JPS63173215A - Magnetic head - Google Patents
Magnetic headInfo
- Publication number
- JPS63173215A JPS63173215A JP317587A JP317587A JPS63173215A JP S63173215 A JPS63173215 A JP S63173215A JP 317587 A JP317587 A JP 317587A JP 317587 A JP317587 A JP 317587A JP S63173215 A JPS63173215 A JP S63173215A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- films
- amorphous
- magnetic head
- magnetic alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001004 magnetic alloy Inorganic materials 0.000 claims abstract description 49
- 239000000758 substrate Substances 0.000 claims abstract description 41
- 230000001681 protective effect Effects 0.000 claims abstract description 36
- 230000004907 flux Effects 0.000 claims abstract description 11
- 238000004544 sputter deposition Methods 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 9
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 6
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 3
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 3
- 239000010408 film Substances 0.000 claims description 65
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 12
- 239000010409 thin film Substances 0.000 claims description 7
- 238000007740 vapor deposition Methods 0.000 claims description 6
- 239000000696 magnetic material Substances 0.000 claims description 3
- 230000035699 permeability Effects 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims 1
- 229910052715 tantalum Inorganic materials 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000004804 winding Methods 0.000 abstract description 4
- 239000011521 glass Substances 0.000 abstract description 3
- 229910020018 Nb Zr Inorganic materials 0.000 abstract description 2
- 229910045601 alloy Inorganic materials 0.000 abstract description 2
- 239000000956 alloy Substances 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 239000011162 core material Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical class [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Landscapes
- Magnetic Heads (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は記録および再生用磁気ヘッドに係わり。[Detailed description of the invention] [Industrial application field] The present invention relates to magnetic heads for recording and reproduction.
特に、高飽和磁束密度を有する非晶質磁性合金膜を用い
て磁気コアを構成したVTR用磁気ヘッドに関する。In particular, the present invention relates to a magnetic head for a VTR whose magnetic core is constructed using an amorphous magnetic alloy film having a high saturation magnetic flux density.
本発明の磁気−\ラドは、磁気コアが保護基板上に蒸着
あるいはスパッタリング等の薄膜形成技術によって形成
された高飽和磁束密度を有する非晶質磁性合金膜で構成
された磁気ヘッドであって。The magnetic head of the present invention is a magnetic head in which the magnetic core is formed of an amorphous magnetic alloy film having a high saturation magnetic flux density and formed on a protective substrate by a thin film forming technique such as vapor deposition or sputtering.
前記保護基板上に非磁性金属膜を形成したのち。After forming a nonmagnetic metal film on the protective substrate.
その上面に前記非晶質磁性合金膜を形成したことを特徴
とする、本発明によれば、優れた磁気特性を有する非晶
質磁性合金膜を保護基板−ヒに十分な付着強度で容易に
形成することができ、これを用いる磁気ヘッドの加工歩
留りを向、トさせ、計量適性を高めるものである。According to the present invention, the amorphous magnetic alloy film is formed on the upper surface of the amorphous magnetic alloy film. This improves the processing yield of the magnetic head using the magnetic head and improves the suitability for metrology.
近年、記録密度の向上に伴い、VTRにおいても高密度
記録に適した高保磁力を有するメタルテープが使用さ、
れるようになってきている。高保磁カメタルテープと組
合せて用(・る磁気ヘッドには高飽和磁束密度を有する
ことが求められ、7エライト材ではその飽和磁束密度が
低く、十分に記録することができない。In recent years, with the improvement in recording density, metal tapes with high coercive force suitable for high-density recording are being used in VTRs.
It's starting to become easier. A magnetic head used in combination with a high coercivity metal tape is required to have a high saturation magnetic flux density, and 7-elite material has a low saturation magnetic flux density and cannot perform sufficient recording.
従来、高飽和磁束密度を有する磁気へラドコア材として
は、センダス) (Fe All Si合金)やパ
ーマロイ(Fe−Nt金合金のような多結晶磁性合金の
バルク材、あるいは超急冷法によって作製された各種の
非晶質磁性合金の薄板(リボン材)を用いC℃・た。し
かし、これらの金属磁性材をコア材に用いた場合、多結
晶磁性合金バルク材では渦電流損失が問題となり高周波
領域における透磁率が十分得られない欠点がある。一方
、非晶質磁性合金リボン材は厚みおよび表面性を均一に
作製するのが難しく2両面を研磨する等の工程が必要と
なり生産性が悪い。Conventionally, magnetic herad core materials with high saturation magnetic flux density include bulk materials of polycrystalline magnetic alloys such as Sendas (Fe All Si alloy) and Permalloy (Fe-Nt gold alloy), or materials produced by ultra-quenching method. C°C using thin plates (ribbon materials) of various amorphous magnetic alloys. However, when these metal magnetic materials are used as core materials, eddy current loss becomes a problem with polycrystalline magnetic alloy bulk materials, which is difficult to achieve in the high frequency region. On the other hand, it is difficult to produce an amorphous magnetic alloy ribbon material with a uniform thickness and surface properties, and a process such as polishing two surfaces is required, resulting in poor productivity.
このため、最近では蒸着あるいはスパッタリング等の薄
膜形成技術を用いて作製した磁性合金膜゛をコア材とす
る磁気ヘッドの検討が盛んに行なわれている。この種の
磁気ヘッドとして2例えば第2図に示すもの(特開昭5
8−155513号公報)が提案されている。For this reason, in recent years, studies have been actively conducted on magnetic heads whose core material is a magnetic alloy film produced using thin film forming techniques such as vapor deposition or sputtering. Two examples of this type of magnetic head include the one shown in FIG.
8-155513) has been proposed.
第2図に示す磁気ヘッドは、高透磁率フェライトからな
る保護基板20.20’をテープ摺動面における断面形
状が突出したV字状となるように加工し。In the magnetic head shown in FIG. 2, protective substrates 20 and 20' made of high magnetic permeability ferrite are processed so that the cross-sectional shape of the tape sliding surface has a protruding V-shape.
該突出部21.21’の両側面と作動ギャップ形成面上
に高飽和磁束密度を有する非晶質磁性合金膜22.22
’を形成したものである。磁気回路が高透磁率フェライ
トと高飽和砒東密度非晶質磁性合金膜との両方からなる
複合型磁気ヘッドであり、高保磁カメタルテープに対し
ても十分な記録再生特性を有する。前記非晶質磁性合金
膜は蒸着あるいはスパッタリング等の薄膜形成技術によ
り9通常15〜30μm程度の厚さで形成される。An amorphous magnetic alloy film 22.22 having a high saturation magnetic flux density on both side surfaces of the protrusion 21.21' and on the working gap forming surface.
' is formed. This is a composite magnetic head whose magnetic circuit consists of both a high permeability ferrite and a high saturated arsenic density amorphous magnetic alloy film, and has sufficient recording and reproducing characteristics even for high coercivity metal tapes. The amorphous magnetic alloy film is usually formed to a thickness of about 15 to 30 μm by a thin film forming technique such as vapor deposition or sputtering.
前述した従来の磁気ヘッドは磁気コアに非晶質磁性合金
膜を用いているが、非晶質合金には結晶化温度が存在し
、膜形成時の保護基板表面温度が高くなると磁気特性が
劣化するため、低温での膜形成が要求される。しかし、
蒸着あるいはスパッタリング等の薄膜形成技術によって
形成される非晶質磁性合金膜の保護基板に対する付着力
は膜形成時の保護基板表面温度に依存し、低温で形成し
た膜は十分な付着強度が得られず、磁気ヘッド加工プロ
セスの途中で膜の剥離が発生するという欠点があった。The conventional magnetic head mentioned above uses an amorphous magnetic alloy film for the magnetic core, but amorphous alloys have a crystallization temperature, and as the surface temperature of the protective substrate increases during film formation, the magnetic properties deteriorate. Therefore, film formation at low temperatures is required. but,
The adhesion force of an amorphous magnetic alloy film formed by thin film formation techniques such as evaporation or sputtering to the protective substrate depends on the surface temperature of the protective substrate at the time of film formation, and films formed at low temperatures cannot obtain sufficient adhesion strength. First, there was a drawback in that the film peeled off during the magnetic head manufacturing process.
本発明はかかる従来技術の磁気ヘッドが有する欠点を解
決し、非晶質磁性合金膜を用いた磁気ヘッドの加工歩留
りを向上させ、量産適性を高め′ζ容易に提供すること
を目的とする。It is an object of the present invention to solve the drawbacks of such conventional magnetic heads, to improve the processing yield of magnetic heads using amorphous magnetic alloy films, to increase suitability for mass production, and to easily provide magnetic heads.
本発明の磁気ヘッドは上記の目的を達成するため、磁気
コアが保護基板上に蒸着あるいはスパッタリング等の薄
膜形成技術によって形成された高飽和磁束密度を有する
非晶質磁性合金膜で構成された磁気ヘッドであっ′〔、
前記保護基板上に非磁性金属膜を形成したのち、その上
面に前記非晶質磁性合金膜を形成するようにしたもので
ある。In order to achieve the above object, the magnetic head of the present invention has a magnetic core composed of an amorphous magnetic alloy film having a high saturation magnetic flux density formed on a protective substrate by a thin film forming technique such as vapor deposition or sputtering. At the head
After a nonmagnetic metal film is formed on the protective substrate, the amorphous magnetic alloy film is formed on the upper surface thereof.
本発明者の実験によると、非晶質磁性合金膜の保護基板
に対する付着力は膜形成時の基板表面温度の低下ととも
に減少し、特に100C以下で形成した膜では以後の磁
気ヘッド加工プロセスに耐え得るだけの付着力が得られ
ず、切断、研゛磨等の工程で保護基板表面からの膜の剥
離が多発した。According to the inventor's experiments, the adhesion force of an amorphous magnetic alloy film to a protective substrate decreases as the substrate surface temperature decreases during film formation, and in particular, a film formed at 100C or less can withstand the subsequent magnetic head processing process. It was not possible to obtain sufficient adhesion, and the film frequently peeled off from the surface of the protective substrate during cutting, polishing, and other steps.
また本発明者は実験により、保護基板上に形成された非
晶質磁性合金膜の磁気特性と膜形成中の保護基板表面温
度との関係を調べた結果、基板表面温度200C以下で
形成した非晶質磁性合金膜は温度によらず一定の良好な
軟磁気特性を示すが。In addition, the present inventor conducted an experiment to investigate the relationship between the magnetic properties of an amorphous magnetic alloy film formed on a protective substrate and the surface temperature of the protective substrate during film formation. Crystalline magnetic alloy films exhibit constant good soft magnetic properties regardless of temperature.
200Cを超えるとその磁気特性が急激に劣化すること
を見出した。これを示す実験結果の一例を第3図および
第4図に示す。It has been found that when the temperature exceeds 200C, the magnetic properties deteriorate rapidly. Examples of experimental results showing this are shown in FIGS. 3 and 4.
第3図はガラス基板上に高周波2極スパツタリング法に
より基板表面温度150Cで膜厚5μmに形成した非晶
質磁性合金膜のB−H特性曲線図((α)は磁化容易軸
、(b)は磁化困難軸のものを示す。以下同じ。)であ
る。保磁力H6は磁化容易軸方向で0.30eであり、
良好な軟磁気特性を示して(・る。Figure 3 is a B-H characteristic curve diagram of an amorphous magnetic alloy film formed on a glass substrate to a thickness of 5 μm at a substrate surface temperature of 150 C by high-frequency bipolar sputtering method ((α) is the axis of easy magnetization, (b) indicates the hard axis of magnetization (the same applies hereinafter). The coercive force H6 is 0.30e in the easy magnetization axis direction,
Shows good soft magnetic properties.
第4図は同様にして基板の表面温度250 Cで形成し
た非晶質磁性合金膜のB −H特性曲線を示す。FIG. 4 shows a B-H characteristic curve of an amorphous magnetic alloy film similarly formed at a substrate surface temperature of 250°C.
基板表面温度の上昇により軟磁気特性は大幅に劣化し、
Hcは1.OOgまで増大している。As the substrate surface temperature increases, the soft magnetic properties deteriorate significantly.
Hc is 1. It has increased to OOg.
上述したように、磁気コアとして用いる非晶質磁性合金
膜は保護基板表面温度が100C以上200C以下とい
う限られた範囲で形成することが必要となるが、保護基
板表面温度を前記範囲内で再現性よく正確に実現するこ
とは困難であり、また前記範囲内の温度で形成した場合
でも、非晶質磁性合金膜の剥離を完全に無くすことはで
きなかった。As mentioned above, the amorphous magnetic alloy film used as the magnetic core needs to be formed within a limited range of the protective substrate surface temperature of 100C or more and 200C or less, but it is possible to reproduce the protective substrate surface temperature within the above range. It is difficult to achieve this accurately and with good performance, and even when formed at a temperature within the above range, it has not been possible to completely eliminate peeling of the amorphous magnetic alloy film.
本発明者は保護基板表面と非晶質磁性合金膜との境界面
に着目した結果、保護基板上にCr、Ti等からなる非
磁性金属膜を0.01〜1μm程度の厚さで形成したの
ち、その上面に非晶質磁性合金膜を形成すれば、非磁性
金属膜と非晶質磁性合金膜との界面に両者の拡散層が生
じて強固な付着力が得られることを見出した。非磁性金
属膜を介在させて保護基板上に形成した非晶質磁性合金
膜を用いることにより、磁気ヘッド加工プロセスの途中
での非晶質磁性合金膜の剥離をなくすことができる。The present inventor focused on the interface between the surface of the protective substrate and the amorphous magnetic alloy film, and as a result, formed a non-magnetic metal film made of Cr, Ti, etc. on the protective substrate with a thickness of about 0.01 to 1 μm. Later, it was discovered that if an amorphous magnetic alloy film is formed on the upper surface, a diffusion layer is formed at the interface between the nonmagnetic metal film and the amorphous magnetic alloy film, and strong adhesion can be obtained. By using an amorphous magnetic alloy film formed on a protective substrate with a nonmagnetic metal film interposed therebetween, it is possible to eliminate peeling of the amorphous magnetic alloy film during the magnetic head manufacturing process.
なお、非磁性金属膜を介在させても非晶質磁性合金膜の
磁気特性は保護基板上に直接形成した場合と同一で変化
はなかった。Note that even with the interposition of a nonmagnetic metal film, the magnetic properties of the amorphous magnetic alloy film were the same as those formed directly on the protective substrate, and there was no change.
本発明の磁気ヘッドは、磁気コアを構成する非晶質磁性
合金膜を保膵基板上に形成する際に、保護基板と非晶質
磁性合金膜との中間に非磁性金属膜を介在させるように
したので、形成された非晶質磁性合金膜は保護基板に対
し′C強固な付着力を有しており、以後の磁気ヘッド加
工プロセスにおい゛C剥離することもない。In the magnetic head of the present invention, when forming the amorphous magnetic alloy film constituting the magnetic core on the protective substrate, a non-magnetic metal film is interposed between the protective substrate and the amorphous magnetic alloy film. Therefore, the formed amorphous magnetic alloy film has strong adhesion to the protective substrate, and will not peel off during the subsequent magnetic head fabrication process.
これにより、磁気コアに非晶質磁性合金膜を用〜・た磁
気ヘッドの加工歩留りが大幅に向上し、高保磁カメタル
テープに対しても優れた記録再生特性を示す磁気ヘッド
が容易に得られる。This greatly improves the processing yield of magnetic heads that use an amorphous magnetic alloy film for the magnetic core, and makes it easier to obtain magnetic heads that exhibit excellent recording and reproducing characteristics even on high-coercive metal tapes. It will be done.
以下9本発明の磁気ヘッドの実施例を図面により詳細に
説明する。Hereinafter, nine embodiments of the magnetic head of the present invention will be described in detail with reference to the drawings.
第1図は本発明の磁気ヘッドの一実施例を示す磁気ヘッ
ドの上面および側面図である。図中10,1σはM、L
−Znフェライトからなる保護基板であり。FIG. 1 is a top and side view of a magnetic head showing an embodiment of the magnetic head of the present invention. In the figure, 10,1σ is M, L
- A protective substrate made of Zn ferrite.
その突き合わせ部がV字状の突起部を有し、該突起部に
スパッタリング法により、まずCア、T2等の非磁性金
属膜11.11’が形成され、さらにその上面に高飽和
磁束密度を有する非晶質磁性合金膜12.12’(例え
ばC6−Nb −Zr系非晶質合金)が形成される。前
記非晶質磁性合金膜12.12’は保護基板表面温度1
20Cで各々30μm形成されているが、これは単層層
でも良く、−!たS、02等を中間層に介した多層膜と
しても良い。また、前記非磁性金属膜11゜11′の厚
さは0.01〜1μm程度あれば良い。13.13’は
一対のコア半休を接合、固着させるための非硼性接合材
であり、ガラスが充填されている。14は作動ギャップ
を示し、 15はコイル巻線用室である。The abutting portion has a V-shaped protrusion, and a nonmagnetic metal film 11, 11' such as CA, T2, etc. is first formed on the protrusion by sputtering, and then a high saturation magnetic flux density is applied to the upper surface. An amorphous magnetic alloy film 12.12' (for example, a C6-Nb-Zr amorphous alloy) is formed. The amorphous magnetic alloy film 12.12' has a protective substrate surface temperature of 1
Although each layer is 30 μm thick at 20C, it may be a single layer, and -! It is also possible to form a multilayer film with S, 02, etc. interposed in an intermediate layer. Further, the thickness of the non-magnetic metal film 11.degree. 11' may be about 0.01 to 1 .mu.m. 13.13' is a non-borous bonding material for bonding and fixing a pair of core halves, and is filled with glass. 14 indicates an operating gap, and 15 indicates a coil winding chamber.
前記磁気ヘッドは加工プロセスの途中で非晶質磁性合金
膜が剥離することなく容易に量産することができ、高保
磁カメタルテープに対しても優れた記録再生特性を示し
た。The magnetic head can be easily mass-produced without the amorphous magnetic alloy film peeling off during the processing process, and exhibits excellent recording and reproducing characteristics even on high-coercivity metal tapes.
また、前記磁気ヘッドの磁気回路は、非晶質磁性合金膜
12.12’が作動ギャップ14を介してコイル巻線窓
15を周回して構成されている。なお、保護基板10.
10’は非磁性フェライト、セラミック等の非磁性体で
構成しても良い。この場合にはより媒体摺動雑音の低い
磁気ヘッドが得られる。The magnetic circuit of the magnetic head is constructed by amorphous magnetic alloy films 12 and 12' circulating around a coil winding window 15 with an operating gap 14 interposed therebetween. Note that the protective substrate 10.
10' may be made of a non-magnetic material such as non-magnetic ferrite or ceramic. In this case, a magnetic head with lower medium sliding noise can be obtained.
以上説明したごとく9本発明によれば、磁気コアが保護
基板上に蒸着あるいはスパッタリング等の薄膜形成技術
によって形成された高飽和磁束密度を有する非晶質磁性
合金膜で構成された磁気ヘッドにお℃・て、前記保護基
板上に非磁性金属膜を形成したのちその上面に前記非晶
質磁性合金膜を形成するので、該非晶質磁性合金膜は前
記保護基板に対して十分な付着力を有し、高保磁メタル
テープに対しても優れた記録再生特性を示す磁気ヘッド
を高歩留りで容易に得ることができる。As explained above, according to the present invention, the magnetic core is formed of an amorphous magnetic alloy film having a high saturation magnetic flux density formed on a protective substrate by a thin film forming technique such as vapor deposition or sputtering. ℃・After forming a non-magnetic metal film on the protective substrate, the amorphous magnetic alloy film is formed on the top surface of the non-magnetic metal film, so that the amorphous magnetic alloy film has sufficient adhesion force to the protective substrate. Accordingly, it is possible to easily obtain a magnetic head with a high yield that exhibits excellent recording and reproducing characteristics even on high coercive metal tapes.
第1図(α)および(b)は本発明の磁気ヘッドの−例
を示す上面図および側面図、第2図(α)および(b)
は従来の磁気−\ラドの上面図および側面図、第3図(
α)および(b)は保護基板表面温度150Cで形成し
た非晶質磁性合金膜の磁化容易軸方向および磁化困難軸
方向のB−H特性曲線図、第4図(α)および(A)は
保護基板表面温度2501Z’で形成した場合の前記特
性曲線図である。
10、10’ :保護基板、 −11,11’:非磁性
金属膜、 12.12’:非晶質磁性合金膜、 13.
13’:非磁性接合充填材。
14:作動ギャップ、15:コイル巻線窓。FIGS. 1(α) and (b) are a top view and a side view showing an example of the magnetic head of the present invention, and FIGS. 2(α) and (b) are
are the top and side views of the conventional magnetic-\RAD, Figure 3 (
α) and (b) are B-H characteristic curve diagrams in the easy axis and hard axis directions of the amorphous magnetic alloy film formed at a surface temperature of 150C on the protective substrate, and Figure 4 (α) and (A) are FIG. 7 is a diagram of the characteristic curve when the protective substrate is formed at a surface temperature of 2501Z'. 10, 10': Protective substrate, -11, 11': Nonmagnetic metal film, 12.12': Amorphous magnetic alloy film, 13.
13': Non-magnetic bonding filler. 14: Working gap, 15: Coil winding window.
Claims (1)
グ等の薄膜形成技術によって形成された高飽和磁束密度
を有する非晶質磁性合金膜で構成された磁気ヘッドにお
いて、前記保護基板上に非磁性金属膜を形成したのち、
その上面に前記非晶質磁性合金膜を形成したことを特徴
とする磁気ヘッド。 2、前記保護基板が高透磁率フェライトからなることを
特徴とする特許請求の範囲第1項記載の磁気ヘッド。 3、前記保護基板が非磁性体からなることを特徴とする
特許請求の範囲第1項記載の磁気ヘッド。 4、前記非磁性金属膜はCr、Ti、Ta、Moの中か
ら選ばれた1種もしくはそれ以上の材料から構成されて
いることを特徴とする特許請求の範囲第1項記載の磁気
ヘッド。[Scope of Claims] 1. A magnetic head in which the magnetic core is composed of an amorphous magnetic alloy film having a high saturation magnetic flux density formed on a protective substrate by a thin film forming technique such as vapor deposition or sputtering, wherein the protective substrate After forming a nonmagnetic metal film on top,
A magnetic head, characterized in that the amorphous magnetic alloy film is formed on the upper surface of the magnetic head. 2. The magnetic head according to claim 1, wherein the protective substrate is made of high magnetic permeability ferrite. 3. The magnetic head according to claim 1, wherein the protective substrate is made of a non-magnetic material. 4. The magnetic head according to claim 1, wherein the nonmagnetic metal film is made of one or more materials selected from Cr, Ti, Ta, and Mo.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP317587A JPS63173215A (en) | 1987-01-12 | 1987-01-12 | Magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP317587A JPS63173215A (en) | 1987-01-12 | 1987-01-12 | Magnetic head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63173215A true JPS63173215A (en) | 1988-07-16 |
Family
ID=11550050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP317587A Pending JPS63173215A (en) | 1987-01-12 | 1987-01-12 | Magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63173215A (en) |
-
1987
- 1987-01-12 JP JP317587A patent/JPS63173215A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02502232A (en) | Laminated sendust metal-in-gap video head | |
JPS6218966B2 (en) | ||
JPS6134707A (en) | Magnetic head | |
US5247415A (en) | Magnetic head having main and auxiliary magnetic paths | |
JPS59193235A (en) | Co-nb-zr type amorphous magnetic alloy and magnetic head using the same | |
JPS6129105A (en) | Magnetic alloy thin film | |
JPS63173215A (en) | Magnetic head | |
JP2775770B2 (en) | Method for manufacturing soft magnetic thin film | |
JP3127075B2 (en) | Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film | |
JPH0668815B2 (en) | Method of manufacturing magnetic head | |
KR950011127B1 (en) | Magnetic head | |
JP2933638B2 (en) | Manufacturing method of magnetic head | |
KR100324730B1 (en) | Method for fabricating magnetic head | |
KR100232141B1 (en) | Manufacturing method of magnetic head | |
JPS63112809A (en) | Magnetic head | |
JP2529313B2 (en) | Magnetic head | |
JP3452594B2 (en) | Manufacturing method of magnetic head | |
KR100200861B1 (en) | Recording and reproducing magnetic head and the manufacturing method | |
KR950001603B1 (en) | Magnetic head for multi-layer | |
JPS6043202A (en) | Vertical magnetic recording and reproducing device | |
JPH0660315A (en) | Production of magnetic head | |
JPH02216604A (en) | Magnetic head and its production | |
JPH03203008A (en) | Production of laminated film of fe-si-al ferromagnetic alloy for magnetic head | |
JPH0765316A (en) | Magnetic head | |
JPH0376102A (en) | Multilayer magnetic thin film and magnetic head using the same |