an N-type AlxGa1-xAs clad layer 15 as well as an N-type can layer 16 grow in sequence under the same conditions. In such a case, intervals WSL and WSR between the ridge and V-shaped groove shall be more than 2mum. Thus a semiconductor laser device which performs uniformly basic transverse mode oscillations at a low threshold current value is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体レーザ装置に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a semiconductor laser device.

従来の技術 電子機器、光学機器のコヒーレント光源として半導体レ
ーザに要求される重要な性能には、低電流動作、基本横
モード発振があげられる。これらの性能を実現するため
には、レーザ光が伝播する活性領域付近にレーザ素子中
を流れる電流を集中するようにその拡がシを抑制し、か
つ閉じ込める必要がある。このような構造を内部につく
りつけた半導体レーザは通常、内部ストライプ型レーザ
と呼ばれる。(例えば、今井哲二他編著「化合物半導体
デバイス(II) j p、 214〜p、215)以
下、図面を参照しながら、上述したような従来の内部ス
トライプ型レーザの一例として、BTR3型レーザを取
シ上げ、説明する。
BACKGROUND OF THE INVENTION Important performances required of semiconductor lasers as coherent light sources for electronic and optical equipment include low current operation and fundamental transverse mode oscillation. In order to achieve these performances, it is necessary to suppress the spread and confine the current flowing through the laser element so as to concentrate it near the active region where the laser light propagates. A semiconductor laser with such a structure built inside is usually called an internal stripe type laser. (For example, "Compound Semiconductor Devices (II)," edited by Tetsuji Imai et al., jp, p. 214-p., 215.) Hereinafter, with reference to the drawings, a BTR3 type laser will be described as an example of the conventional internal stripe type laser as described above. Raise it and explain.

第3図はBTR8型レーザの断面形状の模式図を示す。FIG. 3 shows a schematic diagram of the cross-sectional shape of the BTR8 type laser.

第3図において、1はp型GaAs基板、2はn型Ga
Ag電流阻止層、3はp型AlGaAsクラッド層、4
はA/GaAs活性層、6はn型A、dGaAgクラ・
ンド層、6はn型GaAsコンタクト層、7は、n側オ
ーミック電極、8はp側オーミック電極である。
In FIG. 3, 1 is a p-type GaAs substrate, 2 is an n-type GaAs substrate, and 2 is an n-type GaAs substrate.
Ag current blocking layer, 3 p-type AlGaAs cladding layer, 4
is A/GaAs active layer, 6 is n-type A, dGaAg layer.
6 is an n-type GaAs contact layer, 7 is an n-side ohmic electrode, and 8 is a p-side ohmic electrode.

以上のように構成されたBTR3型レーザについて以下
その作製方法および動作を簡単に説明する0 BTR3型レーザは2回の液相エピタキシャル成長によ
シ作製される。
The manufacturing method and operation of the BTR3 type laser constructed as described above will be briefly described below.The BTR3 type laser is manufactured by two liquid phase epitaxial growth processes.

p型GaAa基板1(キャリア濃度=1018〜10 
 cm  )の(100)面上に、フォトマスクと化学
エツチングによシ、(ITo)方向にストライプ状に第
3図に示す幅10μmの凸状のリッジを設ける。このリ
ッジ上に液相エピタキシャル成長法により、n型GaA
s電流阻止層2を0.8μmの厚みで成長する。成長条
件は、成長温度850℃で冷却速度が0.6℃/分、過
飽和度は8℃であった。成長表面を洗浄処理した後、フ
ォトマスクと化学エツチング処理によシ、第3図に示す
ように、(ITo)方向に隣接した幅20μmのストラ
イプ状の凸型リッジを設け、リッジ間の溝が上記リッジ
に到達するようにする。表面洗浄処理をした後、液相エ
ピタキシャル成長法により、前記と同じ成長条件で、p
型AlxGa1−rA8層3を平坦部でO−3μrrx
 、AIl yGa 1□As活性層4 (0≦y<x
 )を0.06μm、n型Al xGa 1□Asクラ
ッド層6を1.5μm、n型GaAs キャップ層6を
1.5μmで順次成長させる。2つの隣接したリッジを
設けた基板上へ結晶成長を行なうため、活性領域内の活
性層の膜厚0.06μmでも制御性よく、しかもウェハ
面内でも均一性良く成長することができる。
p-type GaAa substrate 1 (carrier concentration=1018~10
By using a photomask and chemical etching, a convex ridge having a width of 10 μm as shown in FIG. 3 is provided in the form of a stripe in the (ITo) direction on the (100) plane of the (cm2). On this ridge, n-type GaA was grown by liquid phase epitaxial growth.
s Current blocking layer 2 is grown to a thickness of 0.8 μm. The growth conditions were a growth temperature of 850°C, a cooling rate of 0.6°C/min, and a supersaturation degree of 8°C. After cleaning the growth surface, a photomask and chemical etching process are used to form convex ridges in the form of stripes with a width of 20 μm adjacent to each other in the (ITo) direction, as shown in Figure 3, and grooves between the ridges are formed. Try to reach the above ridge. After surface cleaning treatment, p was grown using liquid phase epitaxial growth under the same growth conditions as above.
The type AlxGa1-rA8 layer 3 is O-3μrrx in the flat part.
, AII yGa 1□As active layer 4 (0≦y<x
) to 0.06 μm, n-type Al x Ga 1□As cladding layer 6 to 1.5 μm, and n-type GaAs cap layer 6 to 1.5 μm. Since crystal growth is performed on a substrate provided with two adjacent ridges, it is possible to grow the active layer within the active region with good controllability even if the thickness is 0.06 μm, and with good uniformity within the wafer surface.

さらに第3図に示す様に、前記構造にn側、p側オーミ
ック電極7,8を形成し、電流を注入する。電流は内部
ストライプ部のV字形又はU字形溝にのみ狭さくされて
流れるため、25mAのしきい値で、基本横モード発振
を行なう。
Further, as shown in FIG. 3, n-side and p-side ohmic electrodes 7 and 8 are formed on the structure, and a current is injected. Since the current flows narrowly only in the V-shaped or U-shaped groove of the internal stripe portion, fundamental transverse mode oscillation occurs at a threshold of 25 mA.

発明が解決しようとする問題点 しかしながら、前記のBTR3型構造のレーザでは、第
4図に示す様にレーザ共振器を構成するためのへき開工
程で、レーザ端面の断面形状の活性領域付近にクラック
が発生することがある。なお、クラックはn型電流阻止
層2の両方の界面より発生することが多い。このクラッ
クの発生により、レーザチップのしきい電流値や動作電
流値が著しく上昇したり、光学的な強度分布に変形が生
じ、光学部品との結合効率が落ちたりという応用上の問
題点が生じる。
Problems to be Solved by the Invention However, in the above-mentioned BTR3 type laser, cracks occur near the active region of the cross-sectional shape of the laser end face during the cleavage process to construct the laser resonator, as shown in FIG. This may occur. Note that cracks often occur from both interfaces of the n-type current blocking layer 2. The occurrence of this crack causes application problems such as a significant increase in the threshold current value and operating current value of the laser chip, deformation of the optical intensity distribution, and a decrease in coupling efficiency with optical components. .

本発明は上記欠点に鑑み、活性領域付近のクラックの発
生を抑え、高歩留で、低電流動作、基本横モード発振す
る半導体レーザ装置を提供するものである。
In view of the above drawbacks, the present invention provides a semiconductor laser device which suppresses the occurrence of cracks near the active region, has a high yield, operates at a low current, and oscillates in a fundamental transverse mode.

問題点を解決するための手段 上記問題点を解決するために、本発明の半導体レーザ装
置は、凸状のメサを有するp型基板上にn型層があり、
前記n型層が基板と反対側で2つの隣接したリッジ形状
を有し、前記リッジ間に基板に到達する7字又はU字型
の溝部がsb、前記溝の端と、溝の中心に対して同じ方
向にある凸状のメサの端が、両方向ともに2μm以上離
れて位置し、前記溝部と隣接した2つのリッジを含む導
電性基板上に活性層を含む二重ヘテロ構造を有する多層
薄膜で構成される。
Means for Solving the Problems In order to solve the above problems, the semiconductor laser device of the present invention includes an n-type layer on a p-type substrate having a convex mesa,
The n-type layer has two adjacent ridge shapes on the side opposite to the substrate, and a 7- or U-shaped groove portion reaching the substrate between the ridges is sb, with respect to the edge of the groove and the center of the groove. A multilayer thin film having a double heterostructure including an active layer on a conductive substrate including two ridges adjacent to the groove, wherein the ends of the convex mesas in the same direction are located at least 2 μm apart in both directions. configured.

作  用 この構成によシ、均一な、内部ストライプ構造を持つ、
低しきい値、低電流動作、安定な基本横モード発振する
半導体レーザ装置を実現することができる。
This configuration has a uniform internal stripe structure,
A semiconductor laser device with a low threshold value, low current operation, and stable fundamental transverse mode oscillation can be realized.

実施例 以下、本発明の実施例について図面を参照しながら説明
する。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings.

第1図は本発明の実施例の半導体レーザ装置の断面図を
示すものである。
FIG. 1 shows a sectional view of a semiconductor laser device according to an embodiment of the present invention.

第1図において、11はp型GaAs基板、12はn型
GaAs電流阻止層、13はp型AlGaAsクラッド
層、14はAlGaAs活性層、15はn型AlGaA
sクラッド層、16はn型GaAs =77タクト層、
17はn側オーミック電極、18はp側オーミック電極
である。
In FIG. 1, 11 is a p-type GaAs substrate, 12 is an n-type GaAs current blocking layer, 13 is a p-type AlGaAs cladding layer, 14 is an AlGaAs active layer, and 15 is an n-type AlGaAs layer.
s cladding layer, 16 is n-type GaAs = 77 tact layer,
17 is an n-side ohmic electrode, and 18 is a p-side ohmic electrode.

以上のように構成された半導体レーザ装置について、以
下その作製の一例および動作結果について簡単に説明す
る。
Regarding the semiconductor laser device configured as described above, an example of its fabrication and operation results will be briefly described below.

一例として、基板は第1図に示すp型GaAs基板11
(キャリア濃度:1018〜1o19α−3)を用いる
。このp型GaAs基板11の(100)面上に、フォ
トマスクと化学エツチングにより、(ITo)方向にス
トライプ状に第3図に示す幅W1が30μmである凸状
のリッジを設ける。このリッジ上に液相エピタキシャル
成長法により、n型GaAs電流阻止層12を0.8μ
mの厚みで成長する。成長条件は、成長温度860℃で
冷却速度が0.5・07分、過飽和度は8℃であった。
As an example, the substrate is a p-type GaAs substrate 11 shown in FIG.
(Carrier concentration: 1018 to 1o19α-3) is used. On the (100) plane of this p-type GaAs substrate 11, a convex ridge having a width W1 of 30 μm as shown in FIG. 3 is provided in a stripe shape in the (ITo) direction by using a photomask and chemical etching. On this ridge, an n-type GaAs current blocking layer 12 of 0.8 μm was formed by liquid phase epitaxial growth.
It grows to a thickness of m. The growth conditions were a growth temperature of 860°C, a cooling rate of 0.5.07 minutes, and a supersaturation degree of 8°C.

成長表面を洗浄処理した後、フォトマスクと化学エツチ
ング処理により、第1図に示す様に(ITO’)方向に
6Ixnの溝をはさんで隣接した幅20μmのストライ
プ状の凸状リッジを設ける。リッジ間の溝が上記リッジ
に到達するようにする。表面洗浄処理をした後、液相エ
ピタキシャル成長法によシ、前記と同じ成長条件で、p
型Al工Ga1−!AB層13を平坦部で0.3μm、
AlyGa1−アA8活性層14(0≦y<x )を0
.06 pm Sn型All xGa 1− 、Asク
ラッド層15を1.5μm、n型GaAs キャップ層
16を1.5μmで順次成長させる。
After cleaning the growth surface, a photomask and chemical etching process are used to provide striped convex ridges with a width of 20 .mu.m adjacent to each other across a 6I.times.n groove in the (ITO') direction, as shown in FIG. The groove between the ridges should reach the ridge. After surface cleaning, p was grown by liquid phase epitaxial growth under the same growth conditions as above.
Mold Al engineering Ga1-! The AB layer 13 has a thickness of 0.3 μm in the flat part,
AlyGa1-A8 active layer 14 (0≦y<x) is 0
.. 06 pm Sn-type All x Ga 1- , an As cladding layer 15 with a thickness of 1.5 μm, and an n-type GaAs cap layer 16 with a thickness of 1.5 μm are sequentially grown.

さらに第3図に示す様に、前記構造にn側、p側オーミ
ック電極7,8を形成し、電流を注入した。電流は内部
ストライプ部のV字形又はU字形溝にのみ狭さくされて
流れるため、25mAのしきい値で、基本横モード発振
を行なった。ウエノ・面内での活性領域付近のクラック
発生率は従来例に比べ約に以下であり、レーザチップの
特性のウェハ面内での均一性も向上した。
Furthermore, as shown in FIG. 3, n-side and p-side ohmic electrodes 7 and 8 were formed on the structure, and a current was injected. Since the current flows constricted only in the V-shaped or U-shaped groove of the internal stripe portion, fundamental transverse mode oscillation was performed at a threshold of 25 mA. The crack occurrence rate near the active region within the wafer surface was approximately less than that of the conventional example, and the uniformity of the laser chip characteristics within the wafer surface was also improved.

p型GaAs+基板11に設けたリッジの幅を広げたこ
とによシ、第2図に示す様に発生したクラックが活性領
域付近から遠ざけられた結果と考えられる。実験の結果
、第1図でのリッジとV字形溝との間隔がWSL≧2μ
mかつWSR≧2μmであれば上記と同様の結果が得ら
れることがわかった。
It is thought that by widening the width of the ridge provided on the p-type GaAs+ substrate 11, the cracks that occurred as shown in FIG. 2 were moved away from the vicinity of the active region. As a result of the experiment, the distance between the ridge and the V-shaped groove in Fig. 1 is WSL≧2μ.
It was found that the same results as above can be obtained if m and WSR≧2 μm.

発明の効果 本発明は、内部ストライプ型レーザ構造をウェハ面内で
均一性良く形成することを可能ならしめ、その結果、均
一性良く、低しきい電流値で基本横モード発振する半導
体レーザ装置を与えるものであシ、その実用的効果は著
しい。
Effects of the Invention The present invention makes it possible to form an internal stripe-type laser structure with good uniformity within the wafer surface, and as a result, it is possible to create a semiconductor laser device with good uniformity and fundamental transverse mode oscillation with a low threshold current value. The practical effects of this are remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

クラクク発生の様子を示す図、第3図は従来の半導体レ
ーザ装置の断面図である。 1.11・・・・・・p型GaAs基板、2,12・・
・・・・n型GaAs電流阻止層、3 、13 ・−・
−p型AlGaAsクラッド層、4,14・・・・・・
AlGaAs活性層、5゜15・・・・・・n型AlG
aAsクラッド層、6,16・・・・・・n型GaAs
コンタクト層、7.17・・・・・・n側オーミック電
極、8.18・・・・・・p側オーミンク電極、2o・
・・・・・クラック、21・・・・・・活性領域付近、
Wv・・・・・・V字形溝の幅、WR・・・・・・p型
基板に設けたリッジの幅、WsL、WsR・・・・・・
リッジとV字形溝との間隔。
FIG. 3, which is a diagram showing how cracks occur, is a cross-sectional view of a conventional semiconductor laser device. 1.11...p-type GaAs substrate, 2,12...
...N-type GaAs current blocking layer, 3, 13...
-p-type AlGaAs cladding layer, 4, 14...
AlGaAs active layer, 5°15...n-type AlG
aAs cladding layer, 6, 16... n-type GaAs
Contact layer, 7.17...n-side ohmic electrode, 8.18...p-side ohmic electrode, 2o.
...Crack, 21...Near active region,
Wv...Width of the V-shaped groove, WR...Width of the ridge provided on the p-type substrate, WsL, WsR...
The distance between the ridge and the V-shaped groove.

Claims (1)

【特許請求の範囲】[Claims] 凸部を有する一導電型基板上に、隣接した2つのリッジ
を有する前記一導電型とは反対導電型の層があり、前記
2つのリッジ間は前記基板の前記凸部に到達するV字あ
るいはU字型の溝部があり、前記溝の端と溝の中心に対
して同じ方向にある前記凸部の端との距離が2μm以上
あり、前記溝部と2つのリッジを含む前記基板上に、活
性層を含む二重ヘテロ構造を有する多層薄膜が構成され
ていることを特徴とする半導体レーザ装置。
On a substrate of one conductivity type having a convex portion, there is a layer of a conductivity type opposite to the one conductivity type having two adjacent ridges, and between the two ridges there is a V-shape or a layer that reaches the convex portion of the substrate. There is a U-shaped groove, the distance between the edge of the groove and the edge of the protrusion in the same direction with respect to the center of the groove is 2 μm or more, and an active layer is formed on the substrate including the groove and two ridges. 1. A semiconductor laser device comprising a multilayer thin film having a double heterostructure including layers.
JP1467987A 1987-01-23 1987-01-23 Semiconductor laser device Pending JPS63181492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1467987A JPS63181492A (en) 1987-01-23 1987-01-23 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1467987A JPS63181492A (en) 1987-01-23 1987-01-23 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS63181492A true JPS63181492A (en) 1988-07-26

Family

ID=11867898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1467987A Pending JPS63181492A (en) 1987-01-23 1987-01-23 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS63181492A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167488A (en) * 1984-02-10 1985-08-30 Hitachi Ltd Semiconductor laser device
JPS60173892A (en) * 1984-02-08 1985-09-07 Oki Electric Ind Co Ltd Manufacture of semiconductor laser element
JPS6119186A (en) * 1984-07-05 1986-01-28 Oki Electric Ind Co Ltd Manufacture of two-wavelength monolithic semiconductor laser array

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173892A (en) * 1984-02-08 1985-09-07 Oki Electric Ind Co Ltd Manufacture of semiconductor laser element
JPS60167488A (en) * 1984-02-10 1985-08-30 Hitachi Ltd Semiconductor laser device
JPS6119186A (en) * 1984-07-05 1986-01-28 Oki Electric Ind Co Ltd Manufacture of two-wavelength monolithic semiconductor laser array

Similar Documents

Publication Publication Date Title
JPS6085585A (en) Buried type semiconductor laser
JPH0552676B2 (en)
JPS63181492A (en) Semiconductor laser device
JPS6174382A (en) Semiconductor laser device and manufacture thereof
JPS63178574A (en) Manufacture of semiconductor laser device
JPS6124839B2 (en)
JPH05226774A (en) Semiconductor laser element and its production
JPS6381887A (en) Semiconductor laser device and manufacture of the same
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPS6237835B2 (en)
JPS59155979A (en) Manufacture of semiconductor laser
JPH0661582A (en) Manufacture of semiconductor laser device
JPS5864084A (en) Semiconductor laser
JPS61161787A (en) Manufacture of semiconductor laser device
JPH01187989A (en) Semiconductor laser and manufacture thereof
JPS6118877B2 (en)
JPS6167285A (en) Semiconductor laser device
JPS62196882A (en) Semiconductor laser
JPS60251687A (en) Manufacture of semiconductor laser device
JPH04296081A (en) Visible beam semiconductor laser
JPH02239679A (en) Semiconductor laser and its manufacture
JPS60201684A (en) Semiconductor laser device and manufacture thereof
JPH0389578A (en) Semiconductor laser with buried structure
JPS6180886A (en) Semiconductor laser device and manufacture thereof
JPS60239087A (en) Manufacture of semiconductor laser device