JPS63168487A - Method and equipment for coal gasification - Google Patents
Method and equipment for coal gasificationInfo
- Publication number
- JPS63168487A JPS63168487A JP31313386A JP31313386A JPS63168487A JP S63168487 A JPS63168487 A JP S63168487A JP 31313386 A JP31313386 A JP 31313386A JP 31313386 A JP31313386 A JP 31313386A JP S63168487 A JPS63168487 A JP S63168487A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- adsorption
- desorption
- gas
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003245 coal Substances 0.000 title claims abstract description 131
- 238000002309 gasification Methods 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims description 72
- 238000003795 desorption Methods 0.000 claims abstract description 45
- 238000001179 sorption measurement Methods 0.000 claims abstract description 28
- 239000003463 adsorbent Substances 0.000 claims abstract description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 111
- 239000007789 gas Substances 0.000 claims description 100
- 229910052757 nitrogen Inorganic materials 0.000 claims description 50
- 238000002336 sorption--desorption measurement Methods 0.000 claims description 49
- 229910052760 oxygen Inorganic materials 0.000 claims description 46
- 239000001301 oxygen Substances 0.000 claims description 46
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 44
- 238000011049 filling Methods 0.000 claims description 15
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 10
- 238000007599 discharging Methods 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 abstract description 27
- 238000003860 storage Methods 0.000 abstract description 6
- 230000007423 decrease Effects 0.000 abstract description 5
- 238000010248 power generation Methods 0.000 description 15
- 239000012159 carrier gas Substances 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000004880 explosion Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 150000002926 oxygen Chemical class 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002817 coal dust Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
〔産業上の利用分野〕
本発明は石炭又はその他の炭化水素類(タール。
1石炭液化残渣等)のガス化装置に係わり、特に圧力変
動吸着法で生成したガスで燃料をガス化炉に気流搬送し
、同時に生成したガス化剤をガス化炉に供給して高温、
高圧下で反応させて可燃性ガスを得る石炭ガス化方法お
よび装置に関する。
〔従来の技術〕
石炭は豊富な埋蔵量をもつ有用なエネルギ源であるが、
固体であり且つ灰分を多く含んでいるため、石油や天然
ガスに比べてその利用分野が限られている。しかしこの
石炭を気体や液体に転換すれば利用分野が大巾に広がり
、有益なエネルギ源になり得るため、各国で石炭の流体
化技術が開発されており、なかでも石炭ガス化技術は次
世代の発電方法として注目されている石炭ガス化複合発
電の重要な要素技術として研究開発が進められている。
石炭ガス化とは1石炭を砕いてガス化剤と共に高温の炉
に供給し、部分酸化等のガス化反応を起こさせ、これに
より一酸化炭素と水素を主成分とする可燃性ガスを生成
させることを云う。
石炭ガス化複合発電システムは、この石炭ガス化で得ら
れた高温の可燃性ガスの顕熱を回収してスチームを作り
、このスチームでスチームタービンを駆動し、同時にこ
の可燃性ガスがガスタービンを駆動して発電を行うもの
で、従来行われている石炭を燃焼してスチームタービン
を駆動する石炭火力発電に比べて発電効率を数%向上す
ることができる0石炭ガス化複合発電システムのような
大規模な需要を想定し、石炭ガス化装置も大容量。
高効率を日桁して開発が進められている。
ガス化の方式は1発電を目的に石炭ガス化を行う場合、
ガス化剤として酸素を用いる酸素ガス化と、空気を用い
る空気ガス化という二つの方式に大きく分けられる。こ
のガス化方式のちがいによるガス化効率、ガス他剤製造
コストおよび発電コストの比較を下に示す。
第1表
酸素ガス化では、ガス化剤を全て反応するのでガス化炉
の効率がよいが、酸素の製造費用が発生して発電コスト
が高くなる。一方空気ガス化では、ガス化剤として反応
しない窒素も合わせて炉に供給するので、ガス化炉の効
率が低いが酸素の製造コストが発生しないので発電コス
トは安くなる。
石炭ガス化の効率を示す指標として冷ガス効率が用いら
れる。冷ガス効率は、炉に供給した石炭の発熱蓋に対す
るその石炭から生成したガスの発熱量の割合を表わすも
のであり1石炭供給量に対するガス他剤供給量の比率は
、冷ガス効率が最高となる数値とする必要がある。
石炭ガス化は一般に部分酸化反応を主体とするものであ
り、下式で示される。
ここで石炭は簡単のため、灰分等の成分は除外して炭化
水素として表わしである。上式から分るように石炭中の
炭素が全て一酸化炭素になった場合に最も生成ガスの発
熱量が高くなる。この反応は発熱反応であるため外部か
ら熱を加えなくても反応は進行する。しかし、空気をガ
ス化剤とする場合1反応に伴う発熱があってもガス化剤
として供給される空気中に含まれる窒素をも昇温するた
め、炉内の温度を充分上昇させることができず、ガス化
反応速度が遅くなり、ガス化速度を低下させるという欠
点がある。特に気流層で石炭のガス化を行う場合、気流
層ガス化の大きな特徴の一つは石炭中の灰分を溶融させ
て処理することであるが、このためには炉内の温度を灰
分の溶融温度以上に高くする必要があり、上式の部分酸
化反応による発熱だけでは不充分である。そこで一般に
酸素量を増加し、上式の反応と平行して下記の燃焼反応
を行わせる。
しかし燃焼反応を同時に行わせると生成ガス中の一酸化
炭素COが減り1発熱量が低下し、冷ガス効率が低下す
る。
そこで、ガス化剤として用いる空気を酸素富化空気とし
、空気中に含まれる不活性ガスである窒素量をへらして
、ガス化炉を部分酸化反応だけで高温に保持することが
考えられる。この酸素富化空気内の酸素量は気流層ガス
化の場合でも、炉内の温度を灰分の溶融温度以上に保持
できればよく高純度酸素である必要はない。
ガス化装置に必要な気体としては、ガス化剤の他に1石
炭搬送用ガスや石炭充填容器の加圧用ガスがあり、水蒸
気、空気等が用いられている0石炭充填容器から1石炭
を配管を通して気流搬送により石炭ガス化炉へ送給する
場合、搬送管内の圧力と石炭充填容器内の圧力に差があ
ると1石炭充填容器から搬送管への石炭の送りこみが円
滑に行われないので、通常1石炭充填容器内を、常時搬
送管内の圧力と同程度に加圧ガスを用いて加圧している
。
石炭ガス化炉としては種々の形式のものが開発されつつ
あるが、特開昭第56−122891号公報明細書には
、酸素を反応ガスとし、水蒸気をガス他剤兼搬送ガス、
更に窒素を部分的に搬送ガスとして用いる装置が記載さ
れている。従来のこのような場合に酸素、窒素を共に深
冷法により同時に製造するのが通例であるが、窒素のみ
を製造する方法としては、特開昭52−152895号
公報明細書に、圧力変動吸着法(PRESSURE 5
IIING ABSORBTION、以下PSA法と称
する)による方法が記載されている。
このPSA法では、酸素よりも窒素を選択的に吸着する
吸着剤を充填した吸着塔に、その一端(A端とする)か
ら酸素と窒素を含む混合ガスを所定の圧力になるまで送
給して吸着剤に窒素を吸着させ、吸着終了後、吸着塔の
他端(B端とする)から高濃度の窒素ガスを該吸着塔内
に送入するとともに、これにより吸着塔内に残留してい
る酸素に富んだ空気をA端から排出し、排出されるガス
の窒素濃度がB端から送りこんだ高濃度窒素の窒素濃度
と等しくなった段階でA端からの排出を止め、次いでB
端から吸着塔内の気体を抜き出す。
抜き出される気体は吸着剤に吸着されていた高濃停の窒
素であり、これをくりかえすことにより、吸着されてい
た窒素を分離して高濃度の窒素ガスを回収することがで
きる。
前記PSA法では、高濃度の窒素のみを生成するが、従
来酸素製造に用いられている深冷法のかわりにPSA法
を用いれば、低いコストでガス化剤として用いる酸素富
化空気が得られ、空気ガス化と比較して高いガス化効率
が得られるので、空気だけで石炭をガス化するシステム
に比較して更に発電コストを低減させることができる。
〔発明が解決しようとする問題点〕
従来1石炭搬送用気体としては、水蒸気、空気等が用い
られているが、石炭搬送用気体として水蒸気を用いる場
合、特開昭第56−122891号公報明細書に記載さ
れているごとく、搬送開始時に水蒸気凝縮のため石炭の
搬送に困難を来す恐れがある。
又搬送用や石炭充填容器加圧用気体として空気を用いる
場合は、特公昭第58−23295号公報明細書に記載
されているごとく、常に石炭の粉塵爆発に対する配慮を
行う必要があり、自然発火防止の点から酸素濃度は大き
くとも5%以下であることが必要である。
従来の酸素製造に用いられてきた深冷法では、酸素と同
時に高純度の窒素をも製造するので、この窒素を石炭搬
送用のガスとすることができた。
しかし、酸素より窒素を選択的に吸着する吸着剤を用い
たPSA法では、第2表に示す如く酸素富化空気を生成
させた時に同時に生成される窒素富化空気は、空気に比
べれば酸素濃度はひくいが、石炭搬送用としては酸素濃
度がまだ高く、搬送用ガスとして用いることはできない
、そのため、搬送用ガスとしての窒素は別のプラントか
ら持ち込むか、ガス他剤製造用以外に窒素製造用プラン
トを設けねばならず、その結果発電プラント全体のコス
トに影響を及ぼして、PSA法で生成した酸素富化空気
をガス化剤に使用するガス化炉を用い第2表
いる発電プラントの発電コストを押しヒげるとう問題が
あった。
本発明の@題は、PSA法により同時に生成した酸素富
化空気をガス化剤に、窒14富化空気を石炭搬送用S’
を体と石炭充填容器の加圧用置体に用いる石炭ガス化の
方法および装置を提供するにある。
〔問題点を解決するための手段〕
上記の課題は、酸素よりも窒素を選択的に吸着する吸着
剤を用いる圧力変動吸着装置の吸脱着基に設けた、吸脱
着基から脱着工程の排出ガスを取り出す管に、脱着工程
の後期に排出されるガスを収容する装置を設け、前記圧
力変動吸着装置で生成される酸素富化空気をガス化剤に
用い、脱着工程の後期に排出される高濃度の窒素ガスを
、前記排出ガスを収容する装置を経て1石炭搬送及び石
炭充填容器の加圧に用いることにより達成される。[Industrial Application Field] The present invention relates to a gasification device for coal or other hydrocarbons (tar, 1 coal liquefaction residue, etc.), and in particular, the present invention relates to a gasification device for coal or other hydrocarbons (tar, 1 coal liquefaction residue, etc.), and in particular, a gasification device for supplying fuel with gas generated by a pressure fluctuation adsorption method to a gasification furnace in an air stream. The gasification agent produced at the same time is supplied to the gasification furnace to generate high temperature,
The present invention relates to a coal gasification method and apparatus for producing flammable gas by reacting under high pressure. [Conventional technology] Coal is a useful energy source with abundant reserves, but
Because it is solid and contains a large amount of ash, its applications are limited compared to oil and natural gas. However, if this coal is converted into gas or liquid, the fields of use will expand widely and it can become a useful energy source. Therefore, coal fluidization technology is being developed in various countries, and coal gasification technology is the next generation. Research and development is progressing as an important elemental technology for coal gasification combined cycle power generation, which is attracting attention as a power generation method. Coal gasification is the process of crushing coal and supplying it to a high-temperature furnace together with a gasifying agent to cause gasification reactions such as partial oxidation, thereby producing flammable gas whose main components are carbon monoxide and hydrogen. That's what I'm saying. A coal gasification combined cycle power generation system recovers the sensible heat of the high-temperature combustible gas obtained through coal gasification to create steam, which drives a steam turbine, and at the same time, this combustible gas drives a gas turbine. This type of combined power generation system, such as a coal gasification combined cycle system, can improve power generation efficiency by several percentage points compared to conventional coal-fired power generation, which burns coal to drive a steam turbine. Anticipating large-scale demand, the coal gasification equipment will also have a large capacity. Development is progressing with increasing efficiency. When gasifying coal for the purpose of generating electricity,
There are two main types of methods: oxygen gasification, which uses oxygen as a gasification agent, and air gasification, which uses air. A comparison of gasification efficiency, gas and other agent production costs, and power generation costs for different gasification methods is shown below. In the oxygen gasification shown in Table 1, the efficiency of the gasifier is good because all of the gasifying agent is reacted, but the cost of producing oxygen increases, which increases the cost of power generation. On the other hand, in air gasification, nitrogen, which does not react as a gasification agent, is also supplied to the furnace, so the efficiency of the gasification furnace is low, but since there is no production cost for oxygen, the cost of power generation is low. Cold gas efficiency is used as an indicator of coal gasification efficiency. Cold gas efficiency represents the ratio of the calorific value of the gas generated from the coal to the heating lid of the coal supplied to the furnace.As for the ratio of the amount of gas and other agents supplied to the amount of coal supplied, cold gas efficiency is the highest. It is necessary to set the value as follows. Coal gasification is generally based on a partial oxidation reaction, which is expressed by the following formula. Here, for simplicity, coal is expressed as a hydrocarbon, excluding components such as ash. As can be seen from the above equation, the calorific value of the generated gas is highest when all of the carbon in the coal is converted to carbon monoxide. Since this reaction is exothermic, the reaction proceeds without applying external heat. However, when air is used as the gasifying agent, even though there is heat generated due to one reaction, the temperature inside the furnace cannot be raised sufficiently because the temperature of the nitrogen contained in the air supplied as the gasifying agent is also raised. First, there is a drawback that the gasification reaction rate becomes slow, thereby reducing the gasification rate. Particularly when gasifying coal in an air bed, one of the major features of air bed gasification is to melt the ash in the coal. It is necessary to raise the temperature higher than that, and the heat generated by the partial oxidation reaction in the above equation is insufficient. Therefore, the amount of oxygen is generally increased and the following combustion reaction is performed in parallel with the reaction in the above equation. However, if the combustion reactions are performed simultaneously, the amount of carbon monoxide CO in the generated gas decreases, and the calorific value decreases, resulting in a decrease in cold gas efficiency. Therefore, it is conceivable to use oxygen-enriched air as the air used as the gasifying agent, reduce the amount of nitrogen, which is an inert gas, contained in the air, and maintain the gasifier at a high temperature through only the partial oxidation reaction. The amount of oxygen in this oxygen-enriched air does not need to be high-purity oxygen, even in the case of gasification by gaseous bed, as long as the temperature inside the furnace can be maintained above the melting temperature of the ash. In addition to the gasifying agent, the gases required for the gasifier include gas for transporting the coal and gas for pressurizing the coal-filled container. Steam, air, etc. are used to pipe the coal from the coal-filled container. When feeding coal to a gasification furnace by airflow conveying through coal, if there is a difference between the pressure inside the conveying pipe and the pressure inside the coal filling container, the coal will not be smoothly fed from the coal filling container to the conveying pipe. Usually, the inside of the coal-filled container is constantly pressurized to the same level as the pressure inside the conveying pipe using pressurized gas. Various types of coal gasifiers are being developed, and the specification of JP-A No. 56-122891 describes a method in which oxygen is used as a reactant gas, water vapor is used as a gas other agent/carrier gas,
Additionally, devices have been described that partially use nitrogen as carrier gas. Conventionally, in such a case, it is customary to simultaneously produce both oxygen and nitrogen by a cryogenic method, but as a method for producing only nitrogen, a pressure fluctuation adsorption method is disclosed in Japanese Patent Application Laid-open No. 52-152895. Law (PRESSURE 5
IIIING ABSORBTION (hereinafter referred to as PSA method) is described. In this PSA method, a mixed gas containing oxygen and nitrogen is fed from one end (termed A end) to an adsorption tower filled with an adsorbent that selectively adsorbs nitrogen over oxygen until a predetermined pressure is reached. After the adsorption is completed, high-concentration nitrogen gas is fed into the adsorption tower from the other end (termed B end), and this causes the nitrogen gas remaining in the adsorption tower to be absorbed. The oxygen-rich air that is in the air is discharged from the A end, and when the nitrogen concentration of the discharged gas becomes equal to the nitrogen concentration of the high concentration nitrogen sent from the B end, the exhaust from the A end is stopped, and then the B
The gas inside the adsorption tower is extracted from the end. The gas extracted is highly concentrated nitrogen that has been adsorbed on the adsorbent, and by repeating this process, the adsorbed nitrogen can be separated and highly concentrated nitrogen gas can be recovered. The PSA method produces only highly concentrated nitrogen, but if the PSA method is used instead of the deep cooling method conventionally used for oxygen production, oxygen-enriched air that can be used as a gasifying agent can be obtained at a low cost. Since a higher gasification efficiency can be obtained compared to air gasification, power generation costs can be further reduced compared to a system that gasifies coal using only air. [Problems to be Solved by the Invention] Conventionally, steam, air, etc. have been used as the gas for transporting coal. However, when steam is used as the gas for transporting coal, the details of Japanese Patent Application Laid-Open No. 56-122891 As stated in the document, there is a risk of difficulties in transporting coal due to water vapor condensation at the start of transport. In addition, when air is used as a gas for conveyance or pressurizing coal-filled containers, it is necessary to always take precautions against coal dust explosions, as described in the specification of Japanese Patent Publication No. 58-23295, and to prevent spontaneous combustion. From this point of view, it is necessary that the oxygen concentration is at most 5% or less. The conventional cryogenic method used to produce oxygen produces high-purity nitrogen at the same time as oxygen, which can be used as a gas for transporting coal. However, in the PSA method using an adsorbent that selectively adsorbs nitrogen over oxygen, as shown in Table 2, when oxygen-enriched air is generated, the nitrogen-enriched air produced at the same time has less oxygen than air. Although the concentration is low, the oxygen concentration is still too high for coal transportation, and it cannot be used as a transportation gas.Therefore, the nitrogen for transportation gas must be brought in from another plant, or nitrogen production is used for purposes other than gas and other agent production. The power generation plant shown in Table 2 uses a gasifier that uses oxygen-enriched air produced by the PSA method as a gasification agent, which has an impact on the overall cost of the power plant. There was a problem with the cost. The subject of the present invention is to use oxygen-enriched air simultaneously generated by the PSA method as a gasifying agent, and use nitrogen-14 enriched air as a coal conveying S'
The object of the present invention is to provide a method and apparatus for coal gasification that is used for a pressurizing body and a pressurizing body for a coal-filled container. [Means for solving the problem] The above problem is caused by the fact that the exhaust gas from the desorption process is removed from the adsorption/desorption group provided in the adsorption/desorption group of a pressure fluctuation adsorption device that uses an adsorbent that selectively adsorbs nitrogen over oxygen. A device is installed in the pipe from which the gas is taken out to accommodate the gas discharged in the latter half of the desorption process, and the oxygen-enriched air produced by the pressure fluctuation adsorption device is used as a gasification agent to collect the gas discharged in the latter half of the desorption process. This is achieved by using concentrated nitrogen gas for transporting the coal through the device containing the exhaust gas and for pressurizing the coal-filled vessel.
酸素よりも窒素を選択的に吸着する吸着剤を用いた圧力
変動吸着装置の吸脱着基の脱着工程の排出ガスの排出管
に、脱着工程の後期に排出されるガスの収容装置を設け
ることにより、脱着工程で排出される窒素濃度が経時変
化する排出ガスの内、脱着工程の後期に排出される窒素
濃度の高いガスだけをこの収容装置に回収することがで
きる。
従って回収する排出ガスの最低限界窒素濃度を、石炭搬
送および石炭充填容器の加圧に用いるガスに要求される
濃度とすることにより1回収された排出ガスを1石炭ガ
ス化炉に用いる石炭搬送用および石炭充填容器の加圧用
に、自然発火や粉塵爆発の懸念なく使用することが可能
となる。
〔実施例〕
石炭を搬送する搬送気体の量は、搬送した石炭をガス化
するためのガス化剤の量の4倍は必要なく、もつと小量
でよい、そこで従来のPSA装置のように窒素を含む気
体を、低窒素濃度が大量に回収するのでなく、小量では
あるが高窒素濃度でそのまま石炭搬送用および石炭充填
容器加圧用として使用可能な気体と、酸素富化空気とを
同時に取り出すことのできるPSA!l霞を開発した。
PSA法は、吸脱着基に充填した吸着剤に高圧で特定の
ガス成分を吸着させ、低圧でさきに吸着されたガス成分
をとり出す(脱着する)方法である。従って高圧状層(
吸着工程)で取り出されるガスは特定の成分の濃度がひ
くく、低圧状態(脱着工程)で取り出されるガスは同じ
特定の成分の濃度が高い。
一般的にPSA法で空気中の酸素、窒素を分離させるに
は、ゼオライト系の吸着剤を用いて窒素を吸着させ、酸
素濃度の高いガスを生成させている。
発明者等は、PSA装置の脱着工程の排出ガス中の窒素
濃度が一定でなく、脱着工程中に経時変化することに着
目した。第5図は窒素を酸素よりも選択的に吸着する吸
着剤を充填した吸脱着基に空気を送入して、窒素を吸着
して酸素富化空気を取り出した後、脱着工程で排出する
ガス中の窒素濃度の経時変化を示している。
吸脱着基からの排出ガスは、脱着工程開始当初はほぼ空
気に等しい窒素濃度を示すが、脱着工程が進むにつれて
、吸着工程で吸着剤に吸着された窒素が脱着され塔内に
充満するので、排出ガス中の窒素濃度が上昇する。
この変化を利用して、脱着工程初期の塔内の空隙に充満
した空気を排出させる工程と、脱着工程後期の本来の脱
着工程とを分離し、後者で排出される高濃度窒素ガスを
石炭搬送および石炭充填容器加圧に用いるプロセスを発
明した。
以下に本発明の詳細な説明する。第1図は本発明を適用
した石炭ガス化装置の系統図である。
大気を吸入して圧縮吐出する空気圧縮機31の吐出側配
管は二つに分岐して、一方は弁11を経て吸脱着基21
の頂部へ、他方は弁13を経て吸脱着基22の頂部へそ
れぞれ接続されている。吸脱着基には、酸素よりも窒素
を選択的に吸着する吸着剤が充填されており、吸脱着基
の底部には、抜き出し管29.30が設けられ、それぞ
れ弁15゜16を経たのち一緒になって、ガス他剤圧縮
機33の入口側に接続されている。ガス他剤圧縮機33
の出口側配管は、ガス化炉26に設けられた石炭バーナ
25に接続されている。吸脱着炉21゜22の頂部には
更に脱着ガス排出管42.43がそれぞれ設けられ、そ
れぞれ弁12.14を経たのち一緒になり、更に弁17
を経て図示されない排出ガス取出し装置へ接続されてい
る。排出管42.43が一緒になったあと弁17に入る
前に分岐管44が設けられ、弁18を経て搬送ガス圧縮
機32の入口側に接続されている。搬送ガス圧縮機32
の吐出側は、搬送ガス貯蔵タンク23に接続され、この
貯蔵タンク23は、弁19を経て石炭供給管28へと、
弁41を経て石炭充填容器24へ、それぞれ接続されて
いる6石炭充填容器24には底部にフィーダ40が設け
られ、フィーダ40には弁10を経て石炭ガス化炉26
に設けられた石炭バーナに至る石炭供給管28が接続さ
れている。
第1図に示す装置によりガス化炉26に石炭およびガス
化剤を供給する手順は次の通りである。
吸脱着基21.22は吸着と脱着を交互に行い、吸脱着
基21が吸着を行う工程では、吸脱着基22は脱着工程
にあり、弁は次の状態に操作されている。
吸脱着基21・・・吸着工程
吸脱着基22・・・脱着工程
弁11,14,15・・・開
弁12,13.16・・・閉
空気は空気圧縮機31で加圧され、弁11を経て吸脱着
基21の頂部へ送られる。吸脱着基21では窒素が酸素
よりも選択的に吸着され、空気と比較して酸素濃度が高
い酸素富化空気が底部から排出される。この酸素富化空
気は弁15を経て抜き出し管29を通り、ガス他剤圧縮
機33に吸入され、必要な圧力に高められて石炭バーナ
25へ噴出される。吸脱着基21が脱着工程にある時は
、吸脱着基22が以上の動作と同様の動作を行う。
吸脱着基21が吸着工程にあるとき、吸脱着基22では
脱着工程が行われる。脱着工程における排出ガスの窒素
濃度の経時変化を第5図に示す。
吸脱着基22の頂部から塔内ガスは、排出管43を通り
弁14を経て排出される。この場合、空気の供給側であ
る吸脱着基の頂部から排出されるので、窒素吸着が充分
進行しておらず、脱着初期にはほぼ空気と同じ組成のガ
スが排出される。すなわち第5図に示す領域Aでは弁1
7を開き、弁18を閉じて窒素濃度95%以下の窒素ガ
スを図示しない排出ガス取り出し装置へとり出す、更に
塔内ガスの排出が進むと、塔内の圧力が低下し、吸着剤
に吸着されていた窒素の脱着が行われ、その結果吸脱着
基22の頂部から排出されるガスの窒素濃度が増大する
。すなわち第5図の領域Bでは、弁17を閉じ、弁18
を開いて搬送ガス圧縮機32を駆動し、窒素濃度が95
%以上である排出ガスを吸入圧縮する。この圧縮ガスは
連続的には生成されないので、搬送ガス貯蔵タンク23
に一旦貯蔵され、一方で弁41で供給量を調整されなが
ら、石炭充填容器24へ送られて同容器を加圧し、他方
で弁19で供給量を調整されながら石炭供給管28へ送
られて1石炭充填容器がら23からフィーダ40によっ
て石炭供給管28に供給される石炭を石炭バーナ25へ
気流搬送する。
石炭ガス化炉26では1石炭バーナ25がら供給される
石炭と石炭ガス化剤によりガス化反応が行われ、可燃性
ガスが生成される。
吸脱着基の脱着工程は、吸脱着塔内の圧力が。
あらかじめ定められた圧力になると停止され、弁の開閉
操作が行われて、これまで吸着工程であった吸脱着基が
脱着工程を、脱着工程であった吸脱着基が吸着工程を、
それぞれ行う、この手順を繰返してPSA法で製造した
高濃度窒素ガスを石炭搬送用および石炭充填容器の加圧
に用いることができる。
又本実施例では、窒素が高濃度である排出ガスを高圧化
するのに使用する圧縮機と、脱着工程のために使用する
真空ポンプとを、搬送ガス圧縮機32で兼用できるので
、装置を簡略化できると共に、システム全体のコストを
低減できる。
石炭搬送用気体の使用量は5石炭の安定搬送の条件から
、窒素ガスを用いる場合、
窒素使用量(kg) /石炭供給量(kg)=0.1に
することが最も好ましい。
第2図に第1図に示す実施例を石炭ガス化複合発電シス
テムに適用した例を示す。
第2図においては、第1図に示した機器に加えて、石炭
ガス化炉26に接続されたガス精製塔27、ガス精製塔
27に接続された燃焼4i)51゜燃焼器5】に接続さ
れたガスタービン52.ガスタービン52に接続された
熱交換a53.熱交換器53に接続され、ガスタービン
52と連動するスチームタービン54.スチームタービ
ン54とガスタービン52に駆動される空気圧縮機55
および発電機56.空気圧縮機55の吐出口から弁62
を経て燃焼器51へ接続された配管45と同じく吐出口
から弁61を経て弁11,13へ接続された配管46.
が設けられている。第1図の実施例に記載されている空
気圧縮機31は設けられず、スチームタービン54およ
びガスタービン52に駆動される空気圧縮機55かかわ
りに設けられ、同じ役割を果たしている。この装置は、
次のようにうごく0石炭ガス化炉26で生成された可燃
性ガスは、ガス精製塔27に送られ、硫黄分と灰分が除
かれて精製ガスとなる。精製ガスは次いで燃焼器51へ
送られ、空気圧縮機55より弁62で流量を調整して送
られる空気により燃焼される。この燃焼により、ガスタ
ービン52が駆動され、燃焼排ガスは熱交換器53へ送
られて熱交換を行い、スチームを作る。熱交換$53で
作られたスチームはスチームタービン54へ送られ1こ
のスチームタービンを駆動する。ガスタービン52、ス
チームタービン54.空気圧縮機55および発電機56
は連動しており、ガスタービン52およびスチームター
ビン54で得られたエネルギの一部は空気圧縮機55を
駆動する動力になり、その他は発電機56へ伝えられて
電気エネルギへ変換される。
空気圧縮機55により加圧された空気は、一部が弁62
を経て燃焼器51へ送られ、のこりは弁61を経て配管
46を通り、更に、弁1】又は弁13を経て吸脱着基2
1又は吸脱着基22へ送られ、酸素富化空気、高濃度窒
素に分離されてガス化に用いられる。
第3図は、第3の実施例を示す図である0本実施例は第
1図に示す実施例と基本構成は同一であり、相違点は弁
17に入口側を接続された真空ポンプ34が設けられ、
吸脱着基21.,22の脱着工程を、真空状態で行うこ
とができることである。
このため吸着剤を優れた特性で使用することができ、分
離効率を向上できる。
第4の実施例を示す第4図は、脱着工程の圧力を搬送ガ
スの使用圧力と同じかそれ以上の圧力に保持して行う場
合を示す、第11図に示す実施例からガス他剤圧縮機3
3.搬送ガス圧縮機32を除き、ガス他剤圧力調整弁7
0を設けている0本実施例の場合、搬送ガス圧縮機32
.ガス他剤圧縮機:33を設置しないので装置が簡単に
なる他、吸脱着基の操作圧力を高圧にできるので、吸脱
着基の容積当りの吸着力が増加し、一定のガス生成能力
に対しては、吸脱着基の大きさを小さくすることができ
る。
〔発明の効果〕
本発明により、PSA装置の脱着工程の排出管に、脱着
工程の後期に排出されるガスを収容する装置を設けたの
で、高濃度の窒素ガスを回収して石炭搬送や1石炭充填
容器の加圧に用いることが可能となり、ガス化剤、搬送
ガスおよび石炭充填容器加圧ガスを空気から同時に製造
して石炭ガス化に用いることができるので、ガス化に必
要な設備を非常に小型化でき、石炭ガス化複合発電によ
る発電コストを低減できる効果がある。By providing a storage device for the gas discharged in the latter stage of the desorption process in the exhaust pipe of the exhaust gas in the desorption process of the adsorption/desorption group of a pressure fluctuation adsorption device using an adsorbent that selectively adsorbs nitrogen over oxygen. Of the exhaust gases whose nitrogen concentration changes over time, which are discharged in the desorption process, only the gas with a high nitrogen concentration discharged in the latter half of the desorption process can be collected in this storage device. Therefore, by setting the minimum nitrogen concentration of the recovered exhaust gas to the concentration required for the gas used for conveying coal and pressurizing the coal filling container, the recovered exhaust gas can be used for coal conveyance in a coal gasifier. It can also be used to pressurize coal-filled containers without worrying about spontaneous combustion or dust explosions. [Example] The amount of carrier gas for transporting coal does not need to be four times the amount of gasifying agent for gasifying the transported coal, and only a small amount is required. Instead of recovering a large amount of nitrogen-containing gas with a low nitrogen concentration, we simultaneously collect a small amount of gas with a high nitrogen concentration that can be used as it is for conveying coal and pressurizing coal filling containers, and oxygen-enriched air. A removable PSA! Developed l Kasumi. The PSA method is a method in which a specific gas component is adsorbed at high pressure by an adsorbent filled with an adsorption/desorption group, and the previously adsorbed gas component is taken out (desorbed) at low pressure. Therefore, the high-pressure layer (
The gas extracted during the adsorption step (adsorption step) has a low concentration of a specific component, while the gas extracted under low pressure (the desorption step) has a high concentration of the same specific component. Generally, in order to separate oxygen and nitrogen from the air using the PSA method, a zeolite-based adsorbent is used to adsorb nitrogen to generate a gas with a high oxygen concentration. The inventors noticed that the nitrogen concentration in the exhaust gas from the desorption process of a PSA device is not constant, but changes over time during the desorption process. Figure 5 shows the gas that is discharged in the desorption process after air is introduced into an adsorption/desorption group filled with an adsorbent that adsorbs nitrogen more selectively than oxygen, adsorbs nitrogen, and extracts oxygen-enriched air. It shows the change in nitrogen concentration in the water over time. The exhaust gas from the adsorption/desorption group exhibits a nitrogen concentration almost equal to that of air at the beginning of the desorption process, but as the desorption process progresses, the nitrogen adsorbed by the adsorbent in the adsorption process is desorbed and fills the column. Nitrogen concentration in exhaust gas increases. Utilizing this change, we can separate the process of discharging the air filling the voids in the tower at the beginning of the desorption process from the original desorption process at the latter stage of the desorption process, and transport the high-concentration nitrogen gas released in the latter stage to the coal. and invented a process for pressurizing coal-filled containers. The present invention will be explained in detail below. FIG. 1 is a system diagram of a coal gasification apparatus to which the present invention is applied. The discharge side piping of the air compressor 31 that takes in atmospheric air and compresses and discharges it is branched into two parts, one of which is connected to the adsorption/desorption group 21 via the valve 11.
and the other to the top of the adsorption/desorption group 22 via the valve 13, respectively. The adsorption/desorption group is filled with an adsorbent that selectively adsorbs nitrogen over oxygen, and extraction pipes 29 and 30 are provided at the bottom of the adsorption/desorption group, and the two are connected together after passing through valves 15 and 16, respectively. and is connected to the inlet side of the gas and other agent compressor 33. Gas and other agent compressor 33
The outlet side piping of is connected to a coal burner 25 provided in a gasifier 26. Desorption gas discharge pipes 42 and 43 are further provided at the top of the adsorption and desorption furnaces 21 and 22, respectively, which pass through valves 12 and 14 and then join together.
It is connected to an exhaust gas extraction device (not shown) via. After the discharge pipes 42 , 43 come together and before entering the valve 17 , a branch pipe 44 is provided, which is connected via the valve 18 to the inlet side of the carrier gas compressor 32 . Carrier gas compressor 32
The discharge side of is connected to a carrier gas storage tank 23, which is connected to a coal supply pipe 28 via a valve 19.
A feeder 40 is provided at the bottom of each of the six coal filling containers 24 connected to the coal filling container 24 via a valve 41, and a coal gasifier 26 is connected to the feeder 40 via a valve 10.
A coal supply pipe 28 is connected to a coal burner provided in the coal burner. The procedure for supplying coal and gasifying agent to the gasifier 26 using the apparatus shown in FIG. 1 is as follows. The adsorption/desorption groups 21 and 22 perform adsorption and desorption alternately, and in the process in which the adsorption/desorption group 21 performs adsorption, the adsorption/desorption group 22 is in the desorption process, and the valve is operated in the next state. Adsorption/desorption group 21...Adsorption process Adsorption/desorption group 22...Desorption process Valves 11, 14, 15...Open valves 12, 13, 16...Closed air is pressurized by the air compressor 31, and the valve 11 to the top of the adsorption/desorption group 21. In the adsorption/desorption group 21, nitrogen is adsorbed more selectively than oxygen, and oxygen-enriched air having a higher oxygen concentration than air is discharged from the bottom. This oxygen-enriched air passes through the valve 15 and the extraction pipe 29, is sucked into the gas and other agent compressor 33, is increased to the required pressure, and is ejected to the coal burner 25. When the adsorption/desorption group 21 is in the desorption process, the adsorption/desorption group 22 performs the same operation as described above. When the adsorption/desorption group 21 is in the adsorption process, the adsorption/desorption group 22 is in the desorption process. Figure 5 shows the change over time in the nitrogen concentration of the exhaust gas during the desorption process. The tower gas is discharged from the top of the adsorption/desorption group 22 through the discharge pipe 43 and the valve 14 . In this case, since the air is discharged from the top of the adsorption/desorption group, which is the air supply side, nitrogen adsorption has not progressed sufficiently, and at the initial stage of desorption, a gas having approximately the same composition as air is discharged. That is, in region A shown in FIG.
7 and close the valve 18 to take out nitrogen gas with a nitrogen concentration of 95% or less to an exhaust gas extraction device (not shown). As the gas in the tower is further discharged, the pressure inside the tower decreases and the gas is adsorbed by the adsorbent. As a result, the nitrogen concentration of the gas discharged from the top of the adsorption/desorption group 22 increases. That is, in region B of FIG. 5, valve 17 is closed and valve 18 is closed.
Open the carrier gas compressor 32 to drive the nitrogen concentration to 95.
% or more is inhaled and compressed. Since this compressed gas is not produced continuously, the carrier gas storage tank 23
On the one hand, the coal is sent to the coal filling container 24 to pressurize the container while the supply amount is adjusted by the valve 41, and on the other hand, the coal is sent to the coal supply pipe 28 while the supply amount is adjusted by the valve 19. 1 Coal supplied from the coal filling container 23 to the coal supply pipe 28 by the feeder 40 is conveyed by air flow to the coal burner 25. In the coal gasification furnace 26, a gasification reaction is performed using the coal supplied from one coal burner 25 and a coal gasification agent, and combustible gas is generated. During the desorption process of adsorption/desorption groups, the pressure inside the adsorption/desorption column is increased. When the predetermined pressure is reached, the process is stopped, and the valve is opened and closed.The adsorption/desorption group that used to be the adsorption process starts the desorption process, and the adsorption/desorption group that used to be the desorption process starts the adsorption process.
By repeating these steps, the high-concentration nitrogen gas produced by the PSA method can be used for conveying coal and for pressurizing coal-filled containers. Furthermore, in this embodiment, the carrier gas compressor 32 can be used both as a compressor used to pressurize exhaust gas with a high concentration of nitrogen and as a vacuum pump used for the desorption process. It can be simplified and the cost of the entire system can be reduced. The amount of coal conveying gas to be used is 5. Considering the conditions for stable conveyance of coal, when nitrogen gas is used, it is most preferable to set the following: amount of nitrogen used (kg) / amount of coal supplied (kg) = 0.1. FIG. 2 shows an example in which the embodiment shown in FIG. 1 is applied to a coal gasification combined cycle power generation system. In addition to the equipment shown in FIG. 1, in FIG. gas turbine 52. Heat exchanger a53 . connected to gas turbine 52 . A steam turbine 54 . connected to the heat exchanger 53 and interlocked with the gas turbine 52 . Air compressor 55 driven by steam turbine 54 and gas turbine 52
and generator 56. From the discharge port of the air compressor 55 to the valve 62
A pipe 45 is connected to the combustor 51 through the pipe 45, and a pipe 46 is connected from the discharge port to the valves 11 and 13 through the valve 61.
is provided. The air compressor 31 described in the embodiment of FIG. 1 is not provided, but is provided in conjunction with an air compressor 55 driven by a steam turbine 54 and a gas turbine 52, and plays the same role. This device is
The combustible gas generated in the moving coal gasifier 26 as described below is sent to the gas purification tower 27, where sulfur and ash are removed to produce purified gas. The purified gas is then sent to the combustor 51, where it is combusted by air sent from the air compressor 55 with the flow rate adjusted by a valve 62. This combustion drives the gas turbine 52, and the combustion exhaust gas is sent to the heat exchanger 53 where it exchanges heat and produces steam. The steam produced by the heat exchange $53 is sent to a steam turbine 54 to drive the steam turbine. Gas turbine 52, steam turbine 54. Air compressor 55 and generator 56
are interlocked, and part of the energy obtained by the gas turbine 52 and the steam turbine 54 becomes the power for driving the air compressor 55, and the rest is transmitted to the generator 56 and converted into electrical energy. A portion of the air pressurized by the air compressor 55 passes through the valve 62.
The residue is sent to the combustor 51 via the valve 61, the pipe 46, and the adsorption/desorption group 2 via the valve 1] or the valve 13.
1 or adsorption/desorption group 22, and is separated into oxygen-enriched air and high-concentration nitrogen, which are used for gasification. FIG. 3 is a diagram showing a third embodiment. This embodiment has the same basic configuration as the embodiment shown in FIG. is established,
Adsorption/desorption group 21. , 22 can be performed in a vacuum state. Therefore, the adsorbent can be used with excellent properties, and the separation efficiency can be improved. FIG. 4, which shows the fourth embodiment, is a combination of the embodiment shown in FIG. Machine 3
3. Except for the carrier gas compressor 32, the gas and other agent pressure regulating valves 7
In this embodiment, the carrier gas compressor 32
.. Gas and other agent compressors: 33 is not installed, which simplifies the equipment, and since the operating pressure of the adsorption/desorption group can be made high, the adsorption power per volume of the adsorption/desorption group increases, and for a given gas generation capacity, In this case, the size of the adsorption/desorption group can be reduced. [Effects of the Invention] According to the present invention, the exhaust pipe of the desorption process of the PSA device is provided with a device for accommodating the gas discharged in the latter stage of the desorption process, so that high concentration nitrogen gas can be recovered and used for coal transportation or coal transportation. It can be used to pressurize coal-filled containers, and the gasifying agent, carrier gas, and coal-filled container pressurizing gas can be simultaneously produced from air and used for coal gasification, reducing the equipment necessary for gasification. It can be made extremely compact and has the effect of reducing power generation costs through coal gasification combined cycle power generation.
第1図は本発明の第1の実施例を示す系統図、第2図は
第1の実施例を発電プラントに組み合わせた例を示す系
統図、第3図は第3の実施例を示す系統図、第4図は第
4の実施例を示す系統図で、第5図は脱着工程における
排出ガスの窒素濃度の経時変化を示す図である。
21.22・・・吸脱着基、24・・・石炭充填容器、
26・・・石炭ガス化炉、31・・・圧縮機(空気圧縮
機)、23.32・・・脱着工程の後期に排出されるガ
スを収容する装置(搬送ガス貯蔵タンクおよび搬送ガス
圧縮機)。Fig. 1 is a system diagram showing a first embodiment of the present invention, Fig. 2 is a system diagram showing an example in which the first embodiment is combined with a power generation plant, and Fig. 3 is a system diagram showing a third embodiment. 4 are system diagrams showing the fourth embodiment, and FIG. 5 is a diagram showing changes over time in the nitrogen concentration of exhaust gas in the desorption process. 21.22...Adsorption/desorption group, 24...Coal filling container,
26... Coal gasification furnace, 31... Compressor (air compressor), 23.32... Device for storing gas discharged in the latter half of the desorption process (carrier gas storage tank and carrier gas compressor) ).
Claims (1)
炭を前記炉に供給する石炭充填容器と、前記炉に接続さ
れ、かつ酸素より窒素を選択的に吸着する吸着剤を充填
されて圧力変動吸着法により酸素富化空気を生成し該空
気を前記炉に供給する吸脱着塔と、該吸脱着塔に接続さ
れ酸素と窒素を含む混合ガスを前記吸脱着塔に送入する
圧縮機とを有する装置を用いる石炭ガス化方法において
、前記吸脱着塔の脱着工程の後期に該吸脱着塔から排出
される高濃度の窒素ガスを、石炭の気流搬送および石炭
充填容器の加圧に用いることを特徴とする、石炭ガス化
方法。 2、石炭ガス化炉と、該炉に接続され気流搬送により石
炭を前記炉に供給する石炭充填容器と、前記炉に接続さ
れ、圧力変動吸着法により生成した酸素富化空気を前記
炉に供給する、酸素より窒素を選択的に吸着する吸着剤
を充填した吸脱着塔と、該吸脱着塔に接続され、酸素と
窒素を含む混合ガスを前記吸脱着塔に送入する圧縮機と
を有する石炭ガス化装置において、前記吸脱着塔の脱着
工程における排出ガスを排出する管に、脱着工程の後期
に排出されるガスを収容する装置を設けたことを特徴と
する、石炭ガス化装置。 3、脱着工程の後期に排出されるガスを収容する装置が
、吸脱着塔の脱着工程における排出ガスを排出する管に
設けた分岐管と、該分岐管に設けた止弁と、該止弁に接
続されたタンクとを有することを特徴とする特許請求の
範囲第1項に記載の石炭ガス化装置。 4、タンクと止弁の間に圧縮機を設けたことを特徴とす
る特許請求の範囲第3項に記載の、石炭ガス化装置。 5、吸脱着塔と、石炭ガス化炉を接続する配管に圧縮機
を設けたことを特徴する特許請求の範囲第4項に記載の
、石炭ガス化装置。 6、吸脱着塔の脱着工程における排出ガスを排出する管
に設けた分岐管の、タンクが接続されていない側に、吸
入側を吸脱着塔側にして接続された圧縮機を有すること
を特徴とする特許請求の範囲第2〜5項のいずれかの項
に記載の、石炭ガス化装置。 7、吸脱着塔と石炭ガス化炉を接続する配管に、圧力調
整弁を設けたことを特徴とする特許請求の範囲第2〜3
項のいずれかの項に記載の、石炭ガス化装置。[Claims] 1. A coal gasification furnace, a coal filling container connected to the furnace and supplying coal to the furnace by air flow conveyance, and a coal filling container connected to the furnace and selectively adsorbing nitrogen over oxygen. an adsorption/desorption tower filled with an adsorbent to generate oxygen-enriched air by a pressure fluctuation adsorption method and supply the air to the furnace; and an adsorption/desorption tower connected to the adsorption/desorption tower to supply a mixed gas containing oxygen and nitrogen. In a coal gasification method using a device having a compressor that feeds the coal into the gas, high-concentration nitrogen gas discharged from the adsorption/desorption tower in the latter stage of the desorption process of the adsorption/desorption tower is used for airflow conveyance of coal and coal filling. A coal gasification method characterized by use for pressurizing a container. 2. A coal gasification furnace, a coal filling container connected to the furnace and supplying coal to the furnace by pneumatic conveyance, and a coal filling container connected to the furnace and supplying oxygen-enriched air generated by a pressure fluctuation adsorption method to the furnace. an adsorption/desorption column filled with an adsorbent that selectively adsorbs nitrogen over oxygen, and a compressor connected to the adsorption/desorption column and feeding a mixed gas containing oxygen and nitrogen to the adsorption/desorption column. A coal gasification apparatus, characterized in that a pipe for discharging exhaust gas in the desorption process of the adsorption/desorption tower is provided with a device for accommodating gas discharged in the latter half of the desorption process. 3. The device for accommodating the gas discharged in the latter half of the desorption process includes a branch pipe provided in the pipe for discharging the exhaust gas in the desorption process of the adsorption/desorption tower, a stop valve provided in the branch pipe, and the stop valve. The coal gasification apparatus according to claim 1, further comprising a tank connected to a coal gasifier. 4. The coal gasification apparatus according to claim 3, characterized in that a compressor is provided between the tank and the stop valve. 5. The coal gasification apparatus according to claim 4, characterized in that a compressor is provided in a pipe connecting the adsorption/desorption tower and the coal gasification furnace. 6. It is characterized by having a compressor connected with the suction side facing the adsorption/desorption tower to the side to which the tank is not connected of the branch pipe provided in the pipe for discharging exhaust gas in the desorption process of the adsorption/desorption tower. A coal gasification apparatus according to any one of claims 2 to 5. 7. Claims 2 to 3, characterized in that a pressure regulating valve is provided in the piping connecting the adsorption/desorption tower and the coal gasification furnace.
Coal gasification equipment as described in any of the paragraphs.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31313386A JPS63168487A (en) | 1986-12-29 | 1986-12-29 | Method and equipment for coal gasification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31313386A JPS63168487A (en) | 1986-12-29 | 1986-12-29 | Method and equipment for coal gasification |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63168487A true JPS63168487A (en) | 1988-07-12 |
Family
ID=18037501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31313386A Pending JPS63168487A (en) | 1986-12-29 | 1986-12-29 | Method and equipment for coal gasification |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63168487A (en) |
-
1986
- 1986-12-29 JP JP31313386A patent/JPS63168487A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI261616B (en) | Hot solids gasifier with CO2 removal and hydrogen production | |
US8557173B2 (en) | Blast furnace iron production with integrated power generation | |
JP6531912B2 (en) | Process for carbon dioxide gas separation from combustion gases | |
US10439242B2 (en) | Hybrid high-temperature swing adsorption and fuel cell | |
US8361198B2 (en) | Process and device for the separation of foreign gases from a reducing useful gas by steam-driven pressure swing adsorption | |
CA2769460C (en) | Reformer gas-based reducing method with reduced nox emission | |
JP4337354B2 (en) | How to use by-product gas at steelworks | |
US10071337B2 (en) | Integration of staged complementary PSA system with a power plant for CO2 capture/utilization and N2 production | |
EP0262894B1 (en) | For the co-production of carbon dioxide and hydrogen | |
JP2002522739A (en) | Composite plant comprising a device for producing a fluid from air and a unit in which at least one chemical reaction occurs, and a method of operating the same | |
AU2010291532A1 (en) | Method and device for treating a carbon dioxide-containing gas flow, wherein the energy of the vent gas (work and cold due to expansion) is used | |
JP2013006990A (en) | Coal gasification-combined electric power plant and coal gasification plant | |
US20130047627A1 (en) | Method for operating an igcc power plant process having integrated co2 separation | |
JPS62290794A (en) | Method and apparatus for coal gasification | |
US11802496B2 (en) | Direct-fired supercritical carbon dioxide power cycle that generates power and hydrogen | |
US10350537B2 (en) | High purity nitrogen/hydrogen production from an exhaust stream | |
JPS63168487A (en) | Method and equipment for coal gasification | |
JP5654338B2 (en) | Nitrogen gas production apparatus and gasification combined power generation system using the same | |
JPH0774343B2 (en) | Method and apparatus for coal gasification by PSA | |
JPH04126512A (en) | System for separating and recovering gaseous mixture and its operation | |
JPH07330303A (en) | Device for producing hydrogen gas |