[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63162527A - Production of anhydrous magnesium chloride - Google Patents

Production of anhydrous magnesium chloride

Info

Publication number
JPS63162527A
JPS63162527A JP30789186A JP30789186A JPS63162527A JP S63162527 A JPS63162527 A JP S63162527A JP 30789186 A JP30789186 A JP 30789186A JP 30789186 A JP30789186 A JP 30789186A JP S63162527 A JPS63162527 A JP S63162527A
Authority
JP
Japan
Prior art keywords
magnesium chloride
water
distillate
solution
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30789186A
Other languages
Japanese (ja)
Inventor
Osamu Umagoe
馬越 治
Shoji Kawase
川瀬 昭治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP30789186A priority Critical patent/JPS63162527A/en
Publication of JPS63162527A publication Critical patent/JPS63162527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To obtain anhydrous magnesium chloride excellent in safety and drying capacity, by allowing an organic soln. of water-contg. magnesium chloride to azeotropically distil with heating, dehydrating the distillate and refluxing the distillate to the original soln. CONSTITUTION:The organic solvent and a water are azeotropically distilled by heating the organic solvent soln. of water-contg. magnesium chloride and the water is removed from the distillate with a dehydrating treatment. Then, the anhydrous magnesium chloride contg. no free water is obtained by refluxing the dehydrated distillate to the original soln. or condensing and drying up the organic solvent soln. of the magnesium chloride contg. no free water. The solvent consisting of one or more kinds selected among >=4C monohydric alcohol and polyhydric alcohol as the principal component and if necessary, adding other component capable of forming an azeotrope with water, is preferable as the solvent to be used. Extremely the ethyl alcohol is preferable because of the application as the drying agent or the safety in operation for human being.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、乾燥剤や食品添加物、その他工業用材料とし
て有用な、塩化マグネシウム無水物の実用的な製法に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a practical method for producing anhydrous magnesium chloride, which is useful as a desiccant, food additive, and other industrial materials.

〈従来の技術〉 乾燥剤等の用途において通常良く用いられるのは塩化カ
ルシウムである。この乾燥剤は安価に入手できる他、無
水にするには強熱を与えることにより、容易にその目的
を達することが出来、たしかにすぐれた乾燥剤といえる
。しかしながら、近年、高度化する科学技術の種々の分
野において、その塩化カルシウムの水準を超える乾燥能
力を求められることがある。かかる場合に適用すべき乾
燥剤として、塩化マグネシウムは好適な位置付けにある
。本発明者の検討結果から、塩化マグネシウムは塩化カ
ルシウムよりすぐれた乾燥能力を有することが明らかと
なった。
<Prior Art> Calcium chloride is commonly used as a desiccant. This desiccant is not only available at a low price, but also can easily achieve its purpose by applying intense heat to make it anhydrous, so it can certainly be said to be an excellent desiccant. However, in recent years, in various fields of increasingly sophisticated science and technology, drying capabilities that exceed the level of calcium chloride are sometimes required. Magnesium chloride is suitable as a desiccant to be applied in such cases. The inventor's study results revealed that magnesium chloride has superior drying ability than calcium chloride.

一方、乾燥剤、殊に純度の高い医療用途に使用できるよ
うな塩化マグネシウムは、無水物としては供給されてい
ない。塩化マグネシウムは、一般に−分子中に結晶水6
個を含むいわゆる6水塩として得られ、これを工業的に
無水物とすることはほとんど行われていない。これは含
水塩化マグネシウムは塩化カルシウムと異なり、単に強
熱するだけでは、分解してしまって目的とする無水物を
得ることができないためである。無水の塩化マグネシウ
ムを得る方法として、文献的には、以下の様な方法が知
られている。
On the other hand, desiccant agents, especially magnesium chloride that can be used in highly pure medical applications, are not supplied as anhydrous. Magnesium chloride generally contains - 6 crystallized water in the molecule.
It is obtained as a so-called hexahydrate salt containing 6 hydrates, and it is almost never industrially converted into an anhydride. This is because, unlike calcium chloride, hydrated magnesium chloride decomposes and the desired anhydride cannot be obtained by simply igniting it. The following methods are known in the literature as methods for obtaining anhydrous magnesium chloride.

(1)酸化マグネシウムに炭素を加えて塩素他炉で塩素
ガスと反応させる。あるいは塩素ガスを通しつつ加熱脱
水する。あるいは塩化アンモニウム又は塩化カリウムを
添加して加熱脱水する。
(1) Add carbon to magnesium oxide and react with chlorine gas in a chlorine furnace. Alternatively, heat and dehydrate while passing chlorine gas. Alternatively, ammonium chloride or potassium chloride is added and the mixture is heated and dehydrated.

(2)実si的には塩化マグネシウムアンモニウムを加
熱分解して得る。しかしながら、これらの方法を実際の
製造に適用することは、塩素ガス等の原材料混入等の点
で実用的でなく、極めて困難である。
(2) Actually, it is obtained by thermally decomposing magnesium ammonium chloride. However, applying these methods to actual production is impractical and extremely difficult due to contamination of raw materials such as chlorine gas.

〈発明が解決しようとする問題点〉 本発明者は、従来使用されて来た塩化カルシウムより安
全性にすぐれ、かつ乾燥能力にすぐれた物質を探索した
結果、実質的に水分を取り除いた塩化マグネシウムが好
適であることを見出し、その実用的な製造法について種
々検討を重ね本発明を完成するに到った。
<Problems to be solved by the invention> As a result of searching for a substance that is safer and has better drying ability than calcium chloride that has been conventionally used, the present inventor has developed magnesium chloride from which water has been substantially removed. found that it is suitable, and after conducting various studies on its practical manufacturing method, the present invention was completed.

く問題点を解決するための手段〉 即ち、本発明は、 含水塩化マグネシウムの有機溶媒溶液を加熱して有機溶
媒と水を共沸的に留出せしめ、該留出液を脱水処理して
水分を除去し、次いで該脱水留出液を元の溶液に還流せ
しめることを特徴とする、実質的に水分を含まない無水
塩化マグネシウムの製造法であり、また、もう一つの発
明は、得られた実質的に水分を含まない塩化マグネシウ
ムの有機溶媒溶液を濃縮乾固することを特徴とする、実
質的に水分を含まない無水塩化マグネシウムの製造法で
ある。
Means for Solving the Problems> That is, the present invention heats an organic solvent solution of hydrated magnesium chloride to azeotropically distill the organic solvent and water, and dehydrates the distillate to remove water. , and then refluxing the dehydrated distillate back to the original solution. This is a method for producing anhydrous magnesium chloride that does not contain substantially water, which is characterized by concentrating and drying a solution of magnesium chloride in an organic solvent that does not contain substantially water.

本発明においては、先ず含水塩化マグネシウムを、それ
を溶解し得る有薇溶媒に溶解し、その溶液を加熱して有
機溶媒と水を共沸的に留出せしめる。かかる溶媒として
、本発明者の検討結果によれば、炭素数4以下の一価ア
ルコール類、多価アルコール類からえらばれる一種以上
を主たる構成成分とし、必要に応じその他の水との共沸
成分を加えるのが良い。殊に、エチルアルコールはヒト
への乾燥剤適用や、操作上の安全性から特に好ましい。
In the present invention, first, hydrated magnesium chloride is dissolved in an aqueous solvent that can dissolve it, and the solution is heated to azeotropically distill off the organic solvent and water. According to the study results of the present inventors, the main constituent of such a solvent is one or more selected from monohydric alcohols and polyhydric alcohols having 4 or less carbon atoms, and if necessary, other azeotropic components with water. It is good to add In particular, ethyl alcohol is particularly preferred from the viewpoint of application as a desiccant to humans and operational safety.

エチルアルコールは、必要に応じ、他の第三成分を添加
して、共沸を能率的に行う配慮を加えても良いが、その
ままでも充分実用的に水を系外に導き得る。
If necessary, other third components may be added to ethyl alcohol to efficiently carry out azeotropy, but water can be effectively led out of the system even as it is.

その他の水との共沸成分としては、ベンゼン。Other azeotropic components with water include benzene.

トルエン、ジオキサン、クロロホルム、四塩化炭素等従
来公知のものの一種以上を使用できるが、用途に応じ、
安全性等の配慮を構ずべきであるのは云うまでもない。
One or more types of conventionally known materials such as toluene, dioxane, chloroform, and carbon tetrachloride can be used, but depending on the purpose,
It goes without saying that considerations such as safety should be taken into account.

又、これらの添加黴は、必要とする能率にもよる他、塩
化マグネシウム溶液の不均一化を生じないよう配慮を要
するが、一般的には使用する塩化マグネシウム可溶化溶
媒の50重量%以下、更には20重量%以下で充分であ
る。
In addition, the amount of these added molds depends on the required efficiency and care must be taken not to cause non-uniformity of the magnesium chloride solution, but in general, the amount of added mold is 50% by weight or less of the magnesium chloride solubilizing solvent used. Furthermore, 20% by weight or less is sufficient.

系外に留出した留出液(含水溶媒)は脱水工程に導かれ
脱水処理に付される。脱水工程としての具体的手段とし
ては、■モレキュラーシーブにより水を吸着けしめる等
の物理的除去法、■酸化カルシウムや水素化カルシウム
の如き、水と反応する化学的除去法、■これらを組合せ
た方法等がある。■の方法は、水を吸着したモレキュラ
ーシーブ等の脱水剤は、従来公知の方法により水を脱着
させ、再使用できる点ですぐれた方法である。いずれの
方法を経由しても、脱水された溶1s(脱水留出液)は
、必要に応じこれら脱水工程からの不純物を除去するた
めの適当な手段、例えば、該脱水留出液を再度蒸留する
等の手段を経て元の塩化マグネシウム溶液に還流すれば
良い。
The distillate (water-containing solvent) distilled out of the system is led to a dehydration step and subjected to dehydration treatment. Specific methods for the dehydration process include: ■ Physical removal methods such as adsorbing water with molecular sieves, ■ Chemical removal methods that react with water such as calcium oxide or calcium hydride, and ■ A combination of these methods. There are methods etc. Method (2) is an excellent method in that a dehydrating agent such as a molecular sieve that has adsorbed water can be reused by desorbing water by a conventionally known method. Regardless of which method is used, the dehydrated solution 1s (dehydrated distillate) may be treated with suitable means to remove impurities from these dehydration steps, for example, by distilling the dehydrated distillate again. The magnesium chloride solution may be refluxed to the original magnesium chloride solution.

このようにして得られた実質的に水分を含まないか極く
少■含む塩化マグネシウム溶液は、通常塩化マグネシウ
ム1モル当たり1モル以下、更には0.5モル以下の含
水■である。
The magnesium chloride solution obtained in this manner is substantially free of water or contains only a small amount of water, usually having a water content of less than 1 mole, more preferably less than 0.5 mole, per mole of magnesium chloride.

更に、前述の脱水した塩化マグネシウム溶液を濃縮乾固
することにより、得られる塩化マグネシウムも同程度の
含水ωのものとすることが可能であり、工業的に有用性
の高いものである。この濃縮乾固は、前述の如き溶媒の
還流と別個の装置や工程を組んで実施しても良いが、よ
り実用的には、同じ装置を用い還流に引きつづいて、或
いは還流している間に溶媒の還流量を徐々に減する等の
コントロールをすることにより、実施することもできる
。最終的に、塩化マグネシウムを固体として得るにあた
り、残留する溶媒を少なくするため、減圧状態にするこ
とは効果的で好ましい態様である。又、加熱を強化する
ことも有用であるが、程度がひどくなると塩化マグネシ
ウムの分解が伴なってくるため、充分配慮する必要があ
る。塩化マグネシウムが分解した場合、水溶液化して不
溶化部分の存在により判断できるが、塩化マグネシウム
と共に水に溶解した際に溶液を酸性域に調節し得る化合
物、例えば、j!!lアルギニン、し−システィン、ニ
コチン酸アミド、クエン酸、グリシンの如き化合物を添
加しておくことにより、不溶化物の発生を抑制し塩化マ
グネシウムの可溶化を向上させることができ、用途によ
っては有用である。
Furthermore, by concentrating and drying the dehydrated magnesium chloride solution described above, the obtained magnesium chloride can also have a similar water content ω, which is highly useful industrially. This concentration to dryness may be carried out using a separate device or process from the refluxing of the solvent as described above, but more practically, it is carried out using the same device, following the refluxing, or during the refluxing. This can also be carried out by controlling the amount of reflux of the solvent gradually. Finally, in obtaining magnesium chloride as a solid, it is an effective and preferred embodiment to reduce the pressure in order to reduce the amount of residual solvent. It is also useful to intensify the heating, but if the heating becomes severe, the magnesium chloride will be decomposed, so careful consideration is required. When magnesium chloride decomposes, it becomes an aqueous solution and can be judged by the presence of an insolubilized portion, but compounds that can adjust the solution to an acidic range when dissolved in water together with magnesium chloride, such as j! ! By adding compounds such as l-arginine, cysteine, nicotinamide, citric acid, and glycine, it is possible to suppress the generation of insolubilized substances and improve the solubilization of magnesium chloride, which may be useful depending on the application. be.

かかる添加物は、一種又は二種以上であって良く、その
添加mは塩化マグネシウム1部に対して0.1〜10部
、好ましくは0.2〜5部程度が適当である。このよう
にして得た無水塩化マグネシウムは塩化カルシウムより
すぐれた乾燥効果を発揮し、工業的に橿めて有用である
Such additives may be used alone or in combination of two or more, and the appropriate amount (m) to be added is about 0.1 to 10 parts, preferably about 0.2 to 5 parts, based on 1 part of magnesium chloride. The anhydrous magnesium chloride thus obtained exhibits a drying effect superior to that of calcium chloride, and is industrially useful.

以下、実施例を挙げて本発明を更に詳細に説明する。EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples.

〈実施例〉 実施例−1 塩化マグネシウム6水塩60.6!Jをエタノール60
0dに溶解した。この時のエタノール溶液中の塩化マグ
ネシウム濃度は約4.7%、水分濃度は約5.6%であ
った。この溶液を沸騰留出せしめ、留出液を凝縮後にゼ
オライトビーズ約500gを充填したカラムに導いた。
<Example> Example-1 Magnesium chloride hexahydrate 60.6! J for ethanol 60
Dissolved in 0d. At this time, the concentration of magnesium chloride in the ethanol solution was about 4.7%, and the concentration of water was about 5.6%. This solution was boiled and the distillate was condensed and then introduced into a column packed with about 500 g of zeolite beads.

このカラムを通過して得られた脱水エタノールを再度蒸
留して、先の塩化マグネシウム−エタノール溶液に戻し
た。上記循環系を約12時間運転後に、塩化マグネシウ
ム−エタノール溶液を定量すると、塩化マグネシウム濃
度は約4.8%、水分濃度は約0.1%であった。
The dehydrated ethanol obtained by passing through this column was distilled again and returned to the above magnesium chloride-ethanol solution. After operating the circulation system for about 12 hours, the magnesium chloride-ethanol solution was quantified and found to have a magnesium chloride concentration of about 4.8% and a water concentration of about 0.1%.

乾燥雰囲気下にこの溶液を0.45μmの非水系メンブ
ランフィルタ−で濾過後、バイアルビンに塩化マグネシ
ウムが所定の最になるように分注し、エタノールを留去
し乾燥せしめた。乾燥物は白色の結晶であり、バイアル
瓶の底に大部分が何首していた。この時の乾燥物中水分
濃度は169%で、これは塩化マグネシウムの0.10
水塩に相当する。
This solution was filtered through a 0.45 μm non-aqueous membrane filter under a dry atmosphere, and then dispensed into a vial so that magnesium chloride reached a predetermined amount, and the ethanol was distilled off and dried. The dried product was a white crystal, and most of it was at the bottom of the vial. The moisture concentration in the dry matter at this time was 169%, which is 0.10% of magnesium chloride.
Equivalent to water salt.

実施例−2 実施例−1で作成した実質的に水分を含まない塩化マグ
ネシウム−エタノール溶液を、塩化マグネシウム50q
となる様にバイアル瓶に分注し、減圧下、加熱してエタ
ノールを留去した。加熱温度は50〜120℃とし、乾
燥物をそのまま水10dに溶解したものと、各種添加剤
と共に水10−に溶解したものとの、pHと溶解性を観
察した。結果を第1表に示した。
Example-2 The substantially water-free magnesium chloride-ethanol solution prepared in Example-1 was mixed with 50q of magnesium chloride.
The solution was dispensed into vials and heated under reduced pressure to distill off the ethanol. The heating temperature was 50 to 120° C., and the pH and solubility of the dried product dissolved as it was in 10 d of water and that dissolved in 10 d of water together with various additives were observed. The results are shown in Table 1.

第1表 〈発明の効果〉 本発明の方法によれば、過大なエタノール等の溶媒を使
用することなく、又、他の好ましくない重金属等の不純
物の混入を回避しつつ、実質的に無水の塩化マグネシウ
ムのエタノール等の溶液を得ることができる。これを必
要に応じ、濾過等の操作を経て、例えば注射剤容器中に
分注し、溶媒、例えばエタノールを留去せしめることに
より、容器中に実質的に水分を含まないか乃至は極く少
舟を含む塩化マグネシウムを残ずことができるのである
。勿論、以上に述べた工程は、乾燥雰囲気中で行うべき
であり、この工程から取り込まれる水分を、最小限に留
めるよう留意すべきである。又、この際には菌汚染に対
する配慮も必要である。
Table 1 <Effects of the Invention> According to the method of the present invention, substantially anhydrous A solution of magnesium chloride in ethanol or the like can be obtained. If necessary, this is subjected to operations such as filtration, and then dispensed into, for example, injection containers, and the solvent, such as ethanol, is distilled off, so that the container contains substantially no or very little water. It is possible to leave behind magnesium chloride, which contains water. Of course, the steps described above should be carried out in a dry atmosphere and care should be taken to minimize moisture introduced from this step. Also, at this time, consideration must be given to bacterial contamination.

また、本発明により得られる無水塩化マグネシウムは以
下に示す様に、塩化カルシウム以上の乾燥力を有してい
る。
Furthermore, as shown below, the anhydrous magnesium chloride obtained by the present invention has a drying power greater than that of calcium chloride.

(1)粉末状態での塩化マグネシウムと塩化カルシウム
の吸湿力を比較した。
(1) The hygroscopicity of magnesium chloride and calcium chloride in powder form was compared.

無水塩化マグネシウムを乾燥雰囲気下で微粉砕し、その
既知ωをシャーレに均一な厚みになる様に広げた。比較
のため無水塩化カルシウムを同様にして微粉砕し、既知
ωをシャーレに均一な厚みになるように広げた。これら
のシャーレを室温、60〜63%RHの条件下で室内に
開放して放置し、吸着された水分濃度(水分量/無水物
吊:重伍%)を経時的に測定した。結果を第2表及び第
1図に示した。
Anhydrous magnesium chloride was pulverized in a dry atmosphere, and the known ω was spread in a petri dish to a uniform thickness. For comparison, anhydrous calcium chloride was pulverized in the same manner, and the known ω was spread in a petri dish to a uniform thickness. These petri dishes were left open indoors under the conditions of room temperature and 60 to 63% RH, and the adsorbed water concentration (water content/anhydrous weight %) was measured over time. The results are shown in Table 2 and Figure 1.

これらから、吸湿速度は無水塩化マグネシウムの方が優
れていることが判る。
From these results, it can be seen that anhydrous magnesium chloride is superior in terms of moisture absorption rate.

第2表 (2エタノールの溶液状態での塩化マグネシウムと塩化
カルシウムの吸湿力を比較した。
Table 2 (2 Comparison of hygroscopic power of magnesium chloride and calcium chloride in ethanol solution state).

無水塩化マグネシウムと無水塩化カルシウムの粉末を各
々2.5%のエタノール(Et OH)溶液とした。こ
れらを、室温、60〜63%RHの条件下で室内に開放
し放置して、吸着された水分濃度(水分母=重j%)を
カール・フィッシャー法により経時的に測定した。結果
を第3表及び第2図に示した。これらから、吸湿速度は
溶液状態でも無水塩化マグネシウムの方が優れているこ
とが判る。
Anhydrous magnesium chloride and anhydrous calcium chloride powders were each made into 2.5% ethanol (EtOH) solutions. These were left open indoors under the conditions of room temperature and 60 to 63% RH, and the adsorbed water concentration (water base = weight j%) was measured over time by the Karl Fischer method. The results are shown in Table 3 and Figure 2. From these results, it can be seen that anhydrous magnesium chloride is superior in moisture absorption rate even in the solution state.

第3表 (2,5%  Et OH?mfffl中(7)水分1
i:手伝%)
Table 3 (2,5% Et OH?mfffl (7) Moisture 1
i: help%)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る乾燥剤である無水塩化マグネシ
ウムと、従来から用いられている乾燥剤である無水塩化
カルシウムについて、共に微粉末状態における吸着され
た水分濃度(水分量/無水物量:重量%)の経時変化を
示し、第2図は、これらの乾燥剤の、共に2.5%エタ
ノール溶液状態における吸着された水分濃度(水分R2
重量%)の経時変化を示す。 特許出願人 帝 人 株 式 会 社 1234t6 [13j向]
Figure 1 shows the adsorbed moisture concentration (water content/anhydride content) in the fine powder state of anhydrous magnesium chloride, which is a desiccant according to the present invention, and anhydrous calcium chloride, which is a conventionally used desiccant. Figure 2 shows the adsorbed water concentration (moisture R2) of these desiccants in a 2.5% ethanol solution state.
% by weight) over time. Patent applicant: Teijin Ltd. 1234t6 [For 13j]

Claims (1)

【特許請求の範囲】 1、含水塩化マグネシウムの有機溶媒溶液を加熱して有
機溶媒と水を共沸的に留出せしめ、該留出液を脱水処理
して水分を除去し、次いで該脱水留出液を元の溶液に還
流せしめることを特徴とする、実質的に水分を含まない
無水塩化マグネシウムの製造法。 2、含水塩化マグネシウムの有機溶媒溶液を加熱して有
機溶媒と水を共沸的に留出せしめ、該留出液を脱水処理
して水分を除去し、該脱水留出液を元の溶液に還流せし
め実質的に水分を含まない塩化マグネシウムの有機溶媒
溶液を得、次いで該溶液を濃縮乾固することを特徴とす
る、実質的に水分を含まない無水塩化マグネシウムの製
造法。
[Claims] 1. Heating a solution of hydrated magnesium chloride in an organic solvent to azeotropically distill the organic solvent and water, dehydrating the distillate to remove water, and then dehydrating the distillate. A method for producing anhydrous magnesium chloride substantially free of water, the method comprising refluxing the effluent back to the original solution. 2. Heat an organic solvent solution of hydrated magnesium chloride to azeotropically distill the organic solvent and water, dehydrate the distillate to remove water, and return the dehydrated distillate to the original solution. 1. A method for producing anhydrous magnesium chloride substantially free of water, which comprises refluxing to obtain a solution of magnesium chloride in an organic solvent substantially free of water, and then concentrating the solution to dryness.
JP30789186A 1986-12-25 1986-12-25 Production of anhydrous magnesium chloride Pending JPS63162527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30789186A JPS63162527A (en) 1986-12-25 1986-12-25 Production of anhydrous magnesium chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30789186A JPS63162527A (en) 1986-12-25 1986-12-25 Production of anhydrous magnesium chloride

Publications (1)

Publication Number Publication Date
JPS63162527A true JPS63162527A (en) 1988-07-06

Family

ID=17974407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30789186A Pending JPS63162527A (en) 1986-12-25 1986-12-25 Production of anhydrous magnesium chloride

Country Status (1)

Country Link
JP (1) JPS63162527A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439563A (en) * 1993-08-25 1995-08-08 Alcan International Limited Electrolytic production of magnesium metal with feed containing magnesium chloride ammoniates
US5514359A (en) * 1993-04-06 1996-05-07 Alcan International Limited Process for making anhydrous magnesium chloride
JP2013256416A (en) * 2012-06-13 2013-12-26 Godo Shigen Sangyo Kk Method of manufacturing lithium iodide anhydride

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514359A (en) * 1993-04-06 1996-05-07 Alcan International Limited Process for making anhydrous magnesium chloride
US5439563A (en) * 1993-08-25 1995-08-08 Alcan International Limited Electrolytic production of magnesium metal with feed containing magnesium chloride ammoniates
JP2013256416A (en) * 2012-06-13 2013-12-26 Godo Shigen Sangyo Kk Method of manufacturing lithium iodide anhydride

Similar Documents

Publication Publication Date Title
US6869466B2 (en) Cucurbiturils and method for binding gases and volatiles using cucurbiturils
JPH029875A (en) Production of tocopherol and tocotrienol
JPS62155240A (en) Therapeutical compound
JPH11147844A (en) Method for removing residual organic solvent, its use in production of pharmaceutical, and prepared substance
JPH01127026A (en) Removal of sulfur dioxide from gas stream using hydroxyalkyl substituted piperadinone
JPS63162527A (en) Production of anhydrous magnesium chloride
TWI270377B (en) A method for anhydrous loading of nicotine onto ion exchange resins
JP2004175669A (en) Method for producing purine derivative nucleotide disodium crystal and method for removing methanol
JP5138135B2 (en) Anhydrous purification of nicotine using ion exchange resin
RU2456233C2 (en) Method of producing fullerene c60
JPS62123021A (en) Production of ammonium perrhenate
US3947491A (en) Stabilized choline salicylate compounds
JP2002087808A (en) Adsorbent for purifying perfluorocarbon, manufacturing method thereof, high purity octafluorocyclobutane, method of purifying and manufacturing the same and utilization thereof
AU693590B2 (en) Process for preparing beclomethasone dipropionate freon (R) clathrate
JP2001106674A (en) Method for producing ipidacrine hydrochloride hydrate
JP2698790B2 (en) Drinking water purifier and production method thereof
JP2001300293A (en) Method for manufacturing inorganic or organic anhydride
JP2002020370A (en) Method for separating hydrogen chloride from a mixture comprising N-alkyl-2-pyrrolidone and hydrogen chloride
JP4065940B2 (en) Method for producing azotized fullerene
JPS63239237A (en) Drying agent-containing injection agent
JP2005515060A (en) Purification of materials containing impurities using non-aqueous solvents
JP2511256B2 (en) Method for purifying β-phenethyl alcohol
JPS62151411A (en) Deodorization of polyallylamine or salt thereof
RU2048815C1 (en) Method for production of sodium salts of triterpene acids
JPS63203646A (en) Stabilization of pyruvic acid and derivative thereof