[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63167098A - Supersonic wave pump - Google Patents

Supersonic wave pump

Info

Publication number
JPS63167098A
JPS63167098A JP30911386A JP30911386A JPS63167098A JP S63167098 A JPS63167098 A JP S63167098A JP 30911386 A JP30911386 A JP 30911386A JP 30911386 A JP30911386 A JP 30911386A JP S63167098 A JPS63167098 A JP S63167098A
Authority
JP
Japan
Prior art keywords
liquid
hole
suction
shaft
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30911386A
Other languages
Japanese (ja)
Inventor
Satonori Shigihara
学徳 鴫原
Shunpei Fukuda
福田 俊平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EROIKA CORP KK
TDK Corp
Original Assignee
EROIKA CORP KK
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EROIKA CORP KK, TDK Corp filed Critical EROIKA CORP KK
Priority to JP30911386A priority Critical patent/JPS63167098A/en
Publication of JPS63167098A publication Critical patent/JPS63167098A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

PURPOSE:To make a pump highly reliable by having a monolithic structure in which a plurality of piezo-electric devices is tightened by means of a tightening means to a shaft-body having at the lower end an opening liquid-suction-hole formed axially. CONSTITUTION:When supersonic wave vibration generated by piezo-electric devices 10A, 10B is expanded at the lower portion of a shaft-body 1, and the lower end of the shaft-body 1 is made to conduct the vertical vibration of a supersonic wave, fluid convection in the sucking-up (spouting-up) direction toward a liquid-suction-hole 6 opening at the lower end of the shaft-body is caused, which is due to the expanded vertical vibration of the lower end of the shaft-body immersed in liquid, such as water or the like. Also, liquid, in comparison with air, has properties of being more apt to transmit a supersonic wave and of being more viscous, so the liquid inside the liquid-suction-hole 6 advances in the direction where supersonic vibration rises. Accordingly, even inside the liquid-suction-hole 6, force suitable for making liquid rise up is operated, which is due to the upward advance of supersonic vibration or the like, and liquid is discharged from the upper part opening of the liquid-suction-hole 6. This structure has no mechanical rotational-portion or the like, so reliability is high.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、圧電素子の超音波振動を直接的に利用し、機
械的な回転部分を持たない超音波ポンプに係り、とくに
比較的少量の液体の吸い上げに適した超音波ポンプに関
する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an ultrasonic pump that directly utilizes the ultrasonic vibrations of a piezoelectric element and has no mechanical rotating parts. Regarding an ultrasonic pump suitable for sucking up liquid.

(発明の概要) 本発明は、圧電素子の超音波振動を利用した超音波ポン
プであって、圧電素子を設けた軸体の下端の超音波振動
によって輸体下端に開口する液体吸い上げ用穴上り液体
を吸い上げるものである。
(Summary of the Invention) The present invention is an ultrasonic pump that utilizes ultrasonic vibrations of a piezoelectric element. It sucks up liquid.

(従来の技術) 従来、いわゆるボルト締め振動子には、液体を吸い上げ
るポンプ作用は全(見出だされておらず、ボルト締め振
動子で液体を霧化する場合には、別に設けたポンプその
他の液体供給手段によりボルト締め振動子のホーン先端
に液体を供給する必要があった。
(Prior art) Conventionally, so-called bolted vibrators have not been found to have any pumping action to suck up liquid, and when atomizing liquid with a bolted vibrator, a separate pump or other It was necessary to supply liquid to the tip of the horn of the bolted vibrator using a liquid supply means.

また、超音波モーターでポンプを駆動するものが最近提
案されているが、圧電素子の超音波振動を直接的に利用
し、機械的な回転部分を持たない超音波ポンプは、未だ
提案されていない。
Additionally, although a pump driven by an ultrasonic motor has recently been proposed, an ultrasonic pump that directly utilizes the ultrasonic vibrations of a piezoelectric element and does not have mechanical rotating parts has not yet been proposed. .

(発明が解決しようとする問題点) ところで、従来のポンプはいずれも機械的な回転もしく
は移動部分があり、寿命や信頼性に問題があり、また液
体の送出量に脈動を伴う嫌いがある。
(Problems to be Solved by the Invention) By the way, all conventional pumps have mechanical rotating or moving parts, so they have problems with lifespan and reliability, and they also tend to have pulsations in the amount of liquid delivered.

(問題点を解決するための手段) 本発明は、上記の点に鑑み、圧電素子の超音波振動を直
接的に利用して、機械的な回転部分等の無い簡単な構造
で信頼性の高い超音波ポンプを提供しようとするらので
ある。
(Means for Solving the Problems) In view of the above points, the present invention directly utilizes the ultrasonic vibration of a piezoelectric element to provide a highly reliable structure with a simple structure and no mechanical rotating parts. We are trying to provide an ultrasonic pump.

本発明は、下端に開口する液体吸い上げ用穴を軸方向に
形成した軸体に複数枚の圧電素子を締め付け手段で締め
付け一体化した構造により、上記従来の問題点を解消し
ている。
The present invention solves the above-mentioned conventional problems by using a structure in which a plurality of piezoelectric elements are tightened and integrated with a shaft body having a liquid suction hole opened in the lower end in the axial direction using a tightening means.

(作用) 本発明の超音波ポンプが水等の液体を吸い上げる理由と
しては、種々考えられるが、まず第1に圧電素子で発生
した超音波振動を軸体下部で拡大し、袖体下端に超音波
の縦振動を行わせると、水等の液中に浸された輸体下端
の拡大された縦振動に起因して輸体下端に開口する液体
吸い上げ用穴に対して吸い(吹き)上げる方向の液体の
対流が引き起こされることが挙げられる。第2に、液体
は空気に比べ超音波が伝搬しやす(粘性が大きい性質が
あるため、液体吸い上げ用穴内の液体を超音波振動が上
昇する方向に進行して行き、従って、液体吸い上げ用穴
の内部においても超音波振動の上向きの進行等に起因し
て液体を上昇させる向きの力が作用し、液体吸い上げ用
穴の上部開口より液体が吐出されることになると認めら
れる。
(Function) There are various possible reasons why the ultrasonic pump of the present invention sucks up liquid such as water. When the longitudinal vibration of the sound wave is applied, the vertical vibration of the lower end of the transfusion body immersed in a liquid such as water causes the liquid to be sucked (blown) up into the liquid suction hole opened at the lower end of the transfusion body. One example is that convection of liquid is caused. Second, ultrasonic waves propagate more easily in liquids than in air (because they have a higher viscosity, the liquid in the liquid suction hole travels in the direction in which the ultrasonic vibrations rise; therefore, the liquid in the liquid suction hole It is recognized that a force that raises the liquid acts inside the liquid due to the upward progression of ultrasonic vibration, etc., and the liquid is discharged from the upper opening of the liquid suction hole.

(実施例) 以下、本発明に係る超音波ポンプの実施例を図面に従っ
て説明する。
(Example) Hereinafter, an example of the ultrasonic pump according to the present invention will be described with reference to the drawings.

第1図は本発明の第1実施例を示す、この図において、
ボルト状の軸体1には雄螺子部2,3が形成され、輸体
1の下部には小径に絞った振幅拡大ホーン部4及び下端
の円板状部5が形成されている。また、軸体1の中心軸
上に液体吸い上げ用貫通穴6が形成され、この液体吸い
上げ用貫通穴6の下方の開口は輸体1の下層面(すなわ
ち円板状部5の下端面)の中央に位置し、上方の開口は
軸体1の上端面の中央に位置している。なお、前記液体
吸い上げ用貫通穴6の下部開口はテーパー状に広がって
いる。
FIG. 1 shows a first embodiment of the invention, in which:
A bolt-shaped shaft body 1 is formed with male screw parts 2 and 3, and a lower part of the transponder 1 is formed with an amplitude-enlarging horn part 4 narrowed to a small diameter and a disk-shaped part 5 at the lower end. Further, a liquid suction through hole 6 is formed on the central axis of the shaft body 1, and the lower opening of this liquid suction through hole 6 is connected to the lower surface of the transducer 1 (i.e., the lower end surface of the disc-shaped portion 5). It is located in the center, and the upper opening is located in the center of the upper end surface of the shaft body 1. Note that the lower opening of the liquid suction through hole 6 widens in a tapered shape.

そして、円板状7ランノ8、円板状電極板9A。Then, a disc-shaped 7 runno 8 and a disc-shaped electrode plate 9A.

円板状圧電素子10A1円板状電極板9B、円板状圧電
素子10B、円板状電極板9C1円板状平ワッシャ12
及び皿ばね13の各貫通穴に前記軸体1を挿通し、軸体
1の雄螺子部2,3にナツト11A、IIBをそれぞれ
螺合し、締め付けることによって、圧電素子10A、I
OB等の各部材は袖体1に締め付け一体化さ九る。すな
わち、圧電索子10A、IOBと輸体1との関係はボル
ト締め振動子とほぼ同様な構造となっている。
Disc-shaped piezoelectric element 10A1, disc-shaped electrode plate 9B, disc-shaped piezoelectric element 10B, disc-shaped electrode plate 9C1, disc-shaped flat washer 12
The shaft body 1 is inserted into each through hole of the disk spring 13, and the nuts 11A and IIB are screwed into the male screw portions 2 and 3 of the shaft body 1, respectively, and tightened, thereby making the piezoelectric elements 10A and I
Each member such as the OB is tightened and integrated with the sleeve body 1. That is, the relationship between the piezoelectric cord 10A, IOB, and the transponder 1 has a structure substantially similar to that of a bolted vibrator.

前記軸体1の上端面には液体吸い上げ用貫通穴6に連通
する延長バイブ7が溶接等で固着されている。
An extension vibrator 7 communicating with the liquid suction through hole 6 is fixed to the upper end surface of the shaft body 1 by welding or the like.

以上の第1実施例の構成において、超音波ポンプの支持
は、通常7ランシ8を利用して行うので、水等の液面P
の位置は第1図矢印Qの範囲である。
In the configuration of the first embodiment described above, since the support of the ultrasonic pump is normally performed using seven runci 8, the liquid level P of water etc.
The position is within the range of arrow Q in FIG.

電極板9Bと電極板9A、9Gとの間に高周波電圧を印
加すれば、圧電素子10A、IOBは超音波振動(例え
ば厚み振動)を発生し、その振動は軸体1の下部の振幅
拡大ホーン部4で拡大され、下端の円板状部5に拡大さ
れた超音波の縦振動(第1図の矢印Rのような軸に平行
な方向の振動)を引き起こす、この輸体下端の円板状部
5の縦振動は、矢印Sのように液体吸い上げ用貫通穴6
を吸い(吹き)上げる向きの対流を引き起こし、これと
ともに、水等の液体は空気に比べ超音波が伝搬しやす(
粘性が高い性質がある等の理由のため、液体吸い上げ用
貫通穴6内の液体を超音波振動が上昇する方向に進行し
て行(。
When a high frequency voltage is applied between the electrode plate 9B and the electrode plates 9A and 9G, the piezoelectric elements 10A and IOB generate ultrasonic vibrations (for example, thickness vibrations), and the vibrations are transmitted to the amplitude expansion horn at the bottom of the shaft body 1. The disk at the lower end of this transfusion body causes longitudinal vibrations (vibrations in the direction parallel to the axis as shown by arrow R in FIG. The longitudinal vibration of the shaped part 5 is caused by the liquid suction through hole 6 as shown by the arrow S.
This causes convection in the direction of sucking up (blowing) up the water, and at the same time, ultrasonic waves propagate more easily in liquids such as water than in air (
Due to the high viscosity of the liquid, the liquid in the liquid suction through hole 6 is moved in the direction of increasing ultrasonic vibration (.

一方、圧電索子10A、IOBによる超音波振動は軸体
1の外周側を能率よく伝搬し、袖体1の中心部に位置す
る液体吸い上げ用貫通穴6内面では縦振動及び横振動と
もに微弱であるが、上述の通り液体吸い上げ用貫通穴6
内の液体を円板状部5より放出された超音波振動が上昇
する方向に進行すること等に起因して、毛I管現象に加
えてさらに液体を上昇させる向きの力が作用し、液体吸
い上げ用貫通穴6の上部開口に連通する延長パイプ7よ
り液体が吐出される。
On the other hand, the ultrasonic vibrations caused by the piezoelectric cords 10A and IOB propagate efficiently along the outer periphery of the shaft body 1, and both longitudinal and transverse vibrations are weak on the inner surface of the liquid suction through hole 6 located in the center of the sleeve body 1. However, as mentioned above, there is a through hole 6 for liquid suction.
Due to the fact that the ultrasonic vibrations emitted from the disc-like part 5 move upward, in addition to the capillary phenomenon, a force that moves the liquid upward acts on the liquid. Liquid is discharged from an extension pipe 7 communicating with the upper opening of the suction through hole 6.

なお、第1図中に軸体1上に現れる超音波縦振動の定在
波Wの1例を併記したが、超音波ポンプの支持点となる
7ランノ8が振動の節となり、軸体下端の円板状部5が
振動の振幅最大、αとなるようにする。また、延長パイ
プ7の接続点は振動の節となる位置が好ましい。
In addition, an example of the standing wave W of ultrasonic longitudinal vibration appearing on the shaft body 1 is also shown in FIG. The vibration amplitude of the disc-shaped portion 5 is set to be the maximum, α. Further, the connection point of the extension pipe 7 is preferably located at a position where vibration occurs.

上記第1図において、延長パイプ7の先端の向きは適宜
選択でき、実線のように横向きとしても良いし、仮想M
T、Uのように上向さもしくは下向きとしてもよい。
In the above FIG.
It may be directed upward or downward like T or U.

第2図は本発明の第2実施例を示す、この場合、軸体1
に形成された液体吸い上げ用貫通穴6Aの下部開口をテ
ーパー状に広げるとともに、液体吸い上げ用貫通穴6A
の下部を大径部分15として、軸体下端の円板状部(も
しくは幅広部)5の縦振動に起因する液体吸い上げ用貫
通穴6Aを吹き上げる向きの対流が大径部分15を上昇
し易(するとともに、液体吸い上げ用貫通穴6Aの残り
の上部は毛細管現象による液体上昇が起きやすいように
小径部分16とする。
FIG. 2 shows a second embodiment of the invention, in this case the shaft 1
The lower opening of the liquid suction through hole 6A formed in the liquid suction hole 6A is widened in a tapered shape, and the liquid suction through hole 6A is
The lower part of the shaft body is defined as a large-diameter portion 15, and convection in the direction of blowing up the liquid suction through-hole 6A caused by longitudinal vibration of the disk-shaped portion (or wide portion) 5 at the lower end of the shaft body easily moves up the large-diameter portion 15 ( At the same time, the remaining upper portion of the liquid suction through hole 6A is formed into a small diameter portion 16 so that the liquid easily rises due to capillary action.

また、このように振動振幅の大きな軸体下部に対応した
液体吸い上げ用貫通穴6A部分を大径とすることにより
、軸体下部の空洞が大きくなって軽量となり、高効率の
変換器となる。なお、!@2実施例におけるその他の構
成部分は前述の第1実施例と同じである。
Furthermore, by making the liquid suction through hole 6A portion corresponding to the lower part of the shaft body with a large vibration amplitude larger in diameter, the cavity in the lower part of the shaft body becomes larger and lighter, resulting in a highly efficient converter. In addition,! The other components in the @2 embodiment are the same as those in the first embodiment described above.

上記第1実施例で示した超音波ポンプは、軸体下部の振
幅拡大ホーン部4を含む部分のうち液体に浸る部分が多
いと、液体の粘性による振動負荷が多くなり、圧電素子
10A、IOBを励振する駆動電力が大きくなる。この
ことは、ホーン部4を含む軸体下部のうち液中振動部分
に比べて大気中の振動部分が多いほうが能率が良く、駆
動電力が小さくでよいことになる。
In the ultrasonic pump shown in the first embodiment, if a large portion of the lower part of the shaft body including the amplitude expansion horn portion 4 is immersed in liquid, the vibration load due to the viscosity of the liquid increases, and the piezoelectric elements 10A, IOB The driving power to excite increases. This means that in the lower part of the shaft body including the horn part 4, if there are more parts vibrating in the atmosphere than parts vibrating in the liquid, the efficiency is better and the driving power can be lower.

第3図はこの点を考慮した本発明の第3実施例である。FIG. 3 shows a third embodiment of the present invention that takes this point into consideration.

この第3図において、7ランノ8Aは、円筒状の液面下
カバー20を一体に形成したものである。そして、7ラ
ンシ8A、円板状電極板9A、円板状圧電素子10A、
円板状電極板9B、円板状圧電素子10B1円板状電極
板9C,円板状部ワッシャ12及び皿ばね13の各貫通
穴に軸体1を挿通し、軸体1の雄螺子部2,3にナツト
11A、IIBをそれぞれ螺合し、締め付けることによ
って、圧電素子10A、IOB等の各部材を軸体1に締
め付け一体化している。なお、延長パイプ7が液体吸い
上げ用貫通穴6の上部開口に接続されており、その他の
構造も前述の第1実施例と同様である。
In FIG. 3, the 7-run 8A has a cylindrical under-liquid cover 20 integrally formed therein. 7 runci 8A, a disc-shaped electrode plate 9A, a disc-shaped piezoelectric element 10A,
The shaft body 1 is inserted into each through hole of the disc-shaped electrode plate 9B, the disc-shaped piezoelectric element 10B1, the disc-shaped electrode plate 9C, the disc-shaped part washer 12, and the disc spring 13, and the male screw part 2 of the shaft body 1 is inserted. , 3 are screwed into the nuts 11A, IIB, respectively, and tightened, thereby tightening and integrating each member such as the piezoelectric element 10A, IOB, etc. to the shaft body 1. Note that the extension pipe 7 is connected to the upper opening of the liquid suction through hole 6, and the other structure is the same as that of the first embodiment described above.

この第3実施例の場合、軸体1の下部が7ランジ8Aの
液面下カバー20が覆われ、直接液体に触れないように
なっているので、輸体下端よりも液面レベルがかなり高
い場合でも能率良く作動させることができ、実用液面レ
ベルを高く設定可能な利点がある。
In the case of this third embodiment, the lower part of the shaft body 1 is covered with the lower liquid level cover 20 of the 7-lunge 8A, so that it does not come into direct contact with the liquid, so the liquid level is considerably higher than the lower end of the transfusion body. It has the advantage that it can be operated efficiently even when the liquid level is low, and that the practical liquid level can be set high.

第4図は本発明の第4実施例を示す、この第4図におい
て、軸体IAの中心軸上には、貫通穴の代わりに下端か
ら軸体途中までの長さの液体吸い上げ用穴6Bが形成さ
れている。この液体吸い上げ用穴6Bの下部開口は軸体
IAの下端面に位置し、上部開口は軸体中間の外周面に
位置している。
FIG. 4 shows a fourth embodiment of the present invention. In this FIG. 4, a liquid suction hole 6B having a length from the lower end to the middle of the shaft body instead of a through hole is provided on the central axis of the shaft body IA. is formed. The lower opening of this liquid suction hole 6B is located at the lower end surface of the shaft body IA, and the upper opening is located at the outer circumferential surface at the middle of the shaft body.

一方、下側のナツト11Cには、内周に環状溝25が形
成され、該環状溝25に連通する横穴26がナツト11
Cの側面に開口している。そして、延長パイプ7Aが前
記横穴26に連通するように溶接等でナツト11Cに固
着される。なお、圧電索子10A、IOBを締め付け一
体化する構造等は前述の第1実施例と同様である。
On the other hand, an annular groove 25 is formed in the inner circumference of the lower nut 11C, and a horizontal hole 26 communicating with the annular groove 25 is formed in the lower nut 11C.
It opens on the side of C. Then, the extension pipe 7A is fixed to the nut 11C by welding or the like so as to communicate with the horizontal hole 26. Note that the structure for tightening and integrating the piezoelectric cord 10A and the IOB is the same as that of the first embodiment described above.

この第4実施例において、液体吸い上げ用穴6Bより上
昇した液体は、ナラ)IICの環状溝25、横穴26、
及び延長パイプ7Aの経路で吸い上げられる。
In this fourth embodiment, the liquid rising from the liquid suction hole 6B is transferred to the annular groove 25 of the oak) IIC, the horizontal hole 26,
and is sucked up through the path of the extension pipe 7A.

第5図は液体の吸い上げ機能と液体の霧化機能の両者を
具備した本発明の第5実施例を示す。この第5図におい
て、軸体IBは下部にポンプ機能のための振幅拡大ホー
ン部4及び円板状部5を有するとともに、上部に霧化機
能のための振幅拡大ホーン部30及び円板状部31を備
えている。なお、圧電素子10A、IOBを締め付け一
体化する構造は前述の第1実施例と同じである。
FIG. 5 shows a fifth embodiment of the present invention having both a liquid suction function and a liquid atomization function. In FIG. 5, the shaft body IB has an amplitude enlarging horn part 4 and a disc-shaped part 5 for the pump function at the lower part, and an amplitude enlarging horn part 30 and the disc-shaped part for the atomizing function at the upper part. It is equipped with 31. The structure for tightening and integrating the piezoelectric element 10A and IOB is the same as in the first embodiment described above.

この第5実施例において、f51実施例の場合と同様の
原理で液体吸い上げ用貫通穴6を上昇した液体は、その
上部開口の位置する円板状部31の上端面の超音波振動
にて霧化され、微粒子となって大気中に飛散する。この
fpJ5図の構造は、例えば空気調和器のドレイン排水
を霧化して蒸発させてしまう用途等に利用できる。
In this fifth embodiment, the liquid that has risen through the liquid suction through hole 6 is atomized by the ultrasonic vibration of the upper end surface of the disc-shaped part 31 where the upper opening is located. and disperse into the atmosphere as fine particles. The structure shown in Fig. fpJ5 can be used, for example, to atomize and evaporate drain water from an air conditioner.

なお、本発明の超音波ポンプを複数個組み合わせること
により揚液可能な高さを大きくすることができる。
Note that by combining a plurality of ultrasonic pumps of the present invention, the height at which liquid can be pumped can be increased.

(発明の効果) 以上説明したように、本発明によれば、下端に開口する
液体吸い上げ用穴を軸方向に形成した軸体に複数枚の圧
電素子を締め付け手段で締め付け一体化した構造とした
ので、機械的な回転部分等の無い簡単な構造で信頼性の
高い超音波ポンプを実現し得る。また、本発明の超音波
ポンプは液体汲み上げ動作が定常的に継続するため、液
体供給量に脈動がなく、安定している利点がある。
(Effects of the Invention) As explained above, according to the present invention, a structure is provided in which a plurality of piezoelectric elements are tightened and integrated by a tightening means to a shaft body in which a liquid suction hole opening at the lower end is formed in the axial direction. Therefore, it is possible to realize a highly reliable ultrasonic pump with a simple structure without mechanical rotating parts. Further, since the ultrasonic pump of the present invention continues the liquid pumping operation steadily, there is an advantage that the amount of liquid supplied is stable without pulsation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る超音波ポンプの$1実施例を示す
正断面図、第2図は本発明の第2実施例の部分正断面図
、第3図は本発明の第3実施例の正断面図、第4図は本
発明のj@4実施例の正断面図、PIIJ5図は本発明
の@5実施例の正断面図である。 1、IA、IB・・・軸体、2,3・・・雄螺子部、4
・・・振幅拡大ホーン部、5・・・円板状部、6.6A
・・・液体吸い上げ用貫通穴、6B・・・液体吸い上げ
用穴、7.7A・・・延長パイプ、8,8A・・・7ラ
ンノ、10A、IOB・・・圧電素子、11A、11B
、11C・・・ナツト。
FIG. 1 is a front cross-sectional view showing a $1 embodiment of an ultrasonic pump according to the present invention, FIG. 2 is a partial front cross-sectional view of a second embodiment of the present invention, and FIG. 3 is a third embodiment of the present invention. FIG. 4 is a front sectional view of the J@4 embodiment of the present invention, and FIG. PIIJ5 is a front sectional view of the @5 embodiment of the present invention. 1, IA, IB... shaft body, 2, 3... male screw part, 4
... Amplitude expansion horn part, 5... Disc-shaped part, 6.6A
...through hole for liquid suction, 6B...hole for liquid suction, 7.7A...extension pipe, 8,8A...7 runno, 10A, IOB...piezoelectric element, 11A, 11B
, 11C...Natsuto.

Claims (4)

【特許請求の範囲】[Claims] (1)下端に開口する液体吸い上げ用穴を軸方向に形成
した軸体に複数枚の圧電素子を締め付け手段で締め付け
一体化したことを特徴とする超音波ポンプ。
(1) An ultrasonic pump characterized in that a plurality of piezoelectric elements are tightened and integrated with a shaft body having a liquid suction hole opened in the lower end in the axial direction using a tightening means.
(2)前記軸体は振幅拡大用ホーン部の下端に円板状部
を有するものである特許請求の範囲第1項記載の超音波
ポンプ。
(2) The ultrasonic pump according to claim 1, wherein the shaft body has a disk-shaped portion at the lower end of the horn portion for amplitude expansion.
(3)前記液体吸い上げ用穴の下部開口はテーパー状に
広がっている特許請求の範囲第1項記載の超音波ポンプ
(3) The ultrasonic pump according to claim 1, wherein the lower opening of the liquid suction hole widens in a tapered shape.
(4)前記液体吸い上げ用穴の下部は、上部に比較して
大径となっている特許請求の範囲第1項記載の超音波ポ
ンプ。
(4) The ultrasonic pump according to claim 1, wherein the lower part of the liquid suction hole has a larger diameter than the upper part.
JP30911386A 1986-12-27 1986-12-27 Supersonic wave pump Pending JPS63167098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30911386A JPS63167098A (en) 1986-12-27 1986-12-27 Supersonic wave pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30911386A JPS63167098A (en) 1986-12-27 1986-12-27 Supersonic wave pump

Publications (1)

Publication Number Publication Date
JPS63167098A true JPS63167098A (en) 1988-07-11

Family

ID=17989045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30911386A Pending JPS63167098A (en) 1986-12-27 1986-12-27 Supersonic wave pump

Country Status (1)

Country Link
JP (1) JPS63167098A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240473U (en) * 1988-09-08 1990-03-19
JPH0266268U (en) * 1988-11-04 1990-05-18
JPH02141700U (en) * 1989-05-01 1990-11-29
JPH0338179U (en) * 1989-08-28 1991-04-12
JP2011502784A (en) * 2007-11-19 2011-01-27 スプレイング システムズ カンパニー Ultrasonic spray nozzle with cone spray form
JP2015136874A (en) * 2014-01-23 2015-07-30 株式会社Screenホールディングス Suction member and liquid supply device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144700A (en) * 1982-02-24 1983-08-29 Ebara Corp Vibrating column pump
JPS58183900A (en) * 1982-04-22 1983-10-27 Ebara Corp Vibrating column type pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144700A (en) * 1982-02-24 1983-08-29 Ebara Corp Vibrating column pump
JPS58183900A (en) * 1982-04-22 1983-10-27 Ebara Corp Vibrating column type pump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240473U (en) * 1988-09-08 1990-03-19
JPH0266268U (en) * 1988-11-04 1990-05-18
JPH02141700U (en) * 1989-05-01 1990-11-29
JPH0338179U (en) * 1989-08-28 1991-04-12
JP2011502784A (en) * 2007-11-19 2011-01-27 スプレイング システムズ カンパニー Ultrasonic spray nozzle with cone spray form
JP2015136874A (en) * 2014-01-23 2015-07-30 株式会社Screenホールディングス Suction member and liquid supply device

Similar Documents

Publication Publication Date Title
US5996903A (en) Atomizer and atomizing method utilizing surface acoustic wave
US4074152A (en) Ultrasonic wave generator
CN111492142B (en) Pump and method of operating the same
US3400892A (en) Resonant vibratory apparatus
US4034244A (en) Resonant cylindrically shaped ultrasonic wave generator
JPS62215141A (en) Vibration isolating device
JPH0367747B2 (en)
JPS63167098A (en) Supersonic wave pump
JPH044853Y2 (en)
JPH0515982Y2 (en)
JP2982896B2 (en) Ultrasonic pump
JP3083902B2 (en) Ultrasonic atomizer
JPH0545407Y2 (en)
JPS6133258A (en) Atomizer
JP2550580Y2 (en) Ultrasonic drive
JPS60132670A (en) Atomizing apparatus
JP3304401B2 (en) Ultrasonic atomizer
JPH0737739Y2 (en) Ultrasonic atomizer
JPH0515981Y2 (en)
JPS6021780B2 (en) atomization device
WO2023233701A1 (en) Bubble generation device and bubble generation system
JPS6246226B2 (en)
JPH0628209Y2 (en) Ultrasonic atomizer
JPS6257375B2 (en)
JPS5842055Y2 (en) Ultrasonic atomizer