JPS6316701B2 - - Google Patents
Info
- Publication number
- JPS6316701B2 JPS6316701B2 JP12650581A JP12650581A JPS6316701B2 JP S6316701 B2 JPS6316701 B2 JP S6316701B2 JP 12650581 A JP12650581 A JP 12650581A JP 12650581 A JP12650581 A JP 12650581A JP S6316701 B2 JPS6316701 B2 JP S6316701B2
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- tube
- insulated
- short
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 36
- 230000005684 electric field Effects 0.000 claims description 30
- 230000006698 induction Effects 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 20
- 239000004020 conductor Substances 0.000 claims description 18
- 230000000737 periodic effect Effects 0.000 claims description 6
- 239000011810 insulating material Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 238000009413 insulation Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 6
- 230000010355 oscillation Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Examining Or Testing Airtightness (AREA)
Description
【発明の詳細な説明】
本発明は、給湯管の如き断熱管であつて特にそ
の外周に同軸状に導電性外被材が被覆された導電
体被覆断熱管の新規な短絡箇所探知方法を提供す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a novel method for detecting a short circuit in an insulated pipe such as a hot water supply pipe, particularly in a conductor-coated insulated pipe whose outer periphery is coaxially coated with a conductive jacket material. It is something to do.
一般に給湯管は屋内においては床下の如き容易
に視認し難い場合を選んで配管される関係上、そ
の配管後に室内の内装を施こす際、これに用いた
釘を誤まつて給湯管に打込むことがあつても気付
かず、ために上記内装作業完了後に上記釘打ちに
よる給湯管の破損箇所の有無、および破損箇所の
所在を探知してこれを補修し、給湯管の湯漏れ事
故を未然に防ぐことが必要となる。そのため第8
図に示すような導電性被覆断熱管(以後断熱管と
略称する)1を給湯管に用いることが提案されて
いる。この断熱管1は銅管からなる芯管2にポリ
ウレタン発泡材の如き絶縁性断熱材3を介してカ
ーボン系ゴムの如き導電性外被材4を被覆してな
るもので、これの芯管2と外被材4との間に直流
電圧を印加すれば、上記釘打ちによつて芯管2と
外被材4とが釘5で短絡されている場合は電流が
流れ、釘打ちされていない時は絶縁抵抗によつて
電流が流れず、これがため釘打ちの有無が簡単に
判別できる。また断熱管4の直流抵抗を測定して
短絡事故をおこしている釘打ち箇所までの距離を
測定抵抗値から算出するようにすれば、測定点か
ら釘打ち箇所までの距離を知ることができて、釘
打ち箇所の発見および補修が容易となる。しかし
現実には外被材4の抵抗値は一定ではなくバラツ
キがあること、また断熱管1の配管路中の継手部
分では抵抗値が一定でないことにより、上記直流
抵抗法によつて得られる短絡箇所までの算出距離
は正確を期しがたい難点があつた。更に配管路に
釘打ちによる短絡箇所が2箇所以上ある時、ある
いは配管路が分岐している時は測定抵抗値から算
出した距離は全く意味をなさない。つまり上記断
熱管1を用いても従来の方法では短絡の有無を判
別できるにすぎず、短絡箇所の位置探索には依然
無策であつた。 In general, hot water pipes are installed indoors where they are difficult to see, such as under the floor, so when installing the interior of the room after piping, the nails used for this are often driven into the hot water pipes by mistake. Even if this happens, we do not notice it, so after completing the interior work, we detect whether or not there is any damage to the hot water pipe due to the nailing, and the location of the damage and repair it, thereby preventing a hot water pipe leakage accident. It is necessary to prevent it. Therefore, the 8th
It has been proposed to use a conductive coated heat insulated pipe (hereinafter abbreviated as heat insulated pipe) 1 as shown in the figure as a hot water supply pipe. This heat-insulating pipe 1 is made by covering a core pipe 2 made of a copper pipe with a conductive jacket material 4 such as carbon-based rubber through an insulating heat-insulating material 3 such as a polyurethane foam material. If a DC voltage is applied between the core tube 2 and the outer covering material 4, if the core tube 2 and the outer covering material 4 are short-circuited by the nail 5 due to the above-mentioned nailing, a current will flow; During this time, no current flows due to the insulation resistance, which makes it easy to determine whether or not a nail has been driven. In addition, by measuring the DC resistance of the insulated pipe 4 and calculating the distance to the nailing point where the short circuit occurred from the measured resistance value, it is possible to know the distance from the measurement point to the nailing point. This makes it easier to find and repair nailing points. However, in reality, the resistance value of the jacket material 4 is not constant and varies, and the resistance value is not constant at the joint part of the piping path of the insulated pipe 1. There was a problem in that it was difficult to calculate the distance to the point accurately. Furthermore, when there are two or more short-circuit points in the piping route due to nailing, or when the piping route is branched, the distance calculated from the measured resistance value has no meaning at all. In other words, even if the heat insulating pipe 1 is used, the conventional method can only determine the presence or absence of a short circuit, and is still ineffective in searching for the location of the short circuit.
本発明はかかる短絡箇所の位置探策を可能とす
るものである。 The present invention makes it possible to search for the location of such a short circuit.
本発明の発明者がまず最初に着目したのは電線
等の短絡箇所を検出する方法を応用することであ
つた。これは電線に地絡事故等が生じた時に該電
線に断続電流を通電すると共に、この断続電流を
検出する検出器を電線に沿つて移動させて検出器
が断続電流を検出しなくなつた点を求めて地絡箇
所を探知する方法である。しかし、この方法は前
述の断熱管1に応用しても全く効果がなかつた。
これは上記方法が架空配電線又は単線による配線
もしくは平行電線には有効であつても、芯管1と
外被材3とを同軸に配置した上記断熱管1は同軸
ケーブル状となつて、芯管1と外被材3とが発す
る磁束が相互に打消し合うためと考えられる。し
かし乍ら、導電体被覆断熱管1の電気的構造を見
てみるならば、同軸ケーブルの場合は内部導体と
外部導体の抵抗が無視できるように設定されてい
るのに対し、上記断熱管1では銅管からなる芯管
2の抵抗は無視し得る程度に小さく、一方外被材
4は完全な抵抗体であつて、その抵抗が2KΩ/
m、静電容量が0.345PF/m、そして芯管2と外
被材4との絶縁抵抗が200MΩ/m以上で、集中
定数回路であらわせば、絶縁抵抗が釘打ち事故に
おける接触抵抗に比し極めて大きいので該接触抵
抗を無視すると第9図の如くなり、完全な同軸ケ
ーブルではない。そこでこの断熱管1において漏
洩電界および漏洩磁界が発生しているのではない
かと考え、この漏洩電界および漏洩磁界を利用し
て短絡箇所を探知する方法を求めて試行錯誤を重
ねたところ、芯管2をアースした場合に、上記短
絡箇所において漏洩電界および漏洩磁界が消失
し、この消失点を電界誘導および磁界誘導によつ
て検出することによつて短絡箇所を探知できるこ
とを発見するに至つた。 The inventor of the present invention first focused on applying a method for detecting short circuits in electric wires, etc. This is because when a ground fault occurs in a wire, an intermittent current is passed through the wire, and a detector that detects this intermittent current is moved along the wire, so that the detector no longer detects the intermittent current. This is a method of detecting ground faults by determining the However, even when this method was applied to the above-mentioned heat-insulating pipe 1, it had no effect at all.
This is because even though the above method is effective for overhead distribution lines, single-wire wiring, or parallel electric wires, the above-mentioned insulated pipe 1 in which the core pipe 1 and the jacket material 3 are arranged coaxially becomes a coaxial cable, and the core This is thought to be because the magnetic fluxes emitted by the tube 1 and the jacket material 3 cancel each other out. However, if we look at the electrical structure of the conductor-covered heat-insulating pipe 1, we will see that in the case of a coaxial cable, the resistance between the inner conductor and the outer conductor is set to be negligible, whereas the heat-insulating pipe 1 In this case, the resistance of the core tube 2 made of copper tube is negligibly small, while the outer sheath material 4 is a perfect resistor with a resistance of 2KΩ/
m, the capacitance is 0.345PF/m, and the insulation resistance between the core tube 2 and the jacket material 4 is 200MΩ/m or more, and if expressed as a lumped constant circuit, the insulation resistance is compared to the contact resistance in a nailing accident. Since the contact resistance is extremely large, if the contact resistance is ignored, the result will be as shown in FIG. 9, which is not a perfect coaxial cable. Therefore, we thought that a leakage electric field and a leakage magnetic field were generated in this insulated pipe 1, and after repeated trial and error to find a method to detect the short circuit using this leakage electric field and leakage magnetic field, we found that the core tube 2 is grounded, the leakage electric field and leakage magnetic field disappear at the short circuit point, and the short circuit point can be detected by detecting this vanishing point by electric field induction and magnetic field induction.
これを第1図において説明すると、A点に短絡
事故が生じている断熱管1において、芯管2をア
ース6し、外被材4と芯管2にわたつて可聴周波
数の交流7を印加し、一方漏洩電界を拾う周知構
造の電界誘導検出器8であつて、その出力を増幅
器9を介しスピーカ10に入力すべく結線してな
る検出器8を上記断熱管1に近ずけ、且つ断熱管
1の端部Bから短絡箇所Aに向けて移動させてい
つたところ、スピーカ10は鳴音を発し続け、検
出路8が短絡箇所Aに近ずくに従つて音量が低下
し該短絡箇所を通過した際に鳴音が停止した。こ
れは断熱管1の端部Bから短絡箇所Aまで断熱管
1に漏洩電界が生じていて、検出器9に電界誘導
電圧を生じ、短絡箇所Aにおいて漏洩電界が消失
したことを意味している。これは上記電界誘導検
出器8を電誘誘導検出器に代えて、漏洩電界にリ
ンケージする漏洩磁界を検出しても同じであつ
た。 To explain this with reference to FIG. 1, in the insulated pipe 1 where a short-circuit accident has occurred at point A, the core pipe 2 is grounded 6, and an audible frequency AC 7 is applied across the jacket material 4 and the core pipe 2. On the other hand, an electric field induction detector 8 having a well-known structure for picking up leakage electric fields, which is wired so that its output is inputted to a speaker 10 via an amplifier 9, is placed close to the adiabatic pipe 1 and When the tube 1 is moved from the end B toward the short-circuit point A, the speaker 10 continues to emit a sound, and as the detection path 8 approaches the short-circuit point A, the volume decreases and the speaker 10 passes through the short-circuit point. When I did that, the sound stopped. This means that a leakage electric field is generated in the insulation tube 1 from the end B of the insulation tube 1 to the short circuit point A, an electric field induced voltage is generated in the detector 9, and the leakage electric field disappears at the short circuit point A. . This was the same even when the electric field induction detector 8 was replaced with an electric induction detector to detect the leakage magnetic field linked to the leakage electric field.
何故、上記アース6によつてかような現象が生
じるのか未だ分明でないが、以下本発明を実験デ
ータによつて立証する。 Although it is not yet clear why such a phenomenon occurs due to the earth 6, the present invention will be proven below using experimental data.
Γ芯管2に外径が15.8cmの銅管、外被材4に外径
が23.3cmのカーボン系ゴムを用いた長さ7mの
導電体被覆断熱管1であつて、芯管2の導電度
が75〜93%、外被材4の抵抗が2KΩ/m、静
電容量が0.345PF/m、そして芯管2と外被材
4との絶縁抵抗が200MΩ/mの上記断熱管1
に対し、第1図に示す方法によつて100V、
1000Hzの交流を印加すると共に、その芯管2を
アースして電界誘導検出器8により短絡箇所を
求めたところ第2図乃至第4図に示す如き実験
データが得られた。第2図のa,bは短絡箇所
Aを断熱管1の端部Bから2mのところに設定
した時、第3図のa,bは4mのところに設定
した時、第4図のa,bは6mのところに設定
した時のデータを示し、更に第2図乃至第4図
の各aは断熱管1から検出器8を15cm離して探
知した時、第2図乃至第4図の各bは検出器8
を30cm離して探知した時のデータを示してい
る。此等第2図乃至第4図のグラフに示すよう
に検出器8の出力電圧は短絡箇所に至つて急速
に減衰して短絡箇所とほぼ一致する時点で消失
しており、本発明方法によつて正確に短絡箇所
を探知できることを立証している。これは実際
に配管された50m長の断熱管に対し実験を施こ
しても、同様な結果が得られた。A conductor-coated heat-insulated tube 1 with a length of 7 m in which the Γ core tube 2 is a copper tube with an outer diameter of 15.8 cm, and the jacket material 4 is a carbon rubber tube with an outer diameter of 23.3 cm. The above-mentioned heat-insulating pipe 1 has a resistance of 75 to 93%, a resistance of the jacket material 4 of 2KΩ/m, a capacitance of 0.345PF/m, and an insulation resistance between the core pipe 2 and the jacket material 4 of 200MΩ/m.
100V, by the method shown in Figure 1.
When an alternating current of 1000 Hz was applied and the core tube 2 was grounded, short circuit locations were determined using the electric field induction detector 8, and experimental data as shown in FIGS. 2 to 4 was obtained. a and b in Fig. 2 are when the short circuit point A is set at 2 m from the end B of the heat insulating pipe 1, a and b in Fig. 3 are when the short circuit point A is set at 4 m from the end B of the insulated pipe 1, and a and b in Fig. 4 are b shows the data when set at a distance of 6 m, and each a of Figs. b is detector 8
The data shows the data when detected from a distance of 30 cm. As shown in the graphs of FIGS. 2 to 4, the output voltage of the detector 8 rapidly attenuates when it reaches the short-circuit point and disappears when it almost coincides with the short-circuit point. It has been proven that short circuits can be detected accurately. Similar results were obtained when an experiment was conducted on an actually installed 50 m long insulated pipe.
上記の実験は断熱管1の芯管2と外被材4とが
釘によつて短絡した場合であるが、この釘打ちに
よつても芯管2と外被材4とが釘5によつて短絡
しない場合が考えられる。例えば上記断熱管1が
配管時の屈曲加工により外被材4に裂け目が生
じ、この裂け目に釘5が打込まれた場合であり、
釘5が芯管2に突き刺さつているにもかかわら
ず、釘5が外被材4に接触せず、ため短絡が発生
しない。しかしこの時でも該断熱管1の釘打ち箇
所から水漏れが生じて、釘5と外被材4とが漏水
によつて短絡されれば本発明方法によつて該釘抜
き箇所が発見できないかと考え、次のような実験
を行なつた。つまり、釘5によつて芯管2と外被
材4とが直接短絡した場合の該部の接触抵抗は10
乃至20Ωと極めて小さい。これに対し水漏れによ
つて間接的に短絡した場合の該部の接触抵抗は
10KΩ乃至30KΩ程度である。そこで第5図のよ
うに断熱管1において外被材4に穴11をあけて
該穴11を通して釘5を芯管2に打込み、且つ釘
5と外被材4との間に水を代えて可変抵抗器12
を介在させ、その抵抗値を変化させ乍ら本発明探
知方法を試みたところ、芯管2と外被材4に印加
する電圧によつて異なるが、実験によれば可変抵
抗器12によつて変化させた抵抗値が3MΩ乃至
10MΩであつても、上記釘打ちによつて漏水が発
生し、これによつて外被材4と芯管2とが漏水お
よび釘5によつて短絡されればその釘打ち箇所を
探知できることが分かつた。従つて、建造物の構
築後の完工検査時には上記断熱管1に10Kg/cm2の
圧力をかけて漏水検査を行なうのを通例するか
ら、その漏水検査後に本発明方法を用いることが
好ましい。また、上記探知に必要な上記印加電圧
を変化させたところ、人体に安全な24V程度の低
電圧によつて充分探知できた。 In the above experiment, the core pipe 2 and the jacket material 4 of the insulated pipe 1 were short-circuited by a nail. There may be cases where the short circuit does not occur. For example, when the insulation pipe 1 has a crack in the jacket material 4 due to bending during piping, and a nail 5 is driven into the crack,
Even though the nail 5 is stuck into the core tube 2, the nail 5 does not come into contact with the jacket material 4, so that no short circuit occurs. However, even at this time, if water leaks from the nailed point of the insulated pipe 1, and the nail 5 and the outer sheathing material 4 are short-circuited due to water leakage, I wonder if the nailed point can be found by the method of the present invention. , conducted the following experiment. In other words, when the core tube 2 and the jacket material 4 are directly short-circuited by the nail 5, the contact resistance at that part is 10
It is extremely small, ranging from 20Ω. On the other hand, if there is an indirect short circuit due to water leakage, the contact resistance of the part is
It is about 10KΩ to 30KΩ. Therefore, as shown in FIG. 5, a hole 11 is made in the jacket material 4 of the insulated pipe 1, and a nail 5 is driven into the core pipe 2 through the hole 11, and water is replaced between the nail 5 and the jacket material 4. Variable resistor 12
When we tried the detection method of the present invention by intervening the variable resistor 12 and changing its resistance value, we found that although it differs depending on the voltage applied to the core tube 2 and the outer sheath material 4, according to experiments, The changed resistance value is 3MΩ to
Even if the resistance is 10 MΩ, if water leaks due to the above nailing and the outer sheathing material 4 and the core pipe 2 are short-circuited by the water leakage and the nail 5, the nailing point can be detected. I understand. Therefore, since it is customary to test for water leakage by applying a pressure of 10 kg/cm 2 to the insulated pipe 1 during the completion inspection after construction of a building, it is preferable to use the method of the present invention after the water leakage test. Furthermore, when the applied voltage necessary for the detection was varied, sufficient detection could be achieved with a voltage as low as 24 V, which is safe for the human body.
更に本発明方法においては芯管2と外被材4と
に印加させる電圧は、交流(正弦波、その他のパ
ルス波、短形波、三角波を含む)と脈流(全波整
流波、片波整流波その他の脈流、パルス波を含
む)の周期的電圧を用いるが、この交流と脈流と
を選択使用することによつて次のような相違が生
じる。第1図においてスイツチ13を閉成して正
弦波交流電圧を印加した場合第9図に示す回路の
容量cには変位電流が流れるために、断熱管1に
電界誘導検出器8を近ずければ、短絡箇所の有無
にかかわらず漏洩電界を検出してスピーカ10の
鳴音を発する。しかし、スイツチ13を開成し且
つダイオード14を通して半波整流電圧(もしく
はブリツジ回路を通した全波整流波)を印加すれ
ば、断熱管1に短絡箇所がなければ容量cが充電
された以後は電流は流れず、従つて漏洩電界検出
器8を近ずけても漏洩電界を検出せず、スピーカ
10が鳴らないが、短絡箇所がある時には電流が
流れるからスピーカ10が鳴音を発する。故に、
脈流を使用する時は短絡箇所の有無が判別でき、
冒頭に述べた直流抵抗法による機能を併せもつこ
とになり、短絡箇所が有ることが判別された時の
み該短絡箇所の探知作業を行なえば良いことにな
る。 Furthermore, in the method of the present invention, the voltage applied to the core tube 2 and the jacket material 4 is an alternating current (including a sine wave, other pulse waves, rectangular waves, and triangular waves) and a pulsating current (a full-wave rectified wave, a half-wave rectified wave, and a half-wave rectified wave). A periodic voltage (including rectified waves, other pulsating currents, and pulse waves) is used, but the following differences arise by selectively using alternating current and pulsating current. When the switch 13 in FIG. 1 is closed and a sinusoidal AC voltage is applied, a displacement current flows through the capacitance c of the circuit shown in FIG. For example, the leakage electric field is detected and the speaker 10 emits a sound regardless of the presence or absence of a short circuit. However, if the switch 13 is opened and a half-wave rectified voltage (or a full-wave rectified wave passed through a bridge circuit) is applied through the diode 14, the current will be Therefore, even if the leakage electric field detector 8 is brought close, no leakage electric field is detected and the speaker 10 does not make a sound, but when there is a short circuit, current flows and the speaker 10 makes a sound. Therefore,
When using pulsating flow, it is possible to determine whether there is a short circuit.
It also has the function of the DC resistance method mentioned at the beginning, and only when it is determined that there is a short circuit, it is necessary to perform the work of detecting the short circuit.
逆に印加電圧に交流を用いる時は、この交流電
圧を印加するに先立つて直流抵抗法で短絡箇所の
有無を判別し、短絡箇所の有るものに対してのみ
交流電圧を印加し短絡箇所を探知してゆけば良
い。 Conversely, when using alternating current as the applied voltage, use the direct current resistance method to determine the presence or absence of a short circuit before applying this alternating voltage, and then apply alternating voltage only to those that have a short circuit to detect the short circuit. Just keep doing it.
尚、アース6は大地との静電容量を利用するカ
ウンターポイズを含み、これには絶縁電線を大地
に這わして利用するもの、60cm×90cm程度のアル
ミ箔に導線を接続して利用するものおよび後記す
る第6図回路のケースを金属から構成して利用す
るものが考えられる。 In addition, Earth 6 includes counterpoises that use electrostatic capacitance with the earth, and these include those that use an insulated wire running along the ground, and those that use a conductor wire connected to aluminum foil approximately 60 cm x 90 cm. It is also conceivable that the case of the circuit shown in FIG. 6, which will be described later, be made of metal.
次に本発明方法に用いる一実施例回路を第6図
および第7図で説明する。第6図は電圧印加装置
で、音叉発振器(商標名マイクロフオーク)15
とこれの専用ICである増幅器16とを含む発振
段17、その発振出力が発振出力調整用可変抵抗
器18を介して入力される出力増幅器19、出力
増幅器19の出力を昇圧し且つインピーダンス整
合する変圧器20、第1図で示した切換えスイツ
チ13およびダイオード14、および定電流抵抗
21を具備しており、直流電源+Bによつて発振
段17から出力される発振出力を端子22,23
から芯管2と外被材4に印加するものである。 Next, an embodiment of the circuit used in the method of the present invention will be explained with reference to FIGS. 6 and 7. Figure 6 shows a voltage application device, a tuning fork oscillator (trade name Microfork) 15
An oscillation stage 17 including an amplifier 16 which is a dedicated IC for this, an output amplifier 19 whose oscillation output is inputted via a variable resistor 18 for adjusting oscillation output, and an output amplifier 19 that boosts the output of the output amplifier 19 and matches impedance. It is equipped with a transformer 20, a changeover switch 13 and a diode 14 shown in FIG.
The voltage is applied to the core tube 2 and the jacket material 4 from the source.
第7図は短絡箇所検出装置で、第1図に示す電
界誘導検出器(もしくは磁界誘導検出器)8が接
続されるジヤツク24、電界誘導検出器と磁界誘
導検出器とを選択使用するために用いるインピー
ダンス整合用手段25、前置増幅器26、この前
置増幅器26の出力を増幅するマクテイブフイル
タ(オペ・アンプを使用したものを例示する)2
7、このマクテイブフイルタ27の出力が電圧調
整用可変抵抗器28を介して入力される出力増幅
器29、この出力増幅器29の出力で駆動される
スピーカ30、および上記マクテイブフイルタ2
7の出力が増幅器31を介して入力される直流電
流計32を有している。更に芯管2と外被材4に
接触される測定端子33,34、増幅器35、お
よび発振器36とを有する抵抗測定部37が構成
され、前述の出力増幅器29の入力端を抵抗測定
部37の出力端子38と可変抵抗器28の出力端
子39とにわたつて選択的に切換えるスイツチ4
0が設けられている。 FIG. 7 shows a short circuit detection device, which includes a jack 24 to which the electric field induction detector (or magnetic field induction detector) 8 shown in FIG. Impedance matching means 25 to be used, a preamplifier 26, and a McTave filter (using an operational amplifier is exemplified) 2 for amplifying the output of the preamplifier 26.
7. An output amplifier 29 into which the output of the McTave filter 27 is input via the voltage adjustment variable resistor 28, a speaker 30 driven by the output of the output amplifier 29, and the McTave filter 2.
It has a DC ammeter 32 into which the output of No. 7 is inputted via an amplifier 31. Furthermore, a resistance measuring section 37 is configured, which includes measurement terminals 33 and 34 that are in contact with the core tube 2 and the jacket material 4, an amplifier 35, and an oscillator 36. A switch 4 that selectively switches between the output terminal 38 and the output terminal 39 of the variable resistor 28
0 is set.
第7図回路では、まず切換えスイツチ40を実
線に示す如く抵抗測定部37の出力端子38に切
換えて、抵抗測定部37を出力増幅器29に接続
した状態から、測定端子33,34を被検査物で
ある断熱管1の芯管2と外被材4とに接触させて
直流電源+Bを該断熱管1に印加する。短絡箇所
がない場合は芯管2と外被材4との絶縁抵抗故に
増幅器35に入力電圧がないが、短絡箇所がある
場合はその短絡箇所までの抵抗に応じた電圧が増
幅器35に入り、その増幅出力で発振器36が作
動して発振出力が切換えスイツチ40から出力増
幅器29に入力し、従つてスピーカ30が鳴る。
これがためスピーカ30の鳴音の有無によつて短
絡箇所の有無が判別されるから、スピーカ30が
鳴つた時は切換えスイツチ40を破線のように可
変抵抗器28の出力端子39に接続したのち、第
6図の電圧印加装置によつて発振出力を芯管2と
外被材4に印加し、電界誘導検出器(もしくは磁
界誘導検出器)8を導電体被覆断熱管1に沿つて
移動させてゆく。この電界誘導検出器(もしくは
磁界誘導検出器)8が漏洩電界(もしくは漏洩磁
界)をひろうと、その誘導電流が前置増幅器2
6、マクテイブフイルタ27、可変抵抗器28、
および出力増幅器29を経てスピーカ30に入つ
て鳴音が発せられる一方、増幅器31を経て直流
電流計32で漏洩電界(もしくは漏洩磁界)の強
さがメータ表示される。そして上記電界誘導検出
器(もしくは磁界誘導検出器8が短絡箇所に至つ
て漏洩電界(もしくは漏洩磁界)が消失すると、
スピーカ30が鳴りやみ、直流電流計32がO点
付近を指示し、これによつて短絡箇所が探知でき
る。 In the circuit of FIG. 7, first, the changeover switch 40 is switched to the output terminal 38 of the resistance measuring section 37 as shown by the solid line, and the resistance measuring section 37 is connected to the output amplifier 29. DC power +B is applied to the heat insulated pipe 1 by bringing it into contact with the core pipe 2 and jacket material 4 of the heat insulated pipe 1. If there is no short circuit, there is no input voltage to the amplifier 35 due to the insulation resistance between the core tube 2 and the jacket material 4, but if there is a short circuit, a voltage corresponding to the resistance up to the short circuit enters the amplifier 35. The oscillator 36 is operated by the amplified output, and the oscillation output is inputted from the changeover switch 40 to the output amplifier 29, so that the speaker 30 sounds.
Therefore, the presence or absence of a short circuit is determined by the presence or absence of sound from the speaker 30, so when the speaker 30 sounds, connect the changeover switch 40 to the output terminal 39 of the variable resistor 28 as shown by the broken line, and then An oscillation output is applied to the core tube 2 and the jacket material 4 by the voltage application device shown in FIG. go. When this electric field induction detector (or magnetic field induction detector) 8 picks up a leakage electric field (or leakage magnetic field), the induced current flows through the preamplifier 2.
6, McTave filter 27, variable resistor 28,
Then, the signal passes through the output amplifier 29 and enters the speaker 30 to emit a sound, while the strength of the leakage electric field (or leakage magnetic field) is displayed on the meter by the DC ammeter 32 after passing through the amplifier 31. When the electric field induction detector (or magnetic field induction detector 8) reaches a short circuit and the leakage electric field (or leakage magnetic field) disappears,
The speaker 30 stops sounding, and the DC ammeter 32 indicates the vicinity of point O, thereby allowing the short circuit location to be detected.
尚、導電体被覆断熱管1に印加する電圧は低周
波、高周波、可聴周波数で変調された高周波等を
用いることができる。 Note that the voltage applied to the conductor-coated heat-insulating tube 1 may be a low frequency, a high frequency, a high frequency modulated at an audio frequency, or the like.
以上のように本発明は、導電体被覆断熱管にお
いてその芯管をアースすると共に、外被材と芯管
とにわたり周期的電圧を印加した状態から、上記
断熱管の漏洩電界変化をとらえる電界誘導検出器
または漏洩磁界変化をとらえる磁界誘導検出器を
該断熱管に沿つて移動させて、漏洩電界または漏
洩磁界の消失点から短絡箇所を探知するものであ
るから、導電体被覆断熱管の抵抗のバラツキ、配
管路の継手部分の抵抗変化に影響なく短絡箇所を
正確に探知できる利点があり、また配管路に2箇
所以上の釘打ちによる短絡箇所があつても、上記
断熱管の電圧印加端から検出器を移動させて短絡
箇所を順番に1箇所ずつ見つけ、そのたびに釘を
抜いてゆけば全ての短絡箇所を探知できると共
に、配管路が分岐していても各分岐管路に沿つて
上記電界誘導検出器または磁界誘導検出器を移動
させることによつて容易に短絡箇所を探知でき
る。 As described above, the present invention provides electric field induction that captures leakage electric field changes in the insulated tube from a state in which the core tube of the conductor-coated insulated tube is grounded and a periodic voltage is applied across the jacket material and the core tube. A detector or a magnetic field induction detector that detects changes in the leakage magnetic field is moved along the insulated tube to detect the short circuit from the vanishing point of the leakage electric field or leakage magnetic field, so the resistance of the conductor-coated insulated tube is It has the advantage of being able to accurately detect short-circuit points without affecting variations in resistance or resistance changes at the joints of the piping, and even if there is a short-circuit in the piping due to nailing in two or more places, it can be detected from the voltage application end of the insulated pipe. By moving the detector and finding each short-circuit point one by one, and removing the nail each time, you can detect all the short-circuit points. By moving the electric field induction detector or magnetic field induction detector, the short circuit location can be easily detected.
また、導電体被覆断熱管に印加する電圧が脈流
である時は、該断熱管に短絡箇所が無いと充電電
流が流れた以後は電流は流れず、故に電界誘導検
出器または磁界誘導検出器を近ずけても漏洩電界
または漏洩磁界をひろわないから、導電体被覆断
熱管の短絡箇所の有無を該短絡箇所の探知に先立
つて判別できる利点がある。 In addition, when the voltage applied to the conductor-coated insulated tube is a pulsating current, if there is no short circuit in the insulated tube, no current will flow after the charging current flows, so an electric field induction detector or magnetic field induction detector Since a leakage electric field or a leakage magnetic field is not spread even if the conductor-covered heat-insulating tube is brought close, there is an advantage that the presence or absence of a short-circuit point in the conductor-coated heat-insulated tube can be determined before detecting the short-circuit point.
更に導電体被覆断熱管に印加する電圧が交流で
ある時は、この電圧印加に先立つて、直流抵抗法
により短絡箇所の有無を判別すれば、上記断熱管
の短絡箇所探知作業が簡易になる。 Furthermore, when the voltage applied to the conductor-coated heat-insulating tube is alternating current, the presence or absence of a short-circuit point in the heat-insulating tube can be simplified by determining the presence or absence of a short-circuit point by a DC resistance method prior to applying this voltage.
第1図は本発明方法を示す概略図、第2図乃至
第4図は実験データを示すグラフ、第5図は水洩
れ実験方法を示す図、第6図は本発明の一実施例
を示す電圧印加装置の回路図、第7図は同じく短
絡箇所検出装置の回路図、第8図は本発明を適用
する導電体被覆断熱管の断面図、第9図は第8図
断熱管の集中定数回路である。
1……導電体被覆断熱管、2……導電性芯管、
3……絶縁性断熱管、4……導電性外被材、6…
…アース、8……電界誘導検出器または磁界誘導
検出器。
Fig. 1 is a schematic diagram showing the method of the present invention, Figs. 2 to 4 are graphs showing experimental data, Fig. 5 is a diagram showing the water leakage test method, and Fig. 6 shows an embodiment of the present invention. Figure 7 is a circuit diagram of the voltage application device, Figure 7 is a circuit diagram of the short-circuit detection device, Figure 8 is a cross-sectional view of a conductor-covered heat-insulated pipe to which the present invention is applied, and Figure 9 is a lumped constant of the heat-insulated pipe shown in Figure 8. It is a circuit. 1... conductor coated heat insulated tube, 2... conductive core tube,
3... Insulating heat-insulating pipe, 4... Conductive outer covering material, 6...
...Earth, 8...Electric field induction detector or magnetic field induction detector.
Claims (1)
性外被材を被覆してなる導電体被覆断熱管におい
て、その芯管をアースすると共に、外被材と芯管
にわたり周期的電圧を印加して上記断熱管の漏洩
電界変化をとらえる電界誘導検出器または漏洩磁
界変化をとらえる磁界誘導検出器により、上記外
被材と芯管との短絡箇所を探知することを特徴と
する導電体被覆断熱管の短絡箇所探知方法。 2 周期的電圧が交流である特許請求の範囲第1
項記載の導電体被覆断熱管の短絡箇所探知方法。 3 周期的電圧が脈流である特許請求の範囲第1
項記載の導電体被覆断熱管の短絡箇所探知方法。 4 周期的電圧の印加に先立つて、導電体被覆断
熱管の外被材と芯管とにわたり直流電圧を印加し
て直流抵抗により外被材と芯管との短絡箇所の有
無を判別する直流抵抗法を含む特許請求の範囲第
1項記載の導電体被覆断熱管の短絡箇所探知方
法。[Scope of Claims] 1. In a conductor-coated heat-insulated tube formed by covering the outer periphery of a conductive core tube with a conductive jacket material via an insulating heat-insulating material, the core tube is grounded, and the jacket material and the core are connected to each other. A short-circuit point between the jacket material and the core tube is detected by an electric field induction detector that applies a periodic voltage across the tube to detect changes in the leakage electric field of the insulated tube or a magnetic field induction detector that detects changes in the leakage magnetic field. A method for detecting short circuits in conductor-coated heat-insulating pipes. 2 Claim 1 in which the periodic voltage is alternating current
Method for detecting short circuits in conductor-coated heat-insulated pipes as described in Section 1. 3 Claim 1 in which the periodic voltage is a pulsating current
Method for detecting short circuits in conductor-coated heat-insulated pipes as described in Section 1. 4 Prior to the application of a periodic voltage, a DC voltage is applied across the outer cover material and core tube of the conductor-coated insulated pipe, and the presence or absence of a short circuit between the outer cover material and the core tube is determined based on the DC resistance. A method for detecting a short circuit in a conductor-coated heat-insulating pipe according to claim 1, which includes the method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12650581A JPS5827040A (en) | 1981-08-11 | 1981-08-11 | Detecting method for short-circuiting spot at conductor-covered insulating pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12650581A JPS5827040A (en) | 1981-08-11 | 1981-08-11 | Detecting method for short-circuiting spot at conductor-covered insulating pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5827040A JPS5827040A (en) | 1983-02-17 |
JPS6316701B2 true JPS6316701B2 (en) | 1988-04-11 |
Family
ID=14936863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12650581A Granted JPS5827040A (en) | 1981-08-11 | 1981-08-11 | Detecting method for short-circuiting spot at conductor-covered insulating pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5827040A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE199675T1 (en) * | 1995-06-26 | 2001-03-15 | Nextrom Holding Sa | EXTRUSION DEVICE, TUBE-SHAPED OBJECT AND TUBE |
DE69629491T2 (en) | 1995-12-12 | 2004-06-17 | Uponor Innovation Ab | METHOD FOR PRODUCING HOMOGENEOUS MATERIALS WITH AN EXTRUDER, AND EXTRUDER |
JP6126585B2 (en) * | 2011-04-29 | 2017-05-10 | イートン コーポレーションEaton Corporation | Deterioration monitoring system for hose assemblies |
JP6492150B1 (en) * | 2017-11-02 | 2019-03-27 | 株式会社川本製作所 | Pressure increase water supply device and water leak detector |
-
1981
- 1981-08-11 JP JP12650581A patent/JPS5827040A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5827040A (en) | 1983-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6531880B1 (en) | Non-invasive cable tester | |
CA2987127C (en) | Pipe assembly | |
JPH01501419A (en) | Method for detecting wall thickness changes in hollow bodies that conduct electricity | |
WO1993023759A1 (en) | Method of discriminating discrimination ojbect, detector therefor and input circuit of the detector | |
JPS6316701B2 (en) | ||
US3066256A (en) | Detector for flaws in buried pipe and the like | |
CA1305521C (en) | Underground cable testing method | |
JP2004198410A (en) | Method for inspecting defect in coated pipe, and method for diagnosing corrosion | |
US4982163A (en) | Method and a device for the determination of the condition of the insulation of an object coated with an electric insulation | |
JPS5832176A (en) | Detector for short circuited point in heat insulating pipe clad with electric conductor | |
US7808226B1 (en) | Line tracing method and apparatus utilizing non-linear junction detecting locator probe | |
JP4004300B2 (en) | Object exploration method | |
KR200423722Y1 (en) | Short-circuit detector | |
JPH09133504A (en) | Method for detecting corrosion of piping | |
JPH06103291B2 (en) | Pipe inspection device by remote field eddy current method | |
JP3169754B2 (en) | Method and apparatus for monitoring damage degree of coated steel pipe | |
JP3097896B2 (en) | Wiring current route search method | |
JP2868786B2 (en) | Method and apparatus for searching for accident points in indoor wiring | |
JP2905834B2 (en) | Monitoring method for damage to underground pipes | |
JPH1082865A (en) | Position searching method for underground buried pipe | |
JP3363340B2 (en) | Capacitive detection electrode for cable detection device and cable detection method | |
JPH08166314A (en) | Damage detection method of pipe | |
JPH08145934A (en) | Monitoring method and device for damage degree of clad steel pipe | |
JPS5834290A (en) | Heat insulating water pipe | |
JPH08304321A (en) | Method for detecting coating damage of underground buried metal conduit |