[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63186457A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPS63186457A
JPS63186457A JP62017170A JP1717087A JPS63186457A JP S63186457 A JPS63186457 A JP S63186457A JP 62017170 A JP62017170 A JP 62017170A JP 1717087 A JP1717087 A JP 1717087A JP S63186457 A JPS63186457 A JP S63186457A
Authority
JP
Japan
Prior art keywords
wiring
integrated circuit
substrate
substrates
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62017170A
Other languages
Japanese (ja)
Inventor
Takao Mori
孝夫 森
Akimasa Onozato
小野里 陽正
Kenichi Mizuishi
賢一 水石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62017170A priority Critical patent/JPS63186457A/en
Publication of JPS63186457A publication Critical patent/JPS63186457A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Multi-Conductor Connections (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Combinations Of Printed Boards (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain a lamination-type semiconductor device wherein the area of an integrated circuit substrate occupied by a wiring region can be reduced, the total module can be miniaturized, and the high speed quality can be improved, by laminating a plurality of semiconductor integrated circuit substrates having a three-dimensional structure wherein wiring patterns for electric connection are formed on the surface, the rear, and the side surface. CONSTITUTION:A semiconductor integrated circuit substrate 10 has a three dimensional structure wherein wiring patterns 13 for electric connection are formed on the surface, the rear and the side surface. A plurality of the substrates are laminated, and wiring connection between each of the substrates 10 is made via the above-mentioned wiring patterns 13. For example, a computer module is constituted by stacking the integrated circuit substrates 10 of wafer scale. The central part of the substrate 10 is assigned to an active element region 11 constituted of memories and logic gates. These integrat ed circuit substrates 10 are stacked in 10-200 stages to realize a computer system. The wiring connection between the substrates 10 is made by mutually connecting the wiring layers 13 formed on the surface, the side surface, and the rear via soldering electrodes 14. Supporting bodies 15 are inserted between the substrates in order to prevent the deformation of the soldering electrodes 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置及びその製造方法に係り、特に、表
面、裏面及び側面に電気的接続用の配線パターンを形成
した三次元配線構造の半導体集積回路基板の多数枚を積
層して構成される積層型半導体装置及びその製造方法に
関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a semiconductor device and a method for manufacturing the same, and in particular, to a semiconductor device with a three-dimensional wiring structure in which wiring patterns for electrical connection are formed on the front surface, back surface, and side surface. The present invention relates to a stacked semiconductor device constructed by stacking a large number of integrated circuit boards, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

ウェハ規模の半導体集積回路基板を多数枚積層すること
により、小形でかつ高速性に優れた計算機システムが実
現できる。従来の装置は、特開昭51−78176号あ
るいは特開昭60−160645号に記載のように、集
積回路基板に設けた貫通孔を介して基板相互の配線接続
を行う構成となっていた。また、特開昭58−3903
0号あるいは特開昭58−39036号に記載されてい
るように基板を積層した後に一括してその側面に配線接
続を行う構成となっていた。しかし、これらの従来技術
では、多数の配線の微細化、配線抵抗の均−化及び接続
接点の任意選択法については配慮されていなかった。ま
た、積層実装における配線接続構造の機械的強度をはじ
めとする信頼性に関する配慮も十分ではなかった。
By stacking a large number of wafer-sized semiconductor integrated circuit boards, a compact computer system with excellent high speed can be realized. Conventional devices, as described in Japanese Patent Application Laid-open No. 51-78176 or No. 60-160645, have a structure in which wiring connections between the boards are made through through holes provided in the integrated circuit board. Also, JP-A-58-3903
As described in No. 0 or Japanese Unexamined Patent Publication No. 58-39036, the structure was such that wiring connections were made all at once on the sides of the substrates after they were laminated. However, these conventional techniques do not take into account miniaturization of a large number of wiring lines, equalization of wiring resistance, and arbitrary selection of connection contacts. Furthermore, sufficient consideration has not been given to reliability, including the mechanical strength of the wiring connection structure in stacked mounting.

次に、積層型半導体装置に用いる集積回路基板の製造方
法に関する従来技術に特開昭60−214530号及び
特開昭58−56455号がある。この従来技術は、2
面露光法に関するもので、ウェハ表面に対する第1回目
の露光を行った後、基板をホトマスクから離し、さらに
これを回転させてから再度マスクに近接させて側面に対
する第2回目の露光を行うことにより、立体(2面)配
線用のホトレジストパターンを形成していた。従来方法
は、上記のように、ウェハの直交する2面を対象とする
もので、表面、側面に加えて裏面に至る3面を一括露光
する方法については全く配慮されていなかった。
Next, Japanese Patent Laid-Open No. 60-214530 and Japanese Patent Laid-open No. 58-56455 are related to a method of manufacturing an integrated circuit board used in a stacked semiconductor device. This conventional technology has two
This method involves exposing the wafer surface for the first time, then removing the substrate from the photomask, rotating it, and then bringing it close to the mask again to perform a second exposure to the side surface. , a photoresist pattern for three-dimensional (two-sided) wiring was formed. As described above, the conventional method targets the two perpendicular surfaces of the wafer, and does not give any consideration to a method of simultaneously exposing the three surfaces including the front surface, side surfaces, and back surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

集積回路基板に貫通孔を設け、この側壁に配線層を形成
したのち基板相互を配線接続する従来の構成では、素子
集積密度の向上に伴う配線密度の増加に対する配慮がさ
れておらず、素子の高集積化により回路基板が大形化す
る問題があった。すなわち、貫通孔の微細化が困難であ
り、このため、素子領域に比べて配線領域の占有率が大
幅に増加し、基板寸法を大形化するという問題があった
The conventional configuration in which a through hole is formed in an integrated circuit board, a wiring layer is formed on the sidewall of the integrated circuit board, and then the boards are interconnected with each other, does not take into account the increase in wiring density that accompanies the improvement in element integration density. There is a problem in that circuit boards become larger due to higher integration. That is, it is difficult to miniaturize the through holes, and as a result, the occupancy rate of the wiring area increases significantly compared to the element area, resulting in a problem of increasing the size of the substrate.

また、従来構成では、貫通孔側壁への配線層形成に際し
てその膜厚がばらつくため配線抵抗の均一化を図る上で
問題があった。さらに、これらの回路基板を複数段に積
層する場合の配線接続構造の機械的強度の点についても
、従来技術では配慮がされておらず、熱疲労による配線
接続部の信頼度低下に関して問題があった。
Further, in the conventional structure, when forming a wiring layer on the side wall of the through hole, the thickness of the wiring layer varies, so there was a problem in making the wiring resistance uniform. Furthermore, the conventional technology does not take into account the mechanical strength of the wiring connection structure when these circuit boards are stacked in multiple layers, and there is a problem with reducing the reliability of the wiring connection due to thermal fatigue. Ta.

次に、製造方法における前述従来技術は、ウェハ表面か
ら側面を経由して裏面に至る3面に対する一括露光法に
ついては全く配慮されておらず、またウェハ基板を回転
させるという複雑な工程を必要とし、通常広く用いられ
ている密着露光装置の利用を困難ならしめるという実用
上の問題点があった。
Next, the above-mentioned conventional manufacturing method does not take into account the simultaneous exposure method for the three sides of the wafer from the front side to the back side, and requires a complicated process of rotating the wafer substrate. However, there was a practical problem in that it made it difficult to use the normally widely used contact exposure apparatus.

本発明の目的は、従来技術での上記した諸問題を解決し
、集積回路基板に占める配線領域の削減が可能となり、
これによりモジュール全体を小形 化でき、高速性の向
上をも可能とする積層型の半導体装置を提供すること、
さらに、密着露光方式を用いて基板の表面、裏面、側面
の3面に簡便に配線パターンを形成することができる製
造方法を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems in the prior art, and to make it possible to reduce the wiring area occupied on an integrated circuit board.
To provide a stacked semiconductor device that allows the entire module to be miniaturized and to improve speed.
Another object of the present invention is to provide a manufacturing method that can easily form a wiring pattern on three surfaces of a substrate, ie, the front surface, back surface, and side surface, using a contact exposure method.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、表面、裏面及び側面に電気的接続用の配線
パターンが形成された三次元配線構造を有する半導体集
積回路基板の複数枚を積層し、各集積回路基板間の配線
接続を上記配線パターンを介して行う構成とすることに
より、また、製造方法としては、表面、裏面及び側面の
各所要部分にホトレジスト膜を形成した基板を、周囲に
光反射機能部を有するホルダで支持し、次いでマスクを
介して基板の表面に光照射すると共に上記光反射機能部
からの反射光によって基板の側面及び裏面を光照射して
上記ホトレジスト膜を一括して露光する工程を含む方法
とすることにより達成される。
The above purpose is to stack a plurality of semiconductor integrated circuit boards having a three-dimensional wiring structure in which wiring patterns for electrical connections are formed on the front, back, and side surfaces, and to connect the wiring between each integrated circuit board using the wiring patterns. In addition, as a manufacturing method, a substrate on which a photoresist film is formed on each required part of the front surface, back surface, and side surface is supported by a holder having a light reflecting function part around the periphery, and then a mask is applied. This is achieved by a method including a step of simultaneously exposing the photoresist film by irradiating the surface of the substrate with light through the light reflecting function section and irradiating the side and back surfaces of the substrate with light reflected from the light reflecting function section. Ru.

従来の貫通孔の形成手段として、一般的に機械研削や化
学エツチングによる形成手段が適用されている。しかし
、これらの手段は加工精度に制限があると共に高い技術
水準が必要とされる。したがって、本発明においては、
貫通孔を設けることなく基板相互間の配線接続を可能と
するために、従来、基板の上面(能動素子面)のみに形
成していた配線層を側面を経由して下面にまで延長する
手段を採用した。
Conventional means for forming through holes generally include mechanical grinding and chemical etching. However, these means have limitations on processing accuracy and require a high level of technology. Therefore, in the present invention,
In order to enable wiring connections between boards without creating through holes, a method was developed to extend the wiring layer, which was conventionally formed only on the top surface (active element surface) of the board, to the bottom surface via the side surface. Adopted.

〔作用〕[Effect]

貫通孔方式としないで、三次元配線構造の集積回路基板
を用いる方式としたことにより、形成する配線抵抗層の
パターン加工は簡便なホトリソグラフィ技術により実現
可能となり、高精度の配線パターンを得ることができる
。特に貫通孔に導電層を設ける工程が不要となることか
ら、導電層の成膜が容易であり、膜厚の均一性も良い。
By adopting a method that uses an integrated circuit board with a three-dimensional wiring structure instead of using a through-hole method, the patterning of the wiring resistance layer to be formed can be realized using simple photolithography technology, making it possible to obtain a highly accurate wiring pattern. Can be done. In particular, since the step of providing a conductive layer in the through hole is not necessary, the conductive layer can be easily formed and the film thickness can be uniform.

さらに、配線パターン寸法を正確に制御できるため、均
一な抵抗値を持つ配線層が実現できる。また、貫通孔方
式に比べて電極間隔を大幅に低減できるため配線領域の
占有率を低く抑え、集積回路基板の小形化が可能となる
。同時に、基板平面に貫通孔が存在しないために配線層
の布線レイアウトが簡略化され、配線密度を上げること
ができる。複数の基板間の配線接続を行う場合、一方の
集積回路基板上面に予めはんだ電極を形成しておき、こ
の上に他の基板を積み重ねる構成とすれば、配線接続の
必要性に応じて基板上面に形成するはんだ電極の構成パ
ターンを変えて任意の電極間の配線接続が可能となる。
Furthermore, since the wiring pattern dimensions can be accurately controlled, a wiring layer with uniform resistance can be realized. Furthermore, since the electrode spacing can be significantly reduced compared to the through-hole method, the occupation rate of the wiring area can be kept low, making it possible to downsize the integrated circuit board. At the same time, since there are no through holes in the plane of the substrate, the wiring layout of the wiring layer can be simplified and the wiring density can be increased. When making wiring connections between multiple boards, if you form solder electrodes on the top surface of one integrated circuit board in advance and stack other boards on top of this, the top surface of the board can be Wiring connections between arbitrary electrodes can be made by changing the configuration pattern of the solder electrodes formed.

基板を複数段積層する際、基板の自重によりはんだ接続
部に相当量の荷重が加わることになるが、これは、基板
間に支持体を別個に挿入する構成とすれば、基板の荷重
はこの支持体で支えられて、はんだ接続電極部への負荷
荷重を回避することができる。
When stacking multiple boards, a considerable amount of load is applied to the solder joints due to the board's own weight, but if a support is inserted separately between the boards, this load will be reduced. By being supported by the support body, a load on the solder connection electrode portion can be avoided.

次に1本発明の三次元配線構造製造方法とすれば、ホル
ダに設けた光反射機能部分は、ウェハに対する垂直入射
光の一部をウェハ側面および裏面に導くように動作し、
それによって、ウェハの表面から側面を経由して裏面に
至る所定部分を同時に一括露光して配線用ホトレジスト
パターンを形成できる。
Next, according to the method for manufacturing a three-dimensional wiring structure of the present invention, the light reflecting function portion provided in the holder operates to guide a part of the vertically incident light to the wafer to the side and back surfaces of the wafer,
Thereby, a predetermined portion from the front surface of the wafer to the back surface via the side surface can be exposed simultaneously to form a wiring photoresist pattern.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

まず、構成の実施例を第1図〜第4図を用いて説明する
。第1図、第2図は本発明の原理を示す図である。第1
図に示すように、ウェハ規模の集積回路基板10を積層
することにより計算機モジュールを構成する。集積回路
基板10の中心部はメモリおよび論理ゲートで構成する
能動素子領域11であり、このような集積回路基板を1
0〜200段積層して計算機システムが実現できる。基
板間の配線接続は回路基板の上面、側面および下面に形
成した配線層13を相互に結線することにより行う。第
2図は集積回路基板10を複数段積層した場合の模式図
であり、回路基板の相互配線ははんだ電極14で電気的
に接続する。また、基板間には支持体15を挿入し、は
んだ電極の変形を防止している。
First, an embodiment of the configuration will be described using FIGS. 1 to 4. 1 and 2 are diagrams showing the principle of the present invention. 1st
As shown in the figure, a computer module is constructed by stacking wafer-scale integrated circuit boards 10. The center of the integrated circuit board 10 is an active element area 11 consisting of memory and logic gates, and such an integrated circuit board is
A computer system can be realized by stacking 0 to 200 layers. Wiring connections between the boards are performed by interconnecting wiring layers 13 formed on the top, side, and bottom surfaces of the circuit boards. FIG. 2 is a schematic diagram of a plurality of stacked integrated circuit boards 10, in which interconnections of the circuit boards are electrically connected by solder electrodes 14. Further, a support 15 is inserted between the substrates to prevent deformation of the solder electrodes.

第3図および第4図に本発明によるWSI(Wafer
 S cale I ntegration)積層モジ
ュールを示す。第3図はウェハ規模CMO8集積回路基
板20を示し、論理ゲート素子領域21 (2043に
ゲート)とメモリ素子領域22 (64にバイトX40
X4)とから成る能動素子領域と配線領域23とで構成
する。CMOSプロセスに引き続きウェハを切断加工し
た後、通常のホトリソグラフィ加工によりウェハ上面、
側面、下面への配線パターニングを後述する方法により
一括して行った。次に上面配線電極上に突起状のはんだ
電極24を形成した。ここでは配線ルートに従ってはん
だ電極の構成パターンを回路基板ごとに変えるようにし
た。また、はんだ電極の形成は、はんだ金属の選択蒸着
あるいはボール状のはんだ材の供給方式のいずれかを採
用し、はんだ量の制御および下地配線電極の寸法制御に
よりはんだ電極の高さを制御した。次に第4図に示すよ
うに、はんだ電極24の高さよりもやや低い高さを持つ
支持体25を基板間に挿入し、支持体25の両面に被着
したはんだ材の溶着により集積回路基板20相互の接着
を行った。支持体25のはんだ溶融接着と同時に基板相
互のはんだ溶融接続が行えるように、前者のはんだ融点
を後者よりも高くなるように設定した。
3 and 4 show WSI (Wafer) according to the present invention.
This figure shows a stacked module (scale integration). FIG. 3 shows a wafer scale CMO8 integrated circuit board 20 with logic gate element area 21 (gate at 2043) and memory element area 22 (byte x 40 at 64).
It consists of an active element region consisting of X4) and a wiring region 23. After cutting the wafer following the CMOS process, the top surface of the wafer is
Wiring patterning on the side and bottom surfaces was performed at once by the method described below. Next, a protruding solder electrode 24 was formed on the upper wiring electrode. Here, the configuration pattern of the solder electrodes was changed for each circuit board according to the wiring route. The solder electrodes were formed using either selective vapor deposition of solder metal or ball-shaped solder material supply, and the height of the solder electrodes was controlled by controlling the amount of solder and controlling the dimensions of the underlying wiring electrodes. Next, as shown in FIG. 4, a support 25 having a height slightly lower than the height of the solder electrode 24 is inserted between the boards, and the solder material deposited on both sides of the support 25 is welded to form an integrated circuit board. 20 mutual adhesion was performed. The solder melting point of the former was set to be higher than that of the latter so that the solder melting and bonding of the support 25 and the mutual solder melting of the substrates could be performed at the same time.

本実施例構成によれば、集積回路基板の周辺に三次元配
線領域を設けているため配線領域の削減が実現でき、こ
れにより、モジュール全体の容量を小形化することがで
き、また、基板上のはんだ電極の構成パターンを任意に
変えることができるため、ウェハ間の配線ルートを自在
に制御できる効果がある。
According to the configuration of this embodiment, since a three-dimensional wiring area is provided around the integrated circuit board, it is possible to reduce the wiring area, thereby making it possible to reduce the capacity of the entire module, and also to Since the configuration pattern of the solder electrodes can be changed arbitrarily, the wiring route between wafers can be freely controlled.

次に1本発明製造方法の一実施例を第5図〜第9図によ
り説明する。第5図(a)、(b)は本発明による三次
元配線構造を備えた基板製造方法の原理を説明する図で
ある。第5図(a)は、矩形状のウェハ基板101(そ
の露出面の所定部分にホトレジスト膜102が形成され
ている)が、ウェハホルダ103のほぼ中央部に設けら
れた真空孔104(矢印の方向へ真空引きされる)の上
部に載置されて真空吸着・固定され、かつ、その側面が
光反射機能部105に取り囲まれ、これら構成部材全体
がホトマスク106によって上側から密着されている状
態を示す。第5図(b)は、ホトマスク106に対する
垂直入射光107(矢印で示す)の一部が。
Next, an embodiment of the manufacturing method of the present invention will be described with reference to FIGS. 5 to 9. FIGS. 5(a) and 5(b) are diagrams illustrating the principle of a method for manufacturing a substrate with a three-dimensional wiring structure according to the present invention. FIG. 5(a) shows that a rectangular wafer substrate 101 (a photoresist film 102 is formed on a predetermined portion of its exposed surface) is attached to a vacuum hole 104 (in the direction of the arrow) provided approximately in the center of a wafer holder 103. It shows a state in which the component is placed on top of the device (which is evacuated to . FIG. 5(b) shows a portion of the vertically incident light 107 (indicated by an arrow) on the photomask 106.

光反射機能部105内に導かれ光反射面108によって
反射され、ウェハ基板101の側面および裏面の一部が
露光されている状態を示す、第5図から明らかなように
、本発明方法によれば、ウェハ基板101の表面から側
面を経由して裏面に至る所定の領域を一括して密着露光
することが容易に行える。
As is clear from FIG. 5, which shows a state in which the light is guided into the light reflecting function section 105 and reflected by the light reflecting surface 108, and a part of the side and back surfaces of the wafer substrate 101 are exposed, the method of the present invention For example, a predetermined area from the front surface of the wafer substrate 101 to the back surface via the side surface can be easily exposed all at once in close contact.

以下、本発明方法を実施する上での幾つかのポイントに
ついて詳述する。
Hereinafter, several points in implementing the method of the present invention will be explained in detail.

立体(3面)への配線形成に必要なウェハ露呂面に対す
るホトレジスト膜の形成には、ホトレジスト剤A Z 
1350(シラプレー社製)をディップ法およびスピン
ナー回転法を併用して、厚さ2〜4pの範囲に塗布した
。一般に、回転塗布法ではウェハ周辺のレジスト厚さが
増す傾向にあるが、レジスト剤の粘度を適正化し、かつ
スピンナー回転速度を高速から低速に変速する手法が膜
厚均一化に有効であった。側面へのレジスト剤塗布はデ
ィップ法が効果的であった。
Photoresist agent A
1350 (manufactured by Silapray) was applied to a thickness of 2 to 4 p using both a dipping method and a spinner rotation method. In general, the spin coating method tends to increase the resist thickness around the wafer, but a method of optimizing the viscosity of the resist agent and changing the spinner rotation speed from high to low speed was effective in making the film thickness uniform. The dipping method was effective for applying the resist agent to the side surfaces.

光反射機能部105は、第6図に示すように、三角柱状
の石英プリズム201の一部を切り欠いたものを用いた
。このプリズムを実際に作製するに当っては、第6図の
A−A’線で分割した(イ)部および(ロ)部の石英プ
リズムを予め用意しておき、所要のストライプ・パター
ン(材質Cr) 202を通常の密着露光方式によって
形成した後、それぞれを紫外線硬化型接着剤(製品名:
 NorlandOptical Adhesive 
61)を用いて接着して一体化した。光反射面108は
AQを蒸着して形成した。
As shown in FIG. 6, the light reflection function section 105 is a triangular prism-shaped quartz prism 201 with a portion cut away. In order to actually manufacture this prism, prepare in advance the quartz prisms in the (a) and (b) parts divided along the line A-A' in Figure 6, and select the desired stripe pattern (material After forming Cr) 202 by a normal contact exposure method, each was coated with an ultraviolet curing adhesive (product name:
Norland Optical Adhesive
61) was used to bond and integrate. The light reflecting surface 108 was formed by depositing AQ.

第7図は、上述の一体化された石英プリズム201計4
個をウェハホルダ103に装着した状態を示す(第5図
においてウェハ基板101とホトマスク106を除いて
上側から見た図に対応する)。
FIG. 7 shows a total of 4 integrated quartz prisms 201 as described above.
5 is shown mounted on a wafer holder 103 (corresponding to the view seen from above, excluding the wafer substrate 101 and photomask 106 in FIG. 5).

第8図は、第5図で示したホトマスク106の平面図で
あり、ウェハ基板101(第8図の破線401で囲まれ
る領域に設置される)の周辺部への配線用ストライプ・
パターン(材質Cr) 403が形成しである。破線4
02で囲む領域は、第9図で述べる集積回路部502に
対応する。
FIG. 8 is a plan view of the photomask 106 shown in FIG.
A pattern (made of Cr) 403 is formed. dashed line 4
The area surrounded by 02 corresponds to the integrated circuit section 502 described in FIG.

以上のように、第6図、第7図、第8図で示した部品と
構成方法を用いて、第5図に示した密着方式による立体
3面露光を実現できた。第9図(a)は、本実施例によ
って立体3面配線がなされた5i−WSIウェハ501
の外観図であり、集積回路部502から四方に延展する
ストライプ状のAD。
As described above, by using the parts and construction methods shown in FIGS. 6, 7, and 8, three-dimensional three-dimensional exposure using the contact method shown in FIG. 5 was realized. FIG. 9(a) shows a 5i-WSI wafer 501 on which three-dimensional wiring was performed according to this embodiment.
5 is an external view of a striped AD extending in all directions from an integrated circuit section 502.

配4@ 503は、第9図(b)に拡大断面図を示すよ
うに、ウェハ側面を経由して裏面の所要部分まで連続し
て形成しである。AQ配線形成は、ホトレジスト膜を露
光・現像してストライプ・パターン化した後、AQを蒸
着し、さらにリフト・オフ法によりレジスト剤を除去す
る方法を用いた。第9図(c)は、上記5L−WSIウ
ニハ501をスタック実装した本発明の一応用例を示し
、半田バンプ503で配線接続することによりウェハ間
の信号伝送を可能にしている。
As shown in the enlarged cross-sectional view of FIG. 9(b), the wiring 4@503 is formed continuously through the side surface of the wafer to a required portion of the back surface. AQ wiring was formed by exposing and developing a photoresist film to form a stripe pattern, then vapor depositing AQ, and then removing the resist agent by a lift-off method. FIG. 9(c) shows an application example of the present invention in which the 5L-WSI wafers 501 are stack-mounted, and signal transmission between wafers is made possible by wiring connections using solder bumps 503.

本実施例によれば、ウェハ基板の立体3面(表面、側面
および裏面)を一括して露光することができ、ウェハの
スタック実装をはじめとする三次元実装デバイスの立体
配線を容易かつ簡易な工程で実現できるので、技術的、
経済的効果が極めて大きい。
According to this example, three three-dimensional surfaces (front, side, and back surfaces) of a wafer substrate can be exposed at once, making it easy and simple to perform three-dimensional wiring of three-dimensionally mounted devices, including stack mounting of wafers. It can be achieved through the process, so it is technically
The economic effect is extremely large.

なお、上述実施例の光反射機能部105には石英プリズ
ム201を用いたが、これは、単に光反射鏡を用いても
よい。すなわち、第5図ウェハホルダ103のV溝部分
(石英プリズムを保持する部分)を鏡面加工すればよい
。ただし、この場合にはウェハ側面および裏面への露光
パターンをホトマスク106上に形成しておくことにな
るため、完全な密着露光とならず微細パターン形成には
、やや不向きな方式となるが、石英プリズムを予め作製
する上述実施例方式に比し、工程が簡易となり経済的に
は有効な方式となる。
Note that although the quartz prism 201 is used in the light reflecting function section 105 in the above embodiment, a light reflecting mirror may simply be used instead. That is, the V-groove portion (the portion that holds the quartz prism) of the wafer holder 103 in FIG. 5 may be mirror-finished. However, in this case, the exposure pattern for the side and back surfaces of the wafer is formed on the photomask 106, so it is not a perfect contact exposure and is a method that is somewhat unsuitable for forming fine patterns. Compared to the method of the above embodiment in which the prisms are prepared in advance, the process is simpler and the method is economically effective.

さらに、三次元配線構造の製造方法としてこれまで述べ
てきた実施例では、半導体ウェハの3面に配線パターン
を一括して形成する場合について説明したが、この方法
は、LCC(リードレス・チップ・キャリア)素子の配
線形成にも適用可能である。すなわち、LCC素子では
、外部接続用端子線がチップの側面に形成されるが、本
製造方法によれば、チップ表面の配線パターンと側面の
外部接続用端子線とを連続状に一括して形成することが
できる。
Furthermore, in the embodiments described so far as a method for manufacturing a three-dimensional wiring structure, a case has been described in which wiring patterns are formed on three sides of a semiconductor wafer all at once. It can also be applied to the formation of wiring for carrier (carrier) elements. That is, in an LCC element, external connection terminal lines are formed on the side surface of the chip, but according to this manufacturing method, the wiring pattern on the chip surface and the external connection terminal line on the side surface are formed in a continuous manner at once. can do.

〔発明の効果〕〔Effect of the invention〕

本発明の積層集積回路構成によれば、ウェハ規模集積回
路の積層実装において、集積回路基板の側面を配線経路
として活用できるので、集積回路基板に占める配線領域
を縮小でき、このため、集積回路基板寸法の削減により
、実装モジュールの全容量を小型化できる効果がある。
According to the laminated integrated circuit configuration of the present invention, the side surface of the integrated circuit board can be used as a wiring route in the laminated mounting of a wafer-scale integrated circuit, so the wiring area occupied on the integrated circuit board can be reduced, and therefore the integrated circuit board The reduction in dimensions has the effect of reducing the total capacity of the mounted module.

さらに、本発明の三次元配線構造製造方法によれば、ウ
ェハの表面、側面および裏面の立体3面に対する密着露
光を一括して行うことができ、立体3面への配線パター
ン形成工程を大幅に簡略化し、かつ短縮化でき、ウェハ
のスタック実装を実現するうえで技術的、経済的効果が
大である。また、配線層の加工プロセスは通常のホトリ
ソグラフィ技術を用いて実施できるので、パターンの加
工精度に優れ、微細化も容易である。したがって、配線
抵抗の制御性も良く、実装モジュールの性能向上に効果
がある。一方、本三次元配線方式では、貫通孔等の加工
プロセスが不要であり、プロセスの簡略化、経済性の点
についても効果がある。さらに、基板相互の配線接続に
はんだ材を用い、支持体の挿入により機械強度的にも安
定な構造とすることにより、モジュール全体の信頼性向
上に効果がある。
Furthermore, according to the three-dimensional wiring structure manufacturing method of the present invention, contact exposure can be performed on three three-dimensional surfaces of the wafer, namely the front, side and back surfaces, at once, and the process of forming wiring patterns on the three three-dimensional surfaces can be greatly simplified. It can be simplified and shortened, and has great technical and economical effects in realizing stack mounting of wafers. Further, since the wiring layer processing process can be carried out using ordinary photolithography technology, pattern processing accuracy is excellent and miniaturization is easy. Therefore, the controllability of the wiring resistance is also good, which is effective in improving the performance of the mounted module. On the other hand, the present three-dimensional wiring method does not require processing processes such as forming through holes, and is also effective in terms of process simplification and economic efficiency. Furthermore, by using solder material to connect the wiring between the boards and by inserting a support to create a structure that is stable in terms of mechanical strength, it is effective to improve the reliability of the entire module.

本発明はウェハを三次元的に実装するスタックモジュー
ルの他に、ウェハを二次元配置させたプレーナモジュー
ルの実装にも有効である。
The present invention is effective for mounting not only a stack module in which wafers are mounted three-dimensionally but also a planar module in which wafers are arranged two-dimensionally.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明する斜視図、第2図は同じ
く側面図、第3図は本発明のウェハ規模CMO3集積回
路基板の実施例平面図、第4図は本発明によるWSI積
層モジュールの実施例斜視図、第5図(a)、(b)は
本発明製造方法の原理説明図、第6図は第5図中の光反
射機能部の説明図、第7図は第5図中のウェハホルダの
構成図、第8図は第5図中のホトマスクの平面図、第9
図(a)は本発明による立体配線ウェハの一例の外観図
、(b)はそのA−A’部の断面図、(Q)は積層状態
の一例を示す断面図である。 符号の説明 10・・・集積回路基板   11・・・能動素子領域
13・・・配線層      14.24・・・はんだ
電極15、25・・・支持体    101・・・ウェ
ハ基板102・・・ホトレジスト膜 103・・・ウェ
ハホルダ1’05・・・光反射機能部  106・・・
ホトマスク107・・・垂直入射光   108・・・
光反射面201・・・石英プリズム  202・・・マ
スクパターン501・・・5i−WSIウェハ 503・・・AQ配線 代理人弁理士  中 村 純之助 才1 図 11−能動索長ρfへ。 矛3 図 矛5図 (Q) 102−・ネμレジ゛スl−哄 (b)103−’>“パ1″′2゛。 1[]6 +08−−一士及射面 26 図 202−・マス2ノ?クーレ オ  7  図       108−−一光及冑寸面
nl +06−−−ホトマスウ 401−−六エハ基拐砿坑 402−−一禰n口路艷Q戚
FIG. 1 is a perspective view illustrating the present invention in detail, FIG. 2 is a side view, FIG. 3 is a plan view of an embodiment of a wafer-scale CMO3 integrated circuit board of the present invention, and FIG. 4 is a WSI stack according to the present invention. A perspective view of an embodiment of the module, FIGS. 5(a) and 5(b) are explanatory diagrams of the principle of the manufacturing method of the present invention, FIG. 6 is an explanatory diagram of the light reflection function part in FIG. 5, and FIG. The block diagram of the wafer holder in the figure, FIG. 8 is a plan view of the photomask in FIG.
Figure (a) is an external view of an example of a three-dimensional wiring wafer according to the present invention, (b) is a cross-sectional view taken along line AA' thereof, and (Q) is a cross-sectional view showing an example of a stacked state. Explanation of symbols 10... Integrated circuit board 11... Active element region 13... Wiring layer 14.24... Solder electrodes 15, 25... Support body 101... Wafer substrate 102... Photoresist Film 103...Wafer holder 1'05...Light reflection function section 106...
Photomask 107...Vertical incident light 108...
Light reflecting surface 201...Quartz prism 202...Mask pattern 501...5i-WSI wafer 503...AQ Wiring Representative Patent Attorney Junnosuke Nakamura 1 To Figure 11 - Active cable length ρf. Spear 3 Illustration 5 (Q) 102-・Nemu register l-哄(b) 103-'>"Pa1"'2". 1[]6 +08--Ichishi projection surface 26 Figure 202-・Mass 2 no? Cooleo 7 Figure 108--Ikkou and Kushunmen nl +06--Hotomasu 401--Rokueha Kikuaiken 402--Ikkou nkou route barge Q relative

Claims (1)

【特許請求の範囲】 1、表面、裏面及び側面に電気的接続用の配線パターン
が形成された三次元配線構造を有する半導体集積回路基
板の複数枚が積層されており、各集積回路基板間の配線
接続が上記配線パターンを介して行われていることを特
徴とする半導体装置。 2、前記三次元配線構造を有する半導体集積回路基板間
の配線接続は、上層側基板の下面に形成された配線パタ
ーンとその下層側基板の上面に形成された配線パターン
間をはんだ材で接続することで行われていることを特徴
とする特許請求の範囲第1項記載の半導体装置。 3、前記三次元配線構造を有する半導体集積回路基板の
積層は、各基板間にそれぞれ電気的接続用とは別個に配
置される支持体を介して行われていることを特徴とする
特許請求の範囲第1項あるいは第2項記載の半導体装置
。 4、表面、裏面及び側面の各所要部分にホトレジスト膜
を形成した基板を、周囲に光反射機能部を有するホルダ
で支持し、次いでマスクを介して基板の表面に光照射す
ると共に上記光反射機能部からの反射光によって基板の
側面及び裏面を光照射して上記表面、裏面及び側面に形
成されたホトレジスト膜を一括して露光する工程を含む
ことを特徴とする三次元配線構造の半導体集積回路基板
の製造方法。
[Claims] 1. A plurality of semiconductor integrated circuit boards having a three-dimensional wiring structure in which wiring patterns for electrical connection are formed on the front, back, and side surfaces are stacked, and there is a gap between each integrated circuit board. A semiconductor device characterized in that wiring connections are made via the wiring pattern. 2. The wiring connection between the semiconductor integrated circuit boards having the three-dimensional wiring structure is made by connecting the wiring pattern formed on the lower surface of the upper layer substrate and the wiring pattern formed on the upper surface of the lower layer substrate using a solder material. The semiconductor device according to claim 1, characterized in that the semiconductor device is made by: 3. The stacking of the semiconductor integrated circuit boards having the three-dimensional wiring structure is carried out through supports arranged between each board separately from those for electrical connection. A semiconductor device according to scope 1 or 2. 4. A substrate on which a photoresist film is formed on the required portions of the front, back, and side surfaces is supported by a holder that has a light reflection function around it, and then light is irradiated onto the surface of the substrate through a mask, and the light reflection function described above is applied. A semiconductor integrated circuit having a three-dimensional wiring structure, comprising the step of irradiating the side and back surfaces of a substrate with light reflected from the substrate to simultaneously expose the photoresist films formed on the front, back, and side surfaces. Substrate manufacturing method.
JP62017170A 1987-01-29 1987-01-29 Semiconductor device and its manufacture Pending JPS63186457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62017170A JPS63186457A (en) 1987-01-29 1987-01-29 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62017170A JPS63186457A (en) 1987-01-29 1987-01-29 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPS63186457A true JPS63186457A (en) 1988-08-02

Family

ID=11936480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62017170A Pending JPS63186457A (en) 1987-01-29 1987-01-29 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPS63186457A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426566A (en) * 1991-09-30 1995-06-20 International Business Machines Corporation Multichip integrated circuit packages and systems
US5502667A (en) * 1993-09-13 1996-03-26 International Business Machines Corporation Integrated multichip memory module structure
US5517754A (en) * 1994-06-02 1996-05-21 International Business Machines Corporation Fabrication processes for monolithic electronic modules
US5561622A (en) * 1993-09-13 1996-10-01 International Business Machines Corporation Integrated memory cube structure
US5616962A (en) * 1992-01-24 1997-04-01 Kabushiki Kaisha Toshiba Semiconductor integrated circuit devices having particular terminal geometry
WO2000038234A1 (en) * 1998-12-04 2000-06-29 Thin Film Electronics Asa Scalable data processing apparatus
JP2002516033A (en) * 1997-04-04 2002-05-28 グレン ジェイ リーディ 3D structure memory

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426566A (en) * 1991-09-30 1995-06-20 International Business Machines Corporation Multichip integrated circuit packages and systems
US5616962A (en) * 1992-01-24 1997-04-01 Kabushiki Kaisha Toshiba Semiconductor integrated circuit devices having particular terminal geometry
US5773321A (en) * 1992-01-24 1998-06-30 Kabushiki Kaisha Toshiba Semiconductor integrated circuit devices having particular terminal geometry and mounting method
US5502667A (en) * 1993-09-13 1996-03-26 International Business Machines Corporation Integrated multichip memory module structure
US5561622A (en) * 1993-09-13 1996-10-01 International Business Machines Corporation Integrated memory cube structure
US5517754A (en) * 1994-06-02 1996-05-21 International Business Machines Corporation Fabrication processes for monolithic electronic modules
JP2002516033A (en) * 1997-04-04 2002-05-28 グレン ジェイ リーディ 3D structure memory
WO2000038234A1 (en) * 1998-12-04 2000-06-29 Thin Film Electronics Asa Scalable data processing apparatus

Similar Documents

Publication Publication Date Title
KR100477908B1 (en) Semiconductor device manufacturing method and semiconductor device
US8641913B2 (en) Fine pitch microcontacts and method for forming thereof
US4770640A (en) Electrical interconnection device for integrated circuits
KR100606178B1 (en) Semiconductor device having a plurality of semiconductor elements interconnected by a redistribution layer
US5637536A (en) Method for interconnecting semiconductor chips in three dimensions, and component resulting therefrom
JP4511561B2 (en) SEMICONDUCTOR ELEMENT HAVING LAMINATED SEMICONDUCTOR CHIP AND MANUFACTURING METHOD
US4991000A (en) Vertically interconnected integrated circuit chip system
US6686648B2 (en) Electronic component with stacked semiconductor chips and method of producing the component
EP0145862B1 (en) Metallization of a ceramic substrate
US5216806A (en) Method of forming a chip package and package interconnects
JPS6149443A (en) Method of producing chip interposer
JPH0945848A (en) End cap chip with electrical conductivity monolithic l connection for multichip stack and its preparation
JPH0364925A (en) Integrated circuit packaging structure and formation thereof
JP2000512083A (en) Multilayer circuit having via matrix interlayer connection and method of manufacturing the same
TWI482255B (en) Conductive pads defined by embedded traces
JP2002314257A (en) Multilayer circuit board, method of manufacturing the same, and electric assembly
JPS63186457A (en) Semiconductor device and its manufacture
EP0499079A1 (en) Electronic packaging with varying height connectors
JPS61113252A (en) Semiconductor device
JPS63308362A (en) High density optical detector mosaic array assembly and its manufacture
Kanbach et al. 3D Si‐on‐Si stack packaging
JPH04242939A (en) Packaging structure of semiconductor device and its manufacture
JPH05198627A (en) Hybrid module and manufacture thereof
JPH08236690A (en) Three-dimensional mounting module and manufacture thereof
JP3666649B2 (en) Semiconductor integrated circuit device