[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63161678A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS63161678A
JPS63161678A JP31136586A JP31136586A JPS63161678A JP S63161678 A JPS63161678 A JP S63161678A JP 31136586 A JP31136586 A JP 31136586A JP 31136586 A JP31136586 A JP 31136586A JP S63161678 A JPS63161678 A JP S63161678A
Authority
JP
Japan
Prior art keywords
layer
layers
gaas
type
nondoped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31136586A
Other languages
Japanese (ja)
Other versions
JPH0714057B2 (en
Inventor
Kaoru Inoue
薫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31136586A priority Critical patent/JPH0714057B2/en
Publication of JPS63161678A publication Critical patent/JPS63161678A/en
Publication of JPH0714057B2 publication Critical patent/JPH0714057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • H01L29/7785

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a hetero-junction type filed effect transistor whose characteristics are stable against temperature and light by a method wherein channel layers and AlyGa1-yAs layers are successively formed on an AlxGa1-xAs layer and the channel layers are composed of nondoped an InzGa1-zAs layer and N-type GaAs layers to employ the hetero-junction structure. CONSTITUTION:Al semi-insulating GaAs substrate 1, a nondoped GaAs layer 2, a nondoped Al0.3Ga0.7As layer 3, N-type GaAs layers 4 and 6, a nondoped InzGa1-zAs layer 5 and a nondoped Al0.3Ga0.7As layer 7 are provided. Channel layers are composed of the N-type GaAs layers 4 and 6 the In0.25Ga0.75As layer 5 and show a very high electron concentration. The Al0.3Ga0.7As layers 3 and 7 are barrier layers for confining electrons in the channel layers. The advantages of utilizing the N-type GaAs layers as electron supplying layers are that the thickness of the N-type GaAs layer for storing the electrons in the InzGa1-zAs layer with the required electron concentration can be reduced because a high donor concentration can be obtained and that the adverse influence of a DX center which is shown by N-type AlGaAs or the like can be eliminated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はへテロ接合を用いた電界効果トランジスタに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a field effect transistor using a heterojunction.

従来の技術 ヘテロ接合を用いた電界効果トランジスタとして、従来
よシ、N型IJGaAsとノンドープGaAsのヘテロ
接合界面にたまる高移動度の2次元電子ガスを用いた高
電子移動度トランジスタ(HtghElectron 
Mobility Transistor ; )(E
MT )がよく知られている。
Conventional technology As a field effect transistor using a heterojunction, a high electron mobility transistor (HtghElectron
Mobility Transistor ; )(E
MT) is well known.

発明が解決しようとする問題点 HEMTの欠点として、ヘテロ界面にたまる2次元電子
ガスの飽和濃度が低く(〜1×101しd)、チャンネ
ルの導電率が室温で通常のGaAsのMESFETに比
べて同程度かそれ以下になること、N型AIGaAa中
のDXセンターと呼ばれる深い準位のため、光や温度に
対して素子特性の変化が大きくまた不安定であるという
点があげられる。
Problems to be Solved by the Invention The disadvantages of HEMTs are that the saturation concentration of the two-dimensional electron gas that accumulates at the hetero interface is low (~1 x 101d), and the conductivity of the channel is lower than that of ordinary GaAs MESFETs at room temperature. Because of the deep level called the DX center in N-type AIGaAa, the device characteristics change greatly with respect to light and temperature and are unstable.

さらに、N型Aji’GaAs+とGaAs のコンダ
クションバンドの不連続量、ΔEcが小さいため、高電
界での2次元電子ガスは、AlGaAsの障壁を越えて
、GaAsよりAlGaAs にあふれ出すという問題
もある0 問題点を解決するための手段 本発明は、以上のような従来例の問題点を解決する新し
い構造のへテロ接合電界効果トランジスタを提供するも
のである。電子濃度を高めるために、チャンネル層をN
型GaAs+層とノンドープのln2Ga1−2All
よりなる構成とし、さらに、チャンネル層を電子に対し
障壁となるAlGaAs層で挾んだ構造とするものであ
る。チャンネル層の両側のAl1GaAs層は、ノンド
ープでも、N型にしてもよいが、N型のAlGaAsを
用いる場合には、AlGaAs中のAlAs組成を0.
2以下とすることにより、Dxセンターの悪影響を除く
ことができる。
Furthermore, because the amount of discontinuity, ΔEc, in the conduction band of N-type Aji'GaAs+ and GaAs is small, there is a problem that two-dimensional electron gas in a high electric field exceeds the barrier of AlGaAs and overflows from GaAs to AlGaAs. 0 Means for Solving the Problems The present invention provides a heterojunction field effect transistor with a new structure that solves the problems of the conventional example as described above. The channel layer is made of N to increase the electron concentration.
type GaAs+ layer and non-doped ln2Ga1-2All
Furthermore, the channel layer is sandwiched between AlGaAs layers that act as a barrier against electrons. The Al1GaAs layers on both sides of the channel layer may be non-doped or N-type, but if N-type AlGaAs is used, the AlAs composition in the AlGaAs should be 0.
By setting it to 2 or less, the negative influence of the Dx center can be removed.

作  用 本発明の構造を珀いることにより、電界効果トランジス
タの特性を向上させることができる。チャンネル層にた
まる電子の濃度をさらに増加するためには、チャンネル
層の両側、あるいは片側のAlGaAsにN型不純物を
添加すればよい、この場合には、DXセンターによる悪
影響を除くためにAlGaAsのAlAs組成比を0.
2以下とすることが必要となる。
Function: By incorporating the structure of the present invention, the characteristics of a field effect transistor can be improved. In order to further increase the concentration of electrons accumulated in the channel layer, N-type impurities may be added to the AlGaAs on both sides or one side of the channel layer. Set the composition ratio to 0.
It is necessary to set it to 2 or less.

実施例 本発明の第1の実施例を第1図に示す。第1図(a)の
断面構造において、1は半絶縁性GaAs基板、2は0
.1μmの厚さのノンドープGaAs層、3は0.2μ
mの厚さのノンドープAlo、3Gao、 7As層、
4及び6は、ドナー濃度4 X 10 /lylの膜厚
が60人のN型GaAs層、5はノンドープのI n、
Ga1−zAs層、7は、膜厚200人のノンドープの
#o、5Gao、y”層である。I rx zGa 1
− zAs層の厚さは100人、2゜は0.25とした
。N型GaAs層(4及び6)と”0.2sGao、 
75A11層5にヨッテチャンネル層カ形成され、電子
濃度は最大4×10/cIrLと非常に高い値を示した
。Mo、3Ga0.7AB層(3及び7)は、チャンネ
ル層に閉じ込めるための障壁層である。
Embodiment A first embodiment of the present invention is shown in FIG. In the cross-sectional structure of FIG. 1(a), 1 is a semi-insulating GaAs substrate, 2 is 0
.. 1 μm thick non-doped GaAs layer, 3 is 0.2 μm
m-thick non-doped Alo, 3Gao, 7As layer,
4 and 6 are N-type GaAs layers with a donor concentration of 4 x 10 /lyl and a film thickness of 60 nm, 5 is a non-doped In,
The Ga1-zAs layer 7 is a non-doped #o, 5Gao,y'' layer with a thickness of 200.I rx zGa 1
- The thickness of the zAs layer was 100, and the 2° was 0.25. N-type GaAs layers (4 and 6) and 0.2s Gao,
A Yotte channel layer was formed on the 75A11 layer 5, and the electron concentration showed a very high value of 4×10/cIrL at maximum. The Mo, 3Ga0.7AB layers (3 and 7) are barrier layers for confinement in the channel layer.

8はソース電極、9はドレイン電極、10はゲート電極
を示し’、 M I S (Metal−InBula
tor −3部miconductor )型の電界効
果トランジスタが構成される。第1図(b)は、チャン
ネル層近傍のバンドダイアグラムを示す。
8 is a source electrode, 9 is a drain electrode, and 10 is a gate electrode.
A field effect transistor of the tor-3-microconductor type is constructed. FIG. 1(b) shows a band diagram near the channel layer.

チャンネル層のN型GaAsは、それ自身導電層として
も働くが、ln2Ga1−2As層への電子供給層とし
ても作用する。すなわち第1図(b)のバンドダイアグ
ラムに示すように、ln2Ga1−zAsの量子井戸に
N型GaAs層に電子が供給されN −AlGaAs/
GaAsで構成されたHEMTにおけるN−AlGaA
sと同様な役目を果すことになる。N型GaAsを電子
供給層として用いる利点は、高いドナー濃度(6〜8x
10/7)を得ることができるため、所望の電子濃度を
In2Ga1−zAs層にためるためのN型GaAg層
厚を薄くできること、N−AlGaAs層のようにDX
センターの悪影響がないことであり、高い相互コンダク
タンスをもつ、素子特性の安定な電界効果トランジスタ
を得るのに好適である。またチャンネル層をAl1Ga
Ag層で挾んだ構造とすることにより、InzGa1.
、−zAsにたまった電子から見て、障壁の高さを十分
に高くでき、高電界での熱い電子が、In2Ga1−z
As量子井戸をあふれ出したとしても、AlGaAs層
の障壁により、電子の、チャンネル層内にとどまる確率
が増える。チャンネル層はGaAsと、I n zGa
 1−zAs層で構成されているので、電子が、チャン
ネル層内にとどまる限シ、高い飽和速度が維持されるこ
とになる。また、チャンネル層内の電子の大部分は、ノ
ンドープI n 2Ga 1□zAs層にたまるため、
電子の移動度及び、飽和速度もGaAs単独のチャンネ
ル層に比べて高くなる。
The N-type GaAs of the channel layer functions not only as a conductive layer itself, but also as an electron supply layer to the ln2Ga1-2As layer. That is, as shown in the band diagram of FIG. 1(b), electrons are supplied to the N-type GaAs layer in the quantum well of ln2Ga1-zAs, resulting in N -AlGaAs/
N-AlGaA in HEMT composed of GaAs
It will play the same role as s. The advantage of using N-type GaAs as the electron supply layer is the high donor concentration (6-8x
10/7), the thickness of the N-type GaAg layer for accumulating the desired electron concentration in the In2Ga1-zAs layer can be made thinner, and the DX
There is no adverse effect of the center, and it is suitable for obtaining a field effect transistor with high mutual conductance and stable device characteristics. In addition, the channel layer is made of Al1Ga
By forming a structure sandwiched between Ag layers, InzGa1.
, -zAs, the height of the barrier can be made sufficiently high, and the hot electrons in the high electric field
Even if the As quantum well is overflowed, the barrier of the AlGaAs layer increases the probability that electrons will remain in the channel layer. The channel layer is made of GaAs and InzGa.
Since it is composed of a 1-zAs layer, a high saturation velocity will be maintained as long as the electrons remain within the channel layer. In addition, most of the electrons in the channel layer accumulate in the non-doped In 2Ga 1□zAs layer, so
The electron mobility and saturation velocity are also higher than in a channel layer made of GaAs alone.

本発明の第2の実施例を第2図に示す。第2図は、第1
図(−)におけるチャンネル層の構成を、N型GaAs
層4と、その上に形成した100AのノンドープIno
、 25Ga0.7−yAs  としたもので、N型G
aAs の膜厚を1oOA、ドナー濃度を4 Xl 0
18//cIIとした。この場合にも、チャンネルにた
まる電子濃度として4×101シd が得られた。
A second embodiment of the invention is shown in FIG. Figure 2 shows the first
The structure of the channel layer in the figure (-) is made of N-type GaAs.
Layer 4 and a 100A non-doped Ino layer formed thereon.
, 25Ga0.7-yAs, N-type G
The aAs film thickness is 1oOA, the donor concentration is 4Xl 0
18//cII. In this case as well, 4×10 1 sid was obtained as the electron concentration accumulated in the channel.

第1の実施例および第2の実施例におけるノンドープの
Ateo、3Ga0.7As層をA10.2Ga0.8
部8層に置きかえ、かつ、Alo、 2Gao、 aA
s層の1部にN型不純物を1×10 /cr/Iドープ
したところ、どちらの場合にも電子濃度として5〜6 
X 1012/C1/lという値を得た。
The non-doped Ateo, 3Ga0.7As layer in the first and second embodiments was replaced with A10.2Ga0.8
8 layers, and Alo, 2Gao, aA
When part of the s-layer was doped with N-type impurities at 1×10 /cr/I, the electron concentration was 5 to 6 in both cases.
A value of X 1012/C1/l was obtained.

以上の実施例における電界効果トランジスタでは、温度
や光によるしきい値電圧の変化やFET特性の大幅な変
化は見られず、従来のN −Al1aAs層/ GaA
s系HEMTに比べ特性が安定であった。
In the field effect transistors in the above embodiments, no changes in threshold voltage or large changes in FET characteristics due to temperature or light were observed, and the conventional N-Al1aAs layer/GaA
The characteristics were more stable than s-based HEMTs.

発明の効果 以上述べたように、本発明のへテロ接合電界効果トラン
ジスタでは、従来のHEMTの様なN型MxGa 、−
zAs (” 〜0.3 )中のDxセンターによる特
性の不安定さを無くすことができるばかりでなく、チャ
ンネル層に、高い電子濃度を供給するN型GaAsと電
子のたまるI n 2Ga 11Asを用いているので
、チャンネル内に高移動度の高い電子濃度を実現できる
。また、I n zGa 1−zAsの量子井戸中を電
子は主として走行するので、チャンネル外部のl’JI
GaAs障壁層のM組成比が0.2以下であっても、電
子に対して十分高い障壁となり、高電界において電子が
チャンネルよりあふれ出す確率を低下させられる。従っ
て本発明の構造を用いることにより、高い相互コンダク
タンスを有した、温度、光に対して特性の安定なヘテロ
接合電界効果トランジスタを実現できる。なお、I n
zGa、−ZAs層の膜厚としては、50人〜150A
が適切であり、2の値としては0.25以下が、膜内に
転位の入らない条件として適している。
Effects of the Invention As described above, in the heterojunction field effect transistor of the present invention, N-type MxGa, -
Not only can the instability of characteristics caused by the Dx center in zAs (~0.3) be eliminated, but the channel layer is made of N-type GaAs, which supplies a high electron concentration, and I n 2Ga 11As, which accumulates electrons. Since the electrons mainly travel in the quantum well of I n zGa 1-zAs, it is possible to realize a high electron concentration with high mobility inside the channel.
Even if the M composition ratio of the GaAs barrier layer is 0.2 or less, it becomes a sufficiently high barrier to electrons, and the probability that electrons overflow from the channel in a high electric field can be reduced. Therefore, by using the structure of the present invention, a heterojunction field effect transistor having high mutual conductance and stable characteristics against temperature and light can be realized. In addition, I n
The thickness of the zGa, -ZAs layer is 50 to 150A.
is appropriate, and a value of 2 of 0.25 or less is suitable as a condition for preventing dislocations from entering the film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および第2図は、本発明の第1.第2の実
施例としての電界効果トランジスタの素子構造を示す断
面図、第1図0))は同第1の実施例におけるチャンネ
ル層付近の伝導帯エネルギーバンドダイアグラムである
。 1・・・・・・半絶縁性GaAs基板、2・・・・・ラ
ンドープGaAs層、3.7・・・・・ランドープNo
。30a0.7AB層、4,6・・・・・・N型GaA
s層、6・・川・ノンドープInzGa1−zAs層、
8・・・・・・ソース電甑、9・・・・・・ドレイン電
極、10・山・・ゲート電極。
FIG. 1(a) and FIG. 2 illustrate the first embodiment of the present invention. A cross-sectional view showing the element structure of a field effect transistor as a second embodiment, FIG. 10)) is a conduction band energy band diagram near the channel layer in the first embodiment. 1... Semi-insulating GaAs substrate, 2... Land-doped GaAs layer, 3.7... Land-doped No.
. 30a0.7AB layer, 4,6...N-type GaA
s layer, 6... river non-doped InzGa1-zAs layer,
8... Source electrode, 9... Drain electrode, 10. Mountain... Gate electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)Al_xGa_1_−_xAs層上にチャンネル
層とAl_yGa_1_−_yAs層が順次形成され、
前記チャンネル層として、ノンドープのIn_zGa_
1_−_zAs層とN型GaAsで構成されるヘテロ接
合構造を用いてなる電界効果トランジスタ。(2)Al
_xGa_1_−_xAs層及び、Al_yGa_1_
−_yAs層の一部にN型不純物がドープされ、xおよ
びyの値が0.2以下である特許請求の範囲第1項に記
載の電界効果トランジスタ。
(1) A channel layer and an Al_yGa_1_-_yAs layer are sequentially formed on the Al_xGa_1_-_xAs layer,
As the channel layer, non-doped In_zGa_
A field effect transistor using a heterojunction structure composed of a 1_-_zAs layer and N-type GaAs. (2) Al
_xGa_1_-_xAs layer and Al_yGa_1_
The field effect transistor according to claim 1, wherein a part of the −_yAs layer is doped with an N-type impurity, and the values of x and y are 0.2 or less.
JP31136586A 1986-12-25 1986-12-25 Field effect transistor Expired - Fee Related JPH0714057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31136586A JPH0714057B2 (en) 1986-12-25 1986-12-25 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31136586A JPH0714057B2 (en) 1986-12-25 1986-12-25 Field effect transistor

Publications (2)

Publication Number Publication Date
JPS63161678A true JPS63161678A (en) 1988-07-05
JPH0714057B2 JPH0714057B2 (en) 1995-02-15

Family

ID=18016289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31136586A Expired - Fee Related JPH0714057B2 (en) 1986-12-25 1986-12-25 Field effect transistor

Country Status (1)

Country Link
JP (1) JPH0714057B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223724A (en) * 1990-07-31 1993-06-29 At & T Bell Laboratories Multiple channel high electron mobility transistor
US5266506A (en) * 1990-07-31 1993-11-30 At&T Bell Laboratories Method of making substantially linear field-effect transistor
JPH0645366A (en) * 1991-03-26 1994-02-18 Mitsubishi Electric Corp Field effect transistor
US5373168A (en) * 1991-12-05 1994-12-13 Nec Corporation Two-dimensional electron gas field effect transistor including an improved InGaAs channel layer
US5486705A (en) * 1993-06-15 1996-01-23 Matsushita Electric Industrial Co., Ltd. Heterojunction field effect transistor
US5488237A (en) * 1992-02-14 1996-01-30 Sumitomo Electric Industries, Ltd. Semiconductor device with delta-doped layer in channel region

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223724A (en) * 1990-07-31 1993-06-29 At & T Bell Laboratories Multiple channel high electron mobility transistor
US5266506A (en) * 1990-07-31 1993-11-30 At&T Bell Laboratories Method of making substantially linear field-effect transistor
JPH0645366A (en) * 1991-03-26 1994-02-18 Mitsubishi Electric Corp Field effect transistor
US5373168A (en) * 1991-12-05 1994-12-13 Nec Corporation Two-dimensional electron gas field effect transistor including an improved InGaAs channel layer
US5488237A (en) * 1992-02-14 1996-01-30 Sumitomo Electric Industries, Ltd. Semiconductor device with delta-doped layer in channel region
US5486705A (en) * 1993-06-15 1996-01-23 Matsushita Electric Industrial Co., Ltd. Heterojunction field effect transistor

Also Published As

Publication number Publication date
JPH0714057B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JPH04230042A (en) Field-effect transistor
JPH06132318A (en) Heterojunction field-effect transistor and its manufacture
US5105241A (en) Field effect transistor
JPH07120790B2 (en) Semiconductor device
US5729030A (en) Semiconductor device
JPS63161678A (en) Field effect transistor
JPH0770743B2 (en) Resonant tunneling barrier structure device
JP2804041B2 (en) Field-effect transistor
JP2661556B2 (en) Field effect type semiconductor device
JP2891244B2 (en) Field effect transistor
JP3447438B2 (en) Field effect transistor
JPS61147577A (en) Complementary semiconductor device
JPS59184573A (en) Field effect transistor
JPH06188271A (en) Field effect transistor
JPH01128473A (en) Field effect transistor
JP3094500B2 (en) Field effect transistor
JPS63278277A (en) Compound semiconductor device
JP2500459B2 (en) Heterojunction field effect transistor
JP3054216B2 (en) Semiconductor device
JP2730511B2 (en) Heterojunction field effect transistor
JPS5891681A (en) Field-effect type transistor
JPH06163600A (en) Field-effect transistor
JP2715868B2 (en) Field effect transistor
JP2786208B2 (en) Semiconductor device
JPH0156544B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees