[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63177472A - Thin-film transistor - Google Patents

Thin-film transistor

Info

Publication number
JPS63177472A
JPS63177472A JP62007657A JP765787A JPS63177472A JP S63177472 A JPS63177472 A JP S63177472A JP 62007657 A JP62007657 A JP 62007657A JP 765787 A JP765787 A JP 765787A JP S63177472 A JPS63177472 A JP S63177472A
Authority
JP
Japan
Prior art keywords
film
gate electrode
gate
electrode
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62007657A
Other languages
Japanese (ja)
Other versions
JPH065755B2 (en
Inventor
Yasuhiro Ukai
育弘 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosiden Electronics Co Ltd
Original Assignee
Hosiden Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosiden Electronics Co Ltd filed Critical Hosiden Electronics Co Ltd
Priority to JP62007657A priority Critical patent/JPH065755B2/en
Priority to US07/140,688 priority patent/US4943838A/en
Priority to EP88100305A priority patent/EP0275075B1/en
Priority to DE8888100305T priority patent/DE3869968D1/en
Priority to AT88100305T priority patent/ATE75076T1/en
Publication of JPS63177472A publication Critical patent/JPS63177472A/en
Priority to US07/498,641 priority patent/US4994401A/en
Publication of JPH065755B2 publication Critical patent/JPH065755B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • H01L21/02285Langmuir-Blodgett techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • H01L21/02288Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating printing, e.g. ink-jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain a gate electrode during a simple process and to obtain a device having little unevenness by a method wherein a gate insulating film is composed of an insulating organic-molecular film and the gate electrode is formed in the part opposite to a semiconductor layer for the gate insulating film after free carbon has been contained so as to transform the film into a conductive layer. CONSTITUTION:A gate insulating film 23 is composed of an insulating organic- molecular film 21 ; a gate electrode 22 is formed in the part opposite to a semiconductor layer 14 for the insulating organic-molecular film 21 as the gate insulating film 23 after free carbon has been contained so as to transform the film into a conductive layer. For example, a source electrode 12 and a drain electrode 13, which are composed of a transparent conductive film such as an ITO, are formed, to be separated from each other, on an insulating substrate 11 such as glass. A semiconductor layer 14 such as amorphous silicon is formed on the substrate 11 in the region ranging from the source electrode 12 to the drain electrode 13. Then, an insulating organic-molecular film 21 such as polyimide has been formed on the whole surface, N<+> ions are implanted selectively; a gate electrode 22 is formed after a chain of molecules at the upper layer of the insulating organic-molecular film has been cut so as to form free carbon and to be conductive.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は例えばアクティブ液晶表示素子における画素
電極に対するスイッチ素子に用いられる薄膜トランジス
タに関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a thin film transistor used as a switching element for a pixel electrode in an active liquid crystal display element, for example.

「従来の技術」 従来のこの種の薄膜トランジスタは第3図に示すよ5に
ガラスなどの絶縁性基板11上にソース電極12及びド
レイン電極13が分離して例えば透明導電膜により形成
され、これらソース電極12及びドレイン電極13間に
わたって基板11上にアモルファスシリコンのような半
導体層14が形成されている。その半導体層14上にゲ
ート絶縁膜15が形成され、更にそのゲート絶縁膜15
上にゲート電極16が形成されている。
``Prior Art'' As shown in FIG. 3, a conventional thin film transistor of this type has a source electrode 12 and a drain electrode 13 separated from each other on an insulating substrate 11 such as glass and formed of, for example, a transparent conductive film. A semiconductor layer 14 such as amorphous silicon is formed on the substrate 11 between the electrode 12 and the drain electrode 13 . A gate insulating film 15 is formed on the semiconductor layer 14, and the gate insulating film 15 is further formed on the semiconductor layer 14.
A gate electrode 16 is formed thereon.

ゲート絶縁膜15としてはS + Nx  や8102
などの無機絶縁物で構成され、ゲート電極16はアルミ
ニウムなどの金属材で構成されていた。
As the gate insulating film 15, S + Nx or 8102
The gate electrode 16 was made of a metal material such as aluminum.

無機絶縁物のゲート絶縁膜15を形成するには一般にプ
ラズマCVD法(化学的気相成長法)によることが多い
が、このプラズマCVD法による場合は大きなエネルギ
ーをも粒子が半導体層14の宍面にぶつかるため品質が
良好な絶縁膜を作ることが難しかった。
Generally, the plasma CVD method (chemical vapor deposition method) is often used to form the gate insulating film 15 made of an inorganic insulator. It was difficult to create a high-quality insulating film because of the interference.

また従来においてはゲート絶縁膜15上に金属のゲート
電極16を付ける構造であるため、ゲート絶縁膜15上
にゲート電極16が突出し、基板11に対する凹凸が比
較的大きくなり、例えば液晶表示素子に適用した場合に
ゲートバースがその凹凸により断線し易いものとなる。
Furthermore, in the conventional structure, a metal gate electrode 16 is attached on the gate insulating film 15, so the gate electrode 16 protrudes on the gate insulating film 15, and the unevenness with respect to the substrate 11 becomes relatively large. In this case, the gate berth becomes easily disconnected due to its unevenness.

またゲート電極16を形成するには先ず金属層を形成し
、その後の金属層を選択エツチングによりゲート電極1
6部分のみを残す必要があり工程数が多い欠点もあった
Furthermore, in order to form the gate electrode 16, a metal layer is first formed, and then the metal layer is selectively etched to form the gate electrode 16.
There was also the drawback that only 6 parts had to be left, requiring a large number of steps.

なお従来においてもゲート絶縁膜15として絶縁性有機
分子膜を用いたものも提案されているが、ゲート電極1
6としては金属が用いられているため、そのゲート電極
16の形成に前記二工程を必要とし、かつゲート電極1
6が突出して形成される欠点があった。
Note that in the past, it has also been proposed to use an insulating organic molecular film as the gate insulating film 15, but the gate electrode 1
Since metal is used as the gate electrode 16, the above two steps are required to form the gate electrode 16.
There was a drawback that 6 was formed protrudingly.

「問題点を解決するための手段」 この発明によれば薄膜トランジスタのゲート絶縁膜は絶
縁性有機分子膜で構成され、そのゲート絶縁膜の半導体
層と反対側の部分には遊離カーボンが含有されて導電層
とされ、その導電層によりゲート電極が構成されている
"Means for Solving the Problem" According to the present invention, the gate insulating film of a thin film transistor is composed of an insulating organic molecular film, and the portion of the gate insulating film opposite to the semiconductor layer contains free carbon. The conductive layer constitutes a gate electrode.

つまりこの発明ではゲート絶縁膜を絶縁性有機分子膜で
構成し、その半導体層と反対の面に対し、例えばイオン
注入によって分子の鎖(つながり)を切り離して遊離カ
ーボンを形成して導電性をもたせることによりゲート電
極を得る。このよ5にして簡単な工程でゲート電極が得
られ、しかもゲート電極は突出することなく形成でき、
素子の凹凸も小さいものとすることができる。
In other words, in this invention, the gate insulating film is composed of an insulating organic molecular film, and the surface opposite to the semiconductor layer is made conductive by separating molecular chains (connections) by, for example, ion implantation to form free carbon. A gate electrode is obtained by this. In this way, a gate electrode can be obtained through a simple process, and the gate electrode can be formed without protruding.
The unevenness of the element can also be made small.

「実施例」 第1図を参照してこの発明による薄膜トランジスタの一
例をその製法を説明しながら述べる。
``Example'' Referring to FIG. 1, an example of a thin film transistor according to the present invention will be described while explaining its manufacturing method.

第1図Aに示すように例えばガラスなどの絶縁性基板1
1上に第1図Bに示すようにソース電極12及びドレイ
ン電極13を互に分離して例えばITOのよ5な透明導
電膜により形成する。これらソース電極12及びドレイ
ン電極13間にわたって基板11上に例えばアモルファ
スシリコンのような半導体層14が形成される。
As shown in FIG. 1A, an insulating substrate 1 made of, for example, glass
As shown in FIG. 1B, a source electrode 12 and a drain electrode 13 are separated from each other and formed on the transparent conductive film 1, such as ITO, as shown in FIG. A semiconductor layer 14 made of, for example, amorphous silicon is formed on the substrate 11 between the source electrode 12 and the drain electrode 13 .

次にこの実施例においては第1図りに示すように例えば
ポリイミドのよった絶縁性有機分子膜21が全面に形成
される。この形成はスビーナー塗布、オフセット印刷、
L B (Langmuir −Blodgett )
法などにより行うことができる。また絶縁性有機分子膜
21としてはポリイミドの他にステアリン酸、ジアセチ
レン、W−トリコセン酸、フタロシアニン、アニドラセ
ンなどを用いてもよい。
Next, in this embodiment, as shown in the first diagram, an insulating organic molecular film 21 made of polyimide, for example, is formed over the entire surface. This formation is done by subina coating, offset printing,
L B (Langmuir-Blodgett)
This can be done by law etc. Further, as the insulating organic molecular film 21, other than polyimide, stearic acid, diacetylene, W-tricosenic acid, phthalocyanine, anidoracene, etc. may be used.

次に第1図Eに示すように絶縁性有機分子膜21の上面
上に半導体層14と対応して選択的に例えば虻イオンを
加速エネルギー90 KeVでドース量1×101フイ
オン/d程度注入し、絶縁性有機分子膜21の上層部の
分子のチェインを切り遊離カーボンを形成して導電性を
もたせてゲート電極22とする、イオン注入条件によっ
てゲート電極22の厚さ、シート抵抗、透過率、仕事関
数などを決定する。この有機分子膜21中のゲート電極
22と半導体層14との間がゲート絶縁膜23となる。
Next, as shown in FIG. 1E, for example, fly ions are selectively implanted onto the upper surface of the insulating organic molecular film 21 corresponding to the semiconductor layer 14 at an acceleration energy of 90 KeV at a dose of about 1×10 ions/d. The chain of molecules in the upper layer of the insulating organic molecular film 21 is cut to form free carbon, which is made conductive and becomes the gate electrode 22. Depending on the ion implantation conditions, the thickness, sheet resistance, transmittance, etc. of the gate electrode 22, Determine the work function, etc. The area between the gate electrode 22 and the semiconductor layer 14 in this organic molecular film 21 becomes a gate insulating film 23 .

ゲート電極22の厚さは例えば3000λ〜1μm程度
、ゲー、ト絶縁膜の厚さは1000〜3000人程度と
される。従って第1図りにおいて形成する絶縁性有機分
子膜21の厚さは40007y〜13000 A程度と
さされる。ちなみにポリイミドにAン、(150KeV
 )を注入した時の表面抵抗率と注入量との関係は第2
図に示すよ5になり注入量の増加に応じて表面抵抗率は
減少する。またイオンビーム電流密度が大きい程、表面
抵抗率が減少する。
The thickness of the gate electrode 22 is, for example, about 3000λ to 1 μm, and the thickness of the gate insulating film is about 1000 to 3000 μm. Therefore, the thickness of the insulating organic molecular film 21 formed in the first drawing is approximately 40007y to 13000A. By the way, polyimide has A, (150KeV
) is implanted, the relationship between the surface resistivity and the implantation amount is the second
5 as shown in the figure, and the surface resistivity decreases as the implantation amount increases. Furthermore, the higher the ion beam current density, the lower the surface resistivity.

イオン注入によるゲート電極22の形成は、マスクを用
いて所定領域に対して行う場合や、イオンビームをX−
Y走査制御してマスクを用いることなく、所定領域に対
してイオン注入を行ってもよい。
Formation of the gate electrode 22 by ion implantation may be performed in a predetermined area using a mask, or by implanting an ion beam into an X-
Ion implantation may be performed in a predetermined region by Y-scan control without using a mask.

[発明の効果j 以上述べたようにこの発明の薄膜トランジスタにおいて
はゲート絶縁膜が絶縁性有機分子膜で構成されているた
め無機絶縁膜を付ける場合のようにプラズマCDV法を
用いる必要がなく、半導体層14の表面が良質なものが
得られる。
[Effects of the Invention j As described above, in the thin film transistor of the present invention, since the gate insulating film is composed of an insulating organic molecular film, there is no need to use the plasma CDV method unlike in the case of attaching an inorganic insulating film. The surface of the layer 14 is of good quality.

しかもそのゲート絶縁膜の半導体層と反対の側の部分が
遊離カーボンを含む導電性をもつゲート電極とされてい
るため、ゲート電極の形成は例えば単なるイオン注入に
より行うことができ、従来金属膜の形成と、その金属膜
のエッチン、グ、と二′の二工程による場合と比較して
工程が簡略となる。
Moreover, since the part of the gate insulating film on the opposite side of the semiconductor layer is a conductive gate electrode containing free carbon, the gate electrode can be formed by, for example, simple ion implantation, and the gate electrode can be formed by simple ion implantation. The process is simpler compared to the case where the method requires two steps: formation, etching of the metal film, and etching.

また全面にゲート絶縁膜を形成しその一部をゲート電極
にしたともいえるものであり、ゲート絶縁膜上に金属の
ゲート電極を形成する場合よりも、素子の凹凸が少なく
なり、例えば液晶表示素子に用いてそのゲートバースの
配線などの凹凸が少なく、それだけ配線断が生じ難く、
歩留りが向上する。
It can also be said that a gate insulating film is formed on the entire surface and a part of it is used as a gate electrode, and the unevenness of the device is reduced compared to the case where a metal gate electrode is formed on the gate insulating film. The wiring of the gate berth has fewer irregularities, making it less likely that the wiring will break.
Yield is improved.

液晶表示素子に用いる場合においては、絶縁性有機分子
層21を全面に形成し、これに対して配向処理を行5こ
とにより配向膜を特に設げる必要がなく、また素子表面
の凹凸を少ないものとすることができる。
When used in a liquid crystal display element, by forming an insulating organic molecular layer 21 on the entire surface and performing alignment treatment 5 on this, there is no need to provide an alignment film, and unevenness on the element surface is reduced. can be taken as a thing.

イオン注入条件を制御することによりゲート電極22の
シート抵抗や仕事関数などを所望のものとして薄膜トラ
ンジスタの状況を所望のものに制御することもできる。
By controlling the ion implantation conditions, it is also possible to control the sheet resistance and work function of the gate electrode 22 to desired values, thereby controlling the state of the thin film transistor to desired values.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による薄膜トランジスタの製造工程を
示す断面図、第2図はポリイミドのイオン注入量と表面
抵抗率との関係を示す図、第3図は従来の薄膜トランジ
スタを示す断面図である。
FIG. 1 is a cross-sectional view showing the manufacturing process of a thin film transistor according to the present invention, FIG. 2 is a view showing the relationship between the amount of polyimide ion implantation and surface resistivity, and FIG. 3 is a cross-sectional view showing a conventional thin film transistor.

Claims (1)

【特許請求の範囲】[Claims] (1)ソース電極及びゲート電極間に半導体層が形成さ
れ、その半導体層と接してゲート絶縁膜が形成され、そ
のゲート絶縁膜と接してゲート電極が形成された薄膜ト
ランジスタにおいて、 上記ゲート絶縁膜は絶縁性有機分子膜で構成され、 上記ゲート電極は、上記ゲート絶縁膜の絶縁性有機分子
膜の上記半導体層と反対の側の部分に遊離カーボンが含
有されて導電層とされて構成されていることを特徴とす
る薄膜トランジスタ。
(1) In a thin film transistor in which a semiconductor layer is formed between a source electrode and a gate electrode, a gate insulating film is formed in contact with the semiconductor layer, and a gate electrode is formed in contact with the gate insulating film, the gate insulating film is The gate electrode is formed of an insulating organic molecular film, and the gate electrode is formed by containing free carbon in a portion of the insulating organic molecular film of the gate insulating film on the side opposite to the semiconductor layer to form a conductive layer. A thin film transistor characterized by:
JP62007657A 1987-01-16 1987-01-16 Thin film transistor Expired - Lifetime JPH065755B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62007657A JPH065755B2 (en) 1987-01-16 1987-01-16 Thin film transistor
US07/140,688 US4943838A (en) 1987-01-16 1988-01-04 Thin film transistor and method of making the same
EP88100305A EP0275075B1 (en) 1987-01-16 1988-01-12 Thin film transistor and method of making the same
DE8888100305T DE3869968D1 (en) 1987-01-16 1988-01-12 THIN FILM TRANSISTOR AND METHOD FOR THE PRODUCTION THEREOF.
AT88100305T ATE75076T1 (en) 1987-01-16 1988-01-12 THIN FILM TRANSISTOR AND METHOD FOR ITS MANUFACTURE.
US07/498,641 US4994401A (en) 1987-01-16 1990-03-26 Method of making a thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62007657A JPH065755B2 (en) 1987-01-16 1987-01-16 Thin film transistor

Publications (2)

Publication Number Publication Date
JPS63177472A true JPS63177472A (en) 1988-07-21
JPH065755B2 JPH065755B2 (en) 1994-01-19

Family

ID=11671889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62007657A Expired - Lifetime JPH065755B2 (en) 1987-01-16 1987-01-16 Thin film transistor

Country Status (5)

Country Link
US (1) US4943838A (en)
EP (1) EP0275075B1 (en)
JP (1) JPH065755B2 (en)
AT (1) ATE75076T1 (en)
DE (1) DE3869968D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597415B2 (en) * 1996-11-26 2003-07-22 Samsung Electronics Co., Ltd. Thin film transistor substrates for liquid crystal displays including thinner passivation layer on storage capacitor electrode than other regions
US6940566B1 (en) 1996-11-26 2005-09-06 Samsung Electronics Co., Ltd. Liquid crystal displays including organic passivation layer contacting a portion of the semiconductor layer between source and drain regions

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640809B1 (en) * 1988-12-19 1993-10-22 Chouan Yannick PROCESS FOR ETCHING A METAL OXIDE LAYER AND SIMULTANEOUSLY DEPOSITING A POLYMER FILM, APPLICATION OF THIS PROCESS TO THE MANUFACTURE OF A TRANSISTOR
US5641974A (en) 1995-06-06 1997-06-24 Ois Optical Imaging Systems, Inc. LCD with bus lines overlapped by pixel electrodes and photo-imageable insulating layer therebetween
DE19712233C2 (en) * 1996-03-26 2003-12-11 Lg Philips Lcd Co Liquid crystal display and manufacturing method therefor
US7109519B2 (en) 2003-07-15 2006-09-19 3M Innovative Properties Company Bis(2-acenyl)acetylene semiconductors
US7291522B2 (en) * 2004-10-28 2007-11-06 Hewlett-Packard Development Company, L.P. Semiconductor devices and methods of making
WO2006099744A1 (en) 2005-03-25 2006-09-28 The University Of British Columbia Thin film field effect transistors having schottky gate-channel junctions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770498A (en) * 1982-07-12 1988-09-13 Hosiden Electronics Co., Ltd. Dot-matrix liquid crystal display
PL138395B1 (en) * 1983-08-09 1986-09-30 Ct Badan Molekular I Makro Process for manufacturing surface conducting macromolecular material
JPH077827B2 (en) * 1984-06-20 1995-01-30 株式会社日立製作所 Liquid crystal display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597415B2 (en) * 1996-11-26 2003-07-22 Samsung Electronics Co., Ltd. Thin film transistor substrates for liquid crystal displays including thinner passivation layer on storage capacitor electrode than other regions
US6862050B2 (en) 1996-11-26 2005-03-01 Samsung Electronics Co., Ltd. Liquid crystal displays using organic insulating material for a gate insulating layer and/or having photolithographic formed spacers
US6940566B1 (en) 1996-11-26 2005-09-06 Samsung Electronics Co., Ltd. Liquid crystal displays including organic passivation layer contacting a portion of the semiconductor layer between source and drain regions

Also Published As

Publication number Publication date
ATE75076T1 (en) 1992-05-15
US4943838A (en) 1990-07-24
EP0275075A3 (en) 1989-04-12
DE3869968D1 (en) 1992-05-21
EP0275075B1 (en) 1992-04-15
JPH065755B2 (en) 1994-01-19
EP0275075A2 (en) 1988-07-20

Similar Documents

Publication Publication Date Title
JPH05235034A (en) Manufacture of thin-film transistor
JPH02260661A (en) Film transistor for active matrix liquid circuit dioplag element
JPH027442A (en) Semiconductor device
US4994401A (en) Method of making a thin film transistor
JPS63177472A (en) Thin-film transistor
US5347146A (en) Polysilicon thin film transistor of a liquid crystal display
JPH05304171A (en) Thin-film transistor
JPH1065174A (en) Thin-film transistor and its manufacture
KR100495804B1 (en) Thin Film Transistor Board for Liquid Crystal Display and Manufacturing Method
JPS6347981A (en) Thin film transistor and manufacture thereof
JPH0562996A (en) Manufacture of thin film transistor
JPH0572749B2 (en)
KR100270363B1 (en) Method of manufacturing thin-film transistor
JPH01162375A (en) Thin film transistor
JPH05110088A (en) Manufacture of thin film transistor circuit
JP2002523898A (en) Thin film transistor and method of manufacturing the same
JPH02196470A (en) Thin film transistor and manufacture thereof
JPH0464181B2 (en)
JPS63158875A (en) Manufacture of thin-film transistor
JPH02203568A (en) Thin film transistor
JPH02137826A (en) Active matrix substrate
JPH0851214A (en) Film transistor and its manufacture
JPH05283428A (en) Manufacture of thin film transistor
JPH06209011A (en) Manufacture of thin film transistor
JPS60157258A (en) Thin film transistor and manufacture thereof