JPS6317129B2 - - Google Patents
Info
- Publication number
- JPS6317129B2 JPS6317129B2 JP55173636A JP17363680A JPS6317129B2 JP S6317129 B2 JPS6317129 B2 JP S6317129B2 JP 55173636 A JP55173636 A JP 55173636A JP 17363680 A JP17363680 A JP 17363680A JP S6317129 B2 JPS6317129 B2 JP S6317129B2
- Authority
- JP
- Japan
- Prior art keywords
- filament
- yarn
- pilling
- false
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000835 fiber Substances 0.000 claims description 27
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 238000009987 spinning Methods 0.000 claims description 11
- 239000002131 composite material Substances 0.000 claims description 9
- 239000006187 pill Substances 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 229920000728 polyester Polymers 0.000 claims description 8
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 2
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- 239000002736 nonionic surfactant Substances 0.000 claims description 2
- 239000003921 oil Substances 0.000 description 17
- 239000004744 fabric Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 12
- 230000007423 decrease Effects 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- 238000011282 treatment Methods 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- CMCBDXRRFKYBDG-UHFFFAOYSA-N 1-dodecoxydodecane Chemical compound CCCCCCCCCCCCOCCCCCCCCCCCC CMCBDXRRFKYBDG-UHFFFAOYSA-N 0.000 description 2
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- RNMDNPCBIKJCQP-UHFFFAOYSA-N 5-nonyl-7-oxabicyclo[4.1.0]hepta-1,3,5-trien-2-ol Chemical compound C(CCCCCCCC)C1=C2C(=C(C=C1)O)O2 RNMDNPCBIKJCQP-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Artificial Filaments (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Description
本発明は延伸仮撚後の単繊維が2.5〜8デニー
ル(以下drと略す場合もある)となるマルチフイ
ラメント(B)が芯糸となり、延伸仮撚後の単繊維が
0.2〜1.5drとなる極細マルチフイラメント(A)が外
側をカバリングしている膠着のない2層構造仮撚
加工糸の製造に関するものであり、さらにフイラ
メント(A)の油剤と仮撚条件により抗ピル性を付与
することを特徴とした加工糸の製造法に関するも
のである。
従来技術としてポリマーの固有粘度〔η〕差、
紡糸速度差、繊維デニール差、供給速度差(張力
差)、熱収縮差などを利用し、合撚、仮撚、空気
絡合などにより芯鞘の2層構造をとるカバリング
糸の製造法は知られている。
一方ポリエステルやポリアミドの如き合成繊維
はウールや木綿よりも強伸度が大きく衣服の着用
時に毛玉(ピル)を発生し易い事は周知であり、
抗ピル化の方法としては次の2つに大別すること
が出来る。
(i) 繊維の低強伸度化…低〔η〕繊維、易加水分
解性繊維、クラツクなどの欠陥構造繊維、
熱、溶剤、機械損傷などの後処理
(ii) ピル抑制……異型断面繊維、樹脂や毛焼きな
どの後処理
しかしピル抑制法については長時間着用時に満
足される抗ピル効果は得られず、後処理法は布帛
の物性変化と耐洗たく性などの問題がある。また
本発明に関連のある繊維の低強伸度化の場合低
〔η〕繊維は紡糸が難しく仮撚時の毛羽立ちなど
で後工程の通過性低下を招く。加水分解促進剤を
入れてポリマーを改質することはポリマー、紡糸
のトラブルやコストアツプなどの欠点を生じ易
い。
クラツクの欠陥構造を作る方法としては特公昭
39―22035号や特公昭47―39319号の如くポリエス
テル繊維に結晶化促進剤を付着し紡糸原糸を長期
間放置又は室温付近で少し延伸して繊維軸に直角
方向にクラツク(亀裂)を入れ、それを延伸して
節糸を作る方法あるいは強伸度を低下させる方法
があるが、製造条件の制約が大きく操業性に乏し
い欠点を有する。
以上より、デニールミツクスの2層構造加工糸
はあるが抗ピル性の満足されたものはなく、特に
本発明の如く極細糸が太drの芯糸にカバリングし
該加工糸を用いて布帛にした場合柔軟なタツチと
ハリ腰を有し、更に高級なウール調外衣を狙つて
起毛処理を施してもピリングに問題を起さない加
工糸の製造法は皆無である。言いかえると本発明
の特徴は特別なポリマーや処理方法を用いること
なく延伸仮撚の条件と紡糸油剤を選定することに
より、仮撚時に極細糸にクラツク又はキズをつけ
て強伸度を低下させ抗ピル性に富んだウールライ
クな極細カバリング糸を得る点にある。本発明は
特許請求の範囲第1項から第4項までに掲げた抗
ピル性極細複合加工糸の製造法に関するものであ
る。
本発明に言うポリエステルマルチフイラメント
は常法により溶融紡糸された繊維を意味し、改質
成分を共重合したもの及びつや消し剤、熱安定
剤、顔料、制電性向上剤、防炎向上剤などを添加
したものも含まれる。また紡糸、延伸、仮撚性及
び抗ピル性などの点から極細フイラメント(A)の固
有粘度〔η〕が0.45〜0.7dl/g、太drフイラメ
ント(B)の固有粘度〔η〕が0.5dl/g以上で反復
単位の80%以上がポリエチレンテレフタレートで
あるポリエステルが好ましい。なお〔η〕はフエ
ノールとテトラクロルエタンの等量混合溶媒を用
い30℃恒温槽中でウツペローデ型粘度計を用いて
測定した固有粘度を意味する。該ポリエステル繊
維は1種又は2種以上のポリマーから成り立つて
おり、繊維断面は円型又は異型でも良く、複合繊
維でも支障ないが、操業性やコストの面で円型で
1種のポリエステルよりなる2層構造加工糸が望
ましい。
単繊維0.2〜1.5dr以下の極細マルチフイラメン
ト(A)は常法の紡糸技術より得られる繊維であり操
業性と柔軟性の点から0.5〜1.2drが好ましい。単
繊維が0.2dr未満は紡糸・延伸が難しく1.5drを超
えるとウールライクな柔軟性が不足する。
布帛に適度の反撥性と嵩高性を付与させかつ仮
撚通過性を良くするためには芯糸であるフイラメ
ント(B)は仮撚後で単繊維が2.5〜8dr、好ましくは
3〜6drであり、かつフイラメント(B)の混合比は
30〜80重量%、好ましくは50〜70重量%である必
要がある。フイラメント(B)が2.5dr未満又は30重
量%未満の場合は布帛の反撥性が低下し、8dr又
は80重量%を超える場合は粗硬な感じが強く、い
ずれもウールライクな風合いと異なり商品価値を
低下させる。
また該複合加工糸の抗ピル性を左右する要因の
1つとしてフイラメント(A)とフイラメント(B)の糸
長差があり、更に工程通過性と布帛の風合いの点
で糸長差(△L)は5〜25%、好ましくは10〜20
%である。該糸長差を延伸仮撚で得るためにはフ
イラメント(A)及びフイラメント(B)の複屈折率△nA
及び△nBが〔1〕式又は〔2〕式を満足するもの
が良い。
△nA≦50×10-3,
△nB=10×10-3〜70×10-3
7×10-3≦△nB−△nA≦30×10-3 ……〔1〕
△nA=20×10-3〜70×10-3,
△nB≧110×10-3 ……〔2〕
またフイラメント(A)が仮撚時に変形を受けてク
ラツクやキズを受け易く抗ピル効果が大きい点で
は、フイラメント(A)が未延伸糸でフイラメント(B)
が未延伸糸の〔2〕の条件よりフイラメント(A)及
び(B)が未延伸糸である〔1〕の条件が望ましい。
但し△nA又は△nBはフイラメント(A)又は(B)が1種
より構成される場合はその平均複屈折率を意味
し、2種以上より構成される場合△nAはフイラメ
ント(A)の中で最も低いグループの平均複屈折率、
△nBはフイラメント(B)の中で最も高いグループの
平均複屈折率を意味する。また糸長差(△L)は
0.2g/drの初荷重下で糸長20cmのフイラメント
(B)とフイラメント(A)を分離した後0.2g/dr荷重
下のフイラメント(A)の糸長LA(cm)より次式で算
出される。
△L=(LA−20)/20×100(%)
△Lが5%未満の場合は毛羽立ちが少なく抗ピ
ル性が大きくなるが、フイラメント(A)のカバリン
グ性の低下を来たし、ひいては芯糸が布帛表面に
現われて柔軟なタツチを損なう。△Lが25%を超
える場合は抗ピル効果が低下し、追撚、製編織時
の解舒性が不良となる。
本発明はフイラメント(A)が仮撚時に強伸度低下
を起し抗ピル繊維となるためには次の要件が満足
されなければならない。すなわち、第1の要件は
フイラメント(A)を紡糸する際又は紡糸後延伸仮撚
前に、荷重0.2g/drを負荷し24時間放置後の未
延伸糸のクリープ率が20%以上となるような油剤
を少なくとも該フイラメント(A)に対し0.2重量%
付着させることである。なお好ましくは油剤付着
後1日〜7日の間で延伸仮撚するのがクラツク発
生と品質の安定性の点で良い。クリープ率の大き
い油剤は繊維表面の配向結晶化を起し易くクラツ
クが起り易い。本発明者らが種々の油剤について
検討した結果フイラメント(A)のクリープ率が20%
未満となるような油剤の場合では仮撚時の強伸度
低下が起りずらく、抗ピル効果が少ないことが判
明した。
クリープ率の大きい油剤としては例えばポリエ
チレングリコール系で分子量が2000以下のもの、
あるいはPOE(7)ラウリルエーテル、POE(50)オ
レイルエーテル、POE(10)ノニルフエノールエー
テル、POE(15)ラウリル酸エステル、POE(10)ラ
ウリルアミン、POE(20)トリエタノールアミ
ン、プルロニツク型のエチレンオキサイドが付加
した非イオン界面活性剤を言うが、本発明はこれ
に限定されるものではなく、単一成分でも2成分
以上の配合油剤でも支障ない。好ましくは分子量
1000以下のPEGやエチレンオキサイド3〜30モ
ル付加の高級脂肪族アルコールなどが50重量%以
上含まれる油剤である。
フイラメント(B)の油剤は仮撚時の飛散が少なく
毛羽立ちのない仮撚用油剤が好ましく、フイラメ
ント(A)に一部毛羽立ち(単糸切れ)が起つても、
仮撚通過性に問題のないものであれば良い。
本発明の抗ピル繊維を得る第2の要件は次の仮
撚条件である。すなわち延伸仮撚(これは仮撚前
に延伸する場合と仮撚と同時に延伸する場合を含
むが本発明では後者の場合が好ましい。)の場合
延伸倍率は未延伸フイラメント(A)の最大延伸倍率
(HDmax)の0.55倍以下、好ましくは0.4倍以下
であり、フイラメント(A)の自然延伸倍率(NDR)
以下が望ましい。これは半延伸の状態が最もクラ
ツクを発生し易いからであり延伸倍率は芯糸の
HDmaxと仮撚張力でほぼ決まるので前述のフイ
ラメント(A)及び(B)の複屈折率を適度に選ぶことで
フイラメント(A)のHDmax×0.55倍以下の延伸倍
率を達成することが出来る。なおフイラメント(B)
が延伸糸の場合は仮撚張力により延伸倍率が1.0
以下(オーバーフイード)の場合もあり得るが本
発明では△Lが5〜25%であれば支障ない。
更に本発明では仮撚ヒーター温度がフイラメン
ト(A)の膠着温度t℃から(t−40)℃までにする
必要があり(t−40)℃未満では油剤の蒸発も少
なく強伸度低下が起りずらい。また膠着温度以上
の場合毛羽立ちが少なく抗ピル効果は増大するが
本発明の一つであるウールライクな柔軟性が失わ
れるので擬似膠着は良いが実質的な膠着又は融着
のない加工糸として膠着温度以下が必要である。
なお擬似膠着とは外見上単糸間が膠着しているが
手でもんで単糸同志を切断することなく簡単に単
糸がバラケる状態を言う。
本発明により得られた極細複合加工糸を用いて
編織物などの布帛を構成した場合ウールライクな
柔軟性と反撥性があり特に軽度起毛を施したもの
は高級ウールで保温性も加味されしかもピル発生
の少ない従来に見られない高付加価値商品となつ
た。
以下実施例により本発明を具体的に説明する。
実施例 1
紡糸時にPEG(400)の10%水溶液でPEG(400)
を1.5重量%付着させて固有粘度〔η〕=0.60dl/
g、△nA=8×10-3で180d−72fの未延伸ポリエ
ステルフイラメント(A)を得た。
一方クリープ性の小さい仮撚用配合油剤を付着
させ固有粘度〔η〕=0.60dl/g、△nB=19×
10-3で360d−32fの未延伸ポリエステルフイラメ
ント(B)を得た。なおフイラメント(A)のクリープ率
は56%、HDmaxは5.01倍であり、フイラメント
(B)のHDmaxは3.94倍であつた。
次いで両未延伸フイラメントを引揃えて延伸倍
率2.5倍、ヒーター温度180℃、仮撚数2500T/M
で延伸仮撚をした。
次いで該加工糸を2本合糸し300T/Mの追撚
を施した後、タテ糸及びヨコ糸に用いて2/2ツ
イルの織物を作成し軽度起毛した場合について表
1に仮撚糸の物性及び織物の抗ピル性や風合い評
価の結果を示した。
なお比較例1として未延伸フイラメント(A)にク
リープ率が8%の配合油剤を付着させた場合、比
較例2としてフイラメント(A)が△nA=16×10-3、
HDmax=4.13倍ものを用いた場合についてそれ
らの結果も表1に併記した。
なお複屈折率△nA及び△nBはポリマー分子鎖の
配向度による干渉縞(n)、干渉縞に至らない配
向をペレツクのコンペンセーターで求めたレター
デーシヨン(r)、繊維直径(d)、及び光源のナト
リウムD線の波長(λ=589mμ)とから、△n=
(n・λ+r)/dで算出されるが本発明では測
定回数を20にしてその平均値を採用した。
In the present invention, the core yarn is a multifilament (B) in which the single fibers after drawing and false twisting are 2.5 to 8 deniers (hereinafter sometimes abbreviated as "dr"), and the single fibers after drawing and false twisting are
It is related to the production of non-adhesive two-layer false-twisted yarn in which the outer surface is covered with ultra-fine multifilaments (A) with a diameter of 0.2 to 1.5 dr.In addition, the oil agent of the filaments (A) and the false-twisting conditions make it anti-pilling. The present invention relates to a method for producing processed yarn characterized by imparting properties. As a conventional technology, the difference in intrinsic viscosity [η] of polymers,
We are aware of the manufacturing method of covering yarn that has a two-layer core-sheath structure through twisting, false twisting, air entanglement, etc., by utilizing differences in spinning speed, fiber denier, supply speed (tension difference), and heat shrinkage. It is being On the other hand, it is well known that synthetic fibers such as polyester and polyamide have greater strength and elongation than wool and cotton, and are more likely to pill when worn.
Anti-pilling methods can be roughly divided into the following two types. (i) Lower strength and elongation of fibers...Low [η] fibers, easily hydrolyzable fibers, fibers with defective structures such as cracks,
Post-treatments such as heat, solvents, mechanical damage, etc. (ii) Pill suppression... Post-treatments such as irregular cross-section fibers, resin, and burning Post-treatment methods have problems such as changes in the physical properties of the fabric and wash resistance. Furthermore, in the case of low strength and elongation of fibers related to the present invention, low [η] fibers are difficult to spin and cause fluffing during false twisting, resulting in decreased passability in subsequent steps. Modifying a polymer by adding a hydrolysis accelerator tends to cause drawbacks such as problems with the polymer and spinning, and increased costs. Tokukosho is a method for creating crack defect structures.
As in No. 39-22035 and Japanese Patent Publication No. 47-39319, a crystallization accelerator is attached to polyester fiber and the spun yarn is left for a long period of time or stretched slightly at room temperature to create cracks in the direction perpendicular to the fiber axis. There is a method of drawing it to make a knotted yarn, or a method of reducing the strength and elongation, but these methods have the drawback of large restrictions on manufacturing conditions and poor operability. From the above, although there are two-layer textured yarns with denier mixes, none have satisfactory anti-pilling properties.In particular, as in the present invention, ultra-fine yarn covers a thick dr core yarn, and the processed yarn is used to create fabrics. In this case, there is no method for producing processed yarn that has a soft touch and firm waist, and does not cause pilling problems even if it is brushed for the purpose of producing high-quality wool-like outer clothing. In other words, the feature of the present invention is that by selecting the conditions for stretch false twisting and the spinning oil agent without using any special polymer or processing method, it is possible to create cracks or scratches in the ultrafine yarn during false twisting and reduce the strength and elongation. The aim is to obtain wool-like ultra-fine covering yarn with excellent anti-pilling properties. The present invention relates to a method for manufacturing a pill-resistant ultrafine composite textured yarn as set forth in claims 1 to 4. The polyester multifilament referred to in the present invention refers to fibers melt-spun by a conventional method, and contains fibers copolymerized with modifying components, matting agents, heat stabilizers, pigments, antistatic property improvers, flame retardant improvers, etc. This also includes added items. In addition, from the viewpoint of spinning, drawing, false twisting, anti-pilling properties, etc., the intrinsic viscosity [η] of the ultra-fine filament (A) is 0.45 to 0.7 dl/g, and the intrinsic viscosity [η] of the thick dr filament (B) is 0.5 dl. /g or more and 80% or more of the repeating units are polyethylene terephthalate. Note that [η] means the intrinsic viscosity measured using an Utsperohde viscometer in a constant temperature bath at 30° C. using a mixed solvent of equal amounts of phenol and tetrachloroethane. The polyester fiber is composed of one or more kinds of polymers, and the fiber cross section may be circular or irregularly shaped, and composite fibers may be used, but in terms of operability and cost, it is circular and made of one kind of polyester. A two-layer textured yarn is preferred. The ultrafine multifilament (A) with a single fiber of 0.2 to 1.5 dr or less is a fiber obtained by a conventional spinning technique, and is preferably 0.5 to 1.2 dr from the viewpoint of operability and flexibility. If the single fiber is less than 0.2 dr, it is difficult to spin and draw, and if it exceeds 1.5 dr, wool-like flexibility will be lacking. In order to impart appropriate repulsion and bulkiness to the fabric and to improve false-twisting properties, the filament (B), which is the core yarn, should have a single fiber of 2.5 to 8 dr, preferably 3 to 6 dr, after false twisting. , and the mixing ratio of filament (B) is
It should be 30-80% by weight, preferably 50-70% by weight. If the filament (B) content is less than 2.5 dr or less than 30% by weight, the repellency of the fabric will decrease, and if it exceeds 8 dr or 80% by weight, the fabric will feel harsh and hard, and both have a wool-like texture and have a poor commercial value. decrease. In addition, one of the factors that influences the pill resistance of the composite processed yarn is the yarn length difference between filament (A) and filament (B). ) is 5-25%, preferably 10-20
%. In order to obtain this yarn length difference by drawing and false twisting, the birefringence △n A of filament (A) and filament (B) is
It is preferable that Δn B satisfy the expression [1] or the expression [2]. △n A ≦50×10 -3 , △n B =10×10 -3 ~70×10 -3 7×10 -3 ≦△n B −△n A ≦30×10 -3 ……[1] △ n A = 20×10 -3 〜70×10 -3 , △n B ≧110×10 -3 ... [2] Also, the filament (A) is easily deformed during false twisting and easily cracks and scratches, making it difficult to pill. At the point where the effect is large, filament (A) is undrawn yarn and filament (B)
Condition [1], in which filaments (A) and (B) are undrawn yarns, is more desirable than condition [2], in which filaments (A) and (B) are undrawn yarns.
However, △n A or △n B means the average birefringence of the filament (A) or (B) when it is composed of one type, and when it is composed of two or more types, △n A means the filament (A) ), the average birefringence of the lowest group,
Δn B means the average birefringence of the highest group in the filament (B). Also, the yarn length difference (△L) is
Filament with yarn length of 20cm under initial load of 0.2g/dr.
After separating filament (B) and filament (A), it is calculated from the yarn length L A (cm) of filament (A) under a load of 0.2 g/dr using the following formula. △L = (L A -20) / 20 x 100 (%) If △L is less than 5%, there will be less fluffing and the anti-pilling property will increase, but the covering property of the filament (A) will decrease, and the core Threads appear on the surface of the fabric and impair its soft touch. When ΔL exceeds 25%, the anti-pilling effect decreases and the unwinding properties during additional twisting, knitting and weaving become poor. In the present invention, the following requirements must be satisfied in order for the filament (A) to exhibit a decrease in strength and elongation during false twisting and become a pill-resistant fiber. In other words, the first requirement is that when spinning the filament (A) or before stretching and false twisting after spinning, a load of 0.2 g/dr is applied so that the creep rate of the undrawn yarn after being left for 24 hours is 20% or more. At least 0.2% by weight of an oil based on the filament (A).
It is to make it adhere. Preferably, stretching and false twisting should be carried out within 1 to 7 days after the oil agent has been applied, in order to prevent cracks from occurring and to maintain quality stability. Oils with a high creep rate tend to cause oriented crystallization on the fiber surface, which tends to cause cracks. The inventors investigated various oils and found that the creep rate of filament (A) was 20%.
It was found that in the case of an oil agent with a concentration of less than 100%, a decrease in strength and elongation during false-twisting is unlikely to occur, and the anti-pilling effect is small. Examples of oils with a high creep rate include polyethylene glycol-based oils with a molecular weight of 2000 or less;
or POE(7) lauryl ether, POE(50) oleyl ether, POE(10) nonylphenol ether, POE(15) lauryl ester, POE(10) laurylamine, POE(20) triethanolamine, Pluronic type ethylene Although it refers to a nonionic surfactant to which oxide has been added, the present invention is not limited thereto, and it may be a single component or a blended oil containing two or more components. Preferably molecular weight
It is an oil agent containing 50% by weight or more of PEG of 1000 or less and higher aliphatic alcohol with 3 to 30 moles of ethylene oxide added. The lubricant for filament (B) is preferably a false-twisting lubricant that scatters little during false-twisting and does not cause fuzz, and even if some fuzz (single thread breakage) occurs in filament (A),
It may be any material as long as it does not cause any problem in passing through false twisting. The second requirement for obtaining the anti-pilling fiber of the present invention is the following false twisting conditions. In other words, in the case of stretch false twisting (this includes stretching before false twisting and stretching simultaneously with false twisting, the latter is preferred in the present invention), the stretching ratio is the maximum stretching ratio of the unstretched filament (A). (HDmax) 0.55 times or less, preferably 0.4 times or less, and the natural draw ratio (NDR) of the filament (A)
The following are desirable. This is because cracks are most likely to occur in the semi-stretched state, and the stretching ratio is
Since it is almost determined by HDmax and false twisting tension, by appropriately selecting the birefringence of filaments (A) and (B), it is possible to achieve a stretching ratio of HDmax of filament (A) x 0.55 times or less. Furthermore, filament (B)
If it is a drawn yarn, the drawing ratio is 1.0 due to the false twisting tension.
In the present invention, there is no problem if ΔL is 5 to 25%, although there may be cases where it is below (overfeed). Furthermore, in the present invention, the temperature of the false-twisting heater must be set from the sticking temperature of the filament (A), t°C, to (t-40)°C. If it is less than (t-40)°C, the evaporation of the oil will be small and a decrease in strength and elongation will occur. It's hard. In addition, when the temperature is above the sticking temperature, there is less fluffing and the anti-pilling effect increases, but the wool-like flexibility, which is one of the features of the present invention, is lost, so although pseudo-sticking is good, it is stuck as a processed yarn without substantial sticking or fusion. Temperature below is required.
Pseudo-adhesion refers to a condition in which the single yarns appear to be stuck together, but the single yarns easily come apart without cutting the single yarns by hand. When fabrics such as knitted fabrics are constructed using the ultra-fine composite processed yarn obtained according to the present invention, it has wool-like flexibility and repellency, and those with a slight nap in particular have high-quality wool that also has heat retention properties and is pill-like. It has become a high value-added product with a low occurrence rate that has never been seen before. The present invention will be specifically explained below using Examples. Example 1 PEG (400) was used in a 10% aqueous solution of PEG (400) during spinning.
When 1.5% by weight of is attached, the intrinsic viscosity [η] = 0.60dl/
An undrawn polyester filament (A) of 180 d -72 f was obtained with g and Δn A =8×10 −3 . On the other hand, a false twisting compounded oil with low creep property was applied, and the intrinsic viscosity [η] = 0.60 dl/g, △n B = 19×
An undrawn polyester filament (B) of 360 d - 32 f was obtained at 10 -3 . The creep rate of filament (A) is 56%, HDmax is 5.01 times, and filament
HDmax of (B) was 3.94 times. Next, both unstretched filaments were pulled together and stretched at a stretching ratio of 2.5 times, a heater temperature of 180°C, and a false twist number of 2500T/M.
Stretching and false twisting was performed. Next, two of the processed yarns were combined and twisted at 300T/M, and then a 2/2 twill fabric was created using the warp and weft yarns and lightly raised. Table 1 shows the physical properties of the false twisted yarn. The results of the anti-pilling property and texture evaluation of the fabric were also shown. In addition, as Comparative Example 1, when a compounded oil with a creep rate of 8% is attached to the undrawn filament (A), as Comparative Example 2, the filament (A) has △n A = 16 × 10 -3 ,
The results for the case where HDmax=4.13 times were used are also listed in Table 1. Note that the birefringence △n A and △n B are interference fringes (n) due to the degree of orientation of polymer molecular chains, retardation (r) obtained by determining the orientation that does not result in interference fringes using a Pelleck compensator, and fiber diameter (d ), and the wavelength of the sodium D line of the light source (λ = 589 mμ), △n =
It is calculated as (n·λ+r)/d, but in the present invention, the number of measurements was 20 and the average value was used.
【表】【table】
【表】
実施例1で得られた仮撚糸はフイラメント(A)と
(B)の糸長差が13.5%あり1.13drの極細糸が4.5drの
芯糸をほぼ完全にカバリングし膠着もなかつた。
また追撚及び製織工程での解舒性などのトラブル
もなく得られた織物は柔軟なヌメリ感と嵩高性及
び反撥性を兼備していた。更に該仮撚糸の側糸
(カバリング糸)はクリープ性の大きいPEG
(400)が付着しHDmaxの約0.5倍で延伸仮撚され
たため強伸度が2.8g/dr―35%と低く織物での
ピリングテストもICI法10hrで4〜5級と問題の
ないものであり従来にない抗ピル性のある高級ウ
ール調織物となつた。一方比較例1はクリープ性
の小さい油剤を付着したため仮撚後のフイラメン
ト(A)の強伸度低下は少なくピリングも3級と実施
例1より悪いものとなつた。
比較例2は△nB−△nA=2×10-3と小さいため
△Lが4.1%と低く極細のフイラメント(A)が完全
に芯糸をカバリングせず粗硬な織物となつた。一
般には糸長差が少ないときには抗ピル性の傾向は
あるが、本例の場合、延伸倍率がフイラメント(A)
のHDmaxの約0.6倍のため強伸度低下も少なくピ
リングは2級と不合格であつた。
実施例 2
紡糸時にPOE(7)ラウリルエーテルを0.9重量%
付着させ固有粘度〔η〕=0.53dl/g、△nA=54
×10-3、HDmax2.6倍で128d/96fの未延伸フイラ
メント(A)と、未延伸糸を延伸して△nB=154×
10-3、切断伸度54%とした100d/20fの延伸フイ
ラメント(B)とを引揃え延伸倍率1.01倍、ヒーター
温度160℃、仮撚数2000T/Mで同時仮撚した。
得られた極細カバリング加工糸の糸長差は20.5%
であり膠着はなくフイラメント(A)の単繊維の強伸
度は2.4g/d−25%と低かつた。なおフイラメ
ント(A)のクリープ率は125%であり、13%のクリ
ープ率を有する油剤を付着した場合フイラメント
(A)の強伸度は3.1g/d−34%であつた。
実施例2で得られた仮撚糸でジヤガード編を作
成したが単糸1.3dの極細糸の柔い表面タツチと単
糸5.0drの芯糸の嵩高性と反撥性を有し、ピリン
グもICI法10hrで4級と高付加価値商品となつた。
実施例 3
固有粘度〔η〕=0.58dl/g、△nA=11×10-3、
HDmax4.8倍で100d/72fの配合油剤が0.5重量%
付着した未延伸フイラメント(A)に紡糸後でPOE
(15)オレイルエステル2.3重量%付着させたもの
と、固有粘度〔η〕=0.65dl/g、△nB=31×
10-3、HDmax3.3倍で185d/32fの未延伸フイラメ
ント(B)を引揃えて2.0倍、200℃の延伸仮撚を施し
た。なおフイラメント(A)のPOE(15)オレイルエ
ステル付着前のクリープ率は7%であり付着後は
29%であつた。
得られた仮撚糸の糸長差は18.5%であり極細フ
イラメント(A)の強伸度は2.6g/d−39%と低い
ものであつた。該仮撚糸を200T/M追撚しタテ
糸及びヨコ糸に用いて1/1平の織物を作り針布
起毛を施したところカシミヤライクな柔いタツチ
と反撥性を有しピリングもICI法10hrで3〜4級
と良好な、従来にない高級織物となつた。[Table] The false twisted yarn obtained in Example 1 is a filament (A).
In (B), the yarn length difference was 13.5%, and the 1.13 dr ultrafine yarn almost completely covered the 4.5 dr core yarn without any sticking.
In addition, the fabric obtained without any problems such as unwinding during additional twisting and weaving processes had a soft slimy feel, bulkiness, and repulsion. Furthermore, the side yarns (covering yarns) of the false twisted yarn are made of PEG, which has a high creep property.
(400) was attached and was stretched and false-twisted at about 0.5 times the HDmax, so the strength and elongation was low at 2.8g/dr-35%, and the pilling test on the fabric was 4 to 5 grade in 10 hours using the ICI method, which was no problem. The result is a high-quality wool-like fabric with unprecedented pill resistance. On the other hand, in Comparative Example 1, since an oil having a low creep property was attached, the strength and elongation of the filament (A) after false twisting was little reduced and the pilling was 3rd grade, which was worse than in Example 1. In Comparative Example 2, Δn B −Δn A =2×10 −3 was small, so ΔL was as low as 4.1%, and the ultra-fine filament (A) did not completely cover the core yarn, resulting in a rough and hard fabric. Generally, there is a tendency for pill resistance when the difference in yarn length is small, but in this example, the drawing ratio was
Since it is about 0.6 times the HDmax of , there was little decrease in strength and elongation, and pilling was grade 2, which was a failure. Example 2 0.9% by weight of POE(7) lauryl ether during spinning
Adhering intrinsic viscosity [η] = 0.53 dl/g, △n A = 54
×10 -3 , by drawing the undrawn filament (A) of 128 d / 96 f at HDmax 2.6 times and the undrawn yarn, △n B = 154 ×
10 -3 and a stretched filament (B) of 100 d /20 f with a cutting elongation of 54% and were simultaneously false-twisted at a stretching ratio of 1.01 times, a heater temperature of 160° C., and a false twist number of 2000 T/M.
The yarn length difference of the obtained ultra-fine covered yarn is 20.5%.
There was no adhesion, and the strength and elongation of the filament (A) was as low as 2.4 g/d-25%. The creep rate of filament (A) is 125%, and if an oil with a creep rate of 13% is attached, the filament
The strength and elongation of (A) was 3.1 g/d-34%. A jia guard knit was made using the false twisted yarn obtained in Example 2, and it had the soft surface touch of the ultra-fine yarn with a single yarn of 1.3 dr , the bulkiness and repulsion of the core yarn with a single yarn of 5.0 dr, and the pilling was also done using the ICI method. In 10 hours, it became a grade 4 product and a high value-added product. Example 3 Intrinsic viscosity [η] = 0.58 dl/g, △n A = 11×10 -3 ,
0.5% by weight of 100 d / 72 f compounded oil at HDmax 4.8 times
POE after spinning on attached undrawn filament (A)
(15) With 2.3% by weight of oleyl ester attached, intrinsic viscosity [η] = 0.65 dl/g, △n B = 31×
The unstretched filaments (B) of 185 d / 32 f at 10 -3 and 3.3 times HDmax were drawn together and subjected to stretching and false twisting at 200°C and 2.0 times. The creep rate of filament (A) before POE (15) oleyl ester is attached is 7%, and after attachment
It was 29%. The yarn length difference of the obtained false twisted yarn was 18.5%, and the strength and elongation of the ultrafine filament (A) was as low as 2.6 g/d-39%. The false twisted yarn was further twisted at 200T/M and used for the warp and weft yarns to make a 1/1 flat fabric and was needle cloth-raised. It had a cashmere-like soft touch and repellency, and no pilling was achieved using the ICI method for 10 hours. It has become a high quality fabric that has never existed before, with a grade 3-4 rating.
Claims (1)
る1種又は2種以上のポリエステル未延伸マルチ
フイラメント(A)と、混合比30〜80重量%で延伸仮
撚後の単繊維デニールが2.5〜8となる1種又は
2種以上のポリエステル未延伸または/および延
伸マルチフイラメント(B)とを引揃えて仮撚し、両
者の糸長差が5〜25%あるフイラメント(A)がフイ
ラメント(B)をカバリングした複合加工糸の製造法
において、延伸仮撚前に、予め該フイラメント(A)
に、荷重0.2g/デニールを負荷して24時間放置
後の未延伸マルチフイラメント(A)のクリープ率が
20%以上となるような油剤を該フイラメント(A)に
対し少なくとも0.2重量%付着させ、次いで該フ
イラメント(A)の最大延伸倍率(HDmax)の0.55
倍以下でかつ仮撚ヒーター温度が該フイラメント
(A)の膠着温度t℃から(t−40)℃までの間で延
伸仮撚することを特徴とする抗ピル性極細複合加
工糸の製造法。 2 フイラメント(A)は紡糸後の固有粘度[η]が
0.45〜0.7dl/gで複屈折率△nAが50×10-3以下の
未延伸糸であり、フイラメント(B)は固有粘度
[η]が0.5dl/g以上で複屈折率△nBが10×10-3
〜70×10-3の未延伸糸であり、かつ7×10-3≦△
nB−△nA≦30×10-3の関係が成り立つことを特徴
とする特許請求の範囲第1項記載の抗ピル性極細
複合加工糸の製造法。 3 フイラメント(A)は固有粘度[η]が0.45〜
0.7dl/gで複屈折率△nAが20×10-3〜70×10-3
の未延伸糸であり、フイラメント(B)は固有粘度
[η]が0.5dl/g以上で複屈折率△nBが110×
10-3以上の延伸糸であることを特徴とする特許請
求の範囲第1項記載の抗ピル性極細複合加工糸の
製造法。 4 フイラメント(A)の油剤が、ポリエチレングリ
コール又は/エチレンオキサイド付加の非イオン
界面活性剤が50重量%以上含まれるものであるこ
とを特徴とする特許請求の範囲第1項ないし第3
項のいずれかに記載の抗ピル性極細複合加工糸の
製造法。[Claims] 1. One or more unstretched polyester multifilaments (A) having a single fiber denier of 0.2 to 1.5 after stretching and false twisting at a mixing ratio of 30 to 80% by weight. One or more polyester undrawn and/or drawn multifilaments (B) with a single fiber denier of 2.5 to 8 are aligned and false twisted, and the filament has a difference in yarn length of 5 to 25%. In a method for producing a composite textured yarn in which (A) covers filament (B), the filament (A) is
The creep rate of the unstretched multifilament (A) after being left for 24 hours with a load of 0.2 g/denier was
Apply at least 0.2% by weight of an oil agent to the filament (A) such that the amount is 20% or more, and then apply an oil agent of 0.55% by weight to the maximum drawing ratio (HDmax) of the filament (A).
The temperature of the filament is less than twice that of the false twisting heater.
A method for producing anti-pilling ultrafine composite textured yarn, which comprises stretching and false twisting between the sticking temperature of (A) t°C and (t-40)°C. 2 The filament (A) has an intrinsic viscosity [η] after spinning.
It is an undrawn yarn with a birefringence Δn A of 50×10 -3 or less at 0.45 to 0.7 dl/g, and the filament (B) has a birefringence Δn B at an intrinsic viscosity [η] of 0.5 dl/g or higher. is 10×10 -3
~70×10 -3 undrawn yarn, and 7×10 -3 ≦△
The method for producing anti-pilling ultrafine composite textured yarn according to claim 1, wherein the relationship n B −Δn A ≦30×10 −3 holds true. 3 The filament (A) has an intrinsic viscosity [η] of 0.45~
At 0.7dl/g, birefringence △n A is 20×10 -3 to 70×10 -3
The filament (B) has an intrinsic viscosity [η] of 0.5 dl/g or more and a birefringence △n B of 110×
10. The method for producing a pill-resistant ultrafine composite textured yarn according to claim 1, wherein the yarn is drawn with a drawing strength of 10 -3 or more. 4. Claims 1 to 3, characterized in that the oil agent of the filament (A) contains 50% by weight or more of a nonionic surfactant added with polyethylene glycol or/and ethylene oxide.
A method for producing the anti-pilling ultrafine composite textured yarn according to any one of the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17363680A JPS57101030A (en) | 1980-12-08 | 1980-12-08 | Preparation of anti-pilling fine composite processed yarn |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17363680A JPS57101030A (en) | 1980-12-08 | 1980-12-08 | Preparation of anti-pilling fine composite processed yarn |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57101030A JPS57101030A (en) | 1982-06-23 |
JPS6317129B2 true JPS6317129B2 (en) | 1988-04-12 |
Family
ID=15964274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17363680A Granted JPS57101030A (en) | 1980-12-08 | 1980-12-08 | Preparation of anti-pilling fine composite processed yarn |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57101030A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6221823A (en) * | 1985-07-15 | 1987-01-30 | 株式会社クラレ | Manufacturing method of spun yarn-like processed yarn |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5557034A (en) * | 1978-10-17 | 1980-04-26 | Teijin Ltd | False twisted fused yarn and production |
-
1980
- 1980-12-08 JP JP17363680A patent/JPS57101030A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5557034A (en) * | 1978-10-17 | 1980-04-26 | Teijin Ltd | False twisted fused yarn and production |
Also Published As
Publication number | Publication date |
---|---|
JPS57101030A (en) | 1982-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6815060B2 (en) | Spun yarn | |
JP2003113554A (en) | Composite fabric and method for producing the same | |
JPH11229276A (en) | Polyester fiber having excellent processability | |
JP2001348735A (en) | Sea-island conjugate yarn and combined filament yarn | |
JPH0978373A (en) | Polyester-based false twist crimped textured yarn | |
JPS6317129B2 (en) | ||
JP2004204395A (en) | Conductive combined filament yarn and fabric | |
WO2001023650A1 (en) | Poly(trimethylene terephthalate) multifilament yarn | |
JP2003096642A (en) | Composite fabric and method for producing the same | |
EP4123071A1 (en) | Conductive textured composite yarn, and fabric and clothing | |
JP2001214335A (en) | Low-shrinkage polyester slub yarn and combined polyester filament yarn composed thereof | |
JPS63249728A (en) | Polyester composite processed yarn | |
JP2804075B2 (en) | Manufacturing method of super soft special mixed fiber yarn with dry feeling and drapability | |
JP3307383B2 (en) | Polyester hollow short fiber | |
KR20240112825A (en) | Eccentric core sheath composite false twist yarn and knitted fabric using it | |
JPH11279839A (en) | Blended yarn capable of being fibrillated | |
JP2024125535A (en) | Polybutylene Terephthalate Fiber | |
JPS6021941A (en) | Anti-pilling cloth | |
JPH04272246A (en) | Filament-staple composite yarn and production thereof | |
KR940011311B1 (en) | Preparing for complex drawing textured yarn with fine mono denier filaments | |
JP2001172836A (en) | Low-shrinkage polyester yarn and polyester combined filament yarn comprising the same yarn | |
JPH05247758A (en) | Long-short composite spun yarn and woven fabric therefrom | |
JP5606894B2 (en) | Method for producing cellulose ester composite yarn and woven / knitted fabric | |
JPH1060740A (en) | Polyester-based self-extensible splittable conjugated fiber and combined filament yarn containing the same and fabric | |
JP2541707B2 (en) | Method for manufacturing strongly twisted textured fabric |