[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63151924A - Electrooptical element - Google Patents

Electrooptical element

Info

Publication number
JPS63151924A
JPS63151924A JP61299691A JP29969186A JPS63151924A JP S63151924 A JPS63151924 A JP S63151924A JP 61299691 A JP61299691 A JP 61299691A JP 29969186 A JP29969186 A JP 29969186A JP S63151924 A JPS63151924 A JP S63151924A
Authority
JP
Japan
Prior art keywords
liquid crystal
cell
degrees
electro
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61299691A
Other languages
Japanese (ja)
Inventor
Rei Miyazaki
礼 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61299691A priority Critical patent/JPS63151924A/en
Publication of JPS63151924A publication Critical patent/JPS63151924A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • G02F1/1397Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell the twist being substantially higher than 90°, e.g. STN-, SBE-, OMI-LC cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To obtain an electrooptical element showing hue similar to white as the hue of its appearance and showing hue similar to black as its appearance under a voltage-impressed state by arranging an optical anisotropic substance consisting of at least one layer between a pair of polarizing plates. CONSTITUTION:The titled element is provided with a liquid crystal cell constituted by holding twisted nematic liquid crystal between two opposed electrode bases and a pair of polarizing plates 1, 10 arranged on both the sides of the cell and 90-360 deg. twisting angle is obtained in the thickness direction of the element by adding an optically active substance to the nematic liquid crystal. At least one layer of the optical anisotropic substance in which nematic liquid crystal twisted in a direction different from the twisting direction of the liquid crystal in the cell is arranged between the pair of polarizing plates 1, 10. Consequently, an extremely excellent effect for turning the appearance of the electro- optical element to a color similar to white under the voltage-unimpressed state and to a color similar to black under the impressed state of a selected voltage can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気光学素子、特に電界効果モードに於て時分
割駆動特性が良好なる電気光学素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electro-optical element, and particularly to an electro-optical element that has good time division drive characteristics in field effect mode.

〔従来の技術〕[Conventional technology]

従来のスーパーライスデッドネマチックモード(以下S
TNモードと略記する)全利用した電気光学素子は、特
開昭60−50511のように液晶分子のねじれ角が9
0度以上であり、液晶セルのと下に一対の偏光板を設け
、これらの偏光軸(吸収軸)と、電極基体に隣接する液
晶分子の分子軸方向とがなす挟角が30度から60度の
範囲であった、そのために%液晶セルに対し電圧無印加
状態での外観の色相が黒色ではなく青色となっている。
Conventional super rice dead nematic mode (hereinafter S
An electro-optical device that fully utilizes the TN mode (abbreviated as TN mode) has a twist angle of liquid crystal molecules of 9, as disclosed in Japanese Patent Application Laid-Open No. 60-50511
A pair of polarizing plates are provided below and below the liquid crystal cell, and the included angle between these polarization axes (absorption axes) and the molecular axis direction of the liquid crystal molecules adjacent to the electrode base is between 30 degrees and 60 degrees. Therefore, the external hue of the liquid crystal cell when no voltage is applied is blue instead of black.

第3図は、従来のSTNモードを用いた電気光学素子の
液晶セルと偏光板の偏光軸(吸収軸)の方向の関係を示
す、第3図において、22は液晶セルの上側電極基体の
ラビング方向、23は液晶セルの下側電極基体のラビン
グ方向、24は上側偏光板の偏光軸(吸収軸)の方向、
25は下側偏光板の偏光軸(吸収軸)の方向、26は液
晶セルの液晶分子のねじれ角の方向とその角度(ねじれ
は上から下に向う)、27は下側電極基体のラビング方
向22と上側偏光板の偏光軸(吸収軸)の方向24との
なす角、28は下側電極基体のラビング方向23と下側
偏光板の偏光軸(吸収軸)の方向25とのなす角を示す
Figure 3 shows the relationship between the directions of the polarization axis (absorption axis) of the liquid crystal cell and the polarizing plate of an electro-optical element using the conventional STN mode. In Figure 3, 22 is the rubbing of the upper electrode base of the liquid crystal cell. direction, 23 is the rubbing direction of the lower electrode base of the liquid crystal cell, 24 is the direction of the polarization axis (absorption axis) of the upper polarizing plate,
25 is the direction of the polarization axis (absorption axis) of the lower polarizing plate, 26 is the direction of the twist angle of the liquid crystal molecules of the liquid crystal cell and its angle (the twist is from top to bottom), and 27 is the rubbing direction of the lower electrode base. 22 is the angle formed by the direction 24 of the polarization axis (absorption axis) of the upper polarizing plate, and 28 is the angle formed by the rubbing direction 23 of the lower electrode substrate and the direction 25 of the polarization axis (absorption axis) of the lower polarizing plate. show.

第3図において、角度26を約210111.角度27
を40度から50度の範囲、角度28を40度から50
度の範囲、さらに液晶のΔ6 * d f約0.9μm
とした時の電気光学素子の外観のスペクトルt−第4図
に示す、第4図において、カーブIは電圧無印加状態、
カーブ■は1/100duty駆動によ゛る選択電圧印
加状態でのスペクトルであることt示す。
In FIG. 3, angle 26 is approximately 210,111. angle 27
range from 40 degrees to 50 degrees, angle 28 from 40 degrees to 50 degrees
degree range, and the liquid crystal Δ6 * d f approximately 0.9μm
The spectrum t of the appearance of the electro-optical element when
Curve (2) shows that it is a spectrum when a selected voltage is applied by driving at a duty of 1/100.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のBTMモードを用いた電気光学素子ではその外観
の色相を白くすることはできず、緑色から黄赤色にかけ
ての色相では電気光学素子として心理的に受は入れられ
難いものであった。更に選択電圧印加時の色相も黒では
なく青色となりこれも電気光学素子としては好ましい色
相ではなかった。
In electro-optical elements using conventional BTM mode, it is not possible to make the external hue white, and hues ranging from green to yellow-red are psychologically difficult to accept as electro-optical elements. Furthermore, the hue upon application of the selection voltage was not black but blue, which was also not a desirable hue for an electro-optical element.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、一対の偏光板の間に少なくとも
一層の光学的異方体を備えることにより外観の色相が白
に近い色相を示し、更に電圧印加状態では外観が黒に近
い色相を示す電気光学素子を提供することにある。更に
温反変化による色相特性のずれを防ぐことを目的とし、
光学的異方体のΔルと液晶セルのΔ3を等しくすること
SUMMARY OF THE INVENTION The present invention is intended to solve these problems, and its purpose is to provide at least one layer of optically anisotropic material between a pair of polarizing plates, thereby exhibiting a hue close to white in appearance; Another object of the present invention is to provide an electro-optical element that exhibits a hue close to black in appearance when a voltage is applied. Furthermore, with the aim of preventing deviations in hue characteristics due to temperature changes,
To make ΔR of the optical anisotropic body equal to Δ3 of the liquid crystal cell.

そして更に光学的異方体のΔndと液晶セルのΔndt
−等しくすることにより、コントラストd!良い、常に
外観の色相が黒に近い色相を示し、更に電圧印加状態で
は外観が白に近い色相を示す電気光学素子を提供する。
Furthermore, Δnd of the optical anisotropic body and Δndt of the liquid crystal cell
- By equalizing the contrast d! To provide an electro-optical element which always exhibits a hue close to black in appearance and further exhibits a hue close to white in appearance when a voltage is applied.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電気光学素子は、対向する2枚の電極基体間に
ねじれ配向したネマチック液晶を挾持してなる液晶セル
と、前記液晶セルを挾んで両側に配置された一対の偏光
板上偏見、前記ネマチック液晶に旋光性物質全添加する
ことにより素子の厚さ方向に90度より大きく360度
未満のねじれ角を有する電気光学素子において、前記一
対の偏光板の間に少なくとも一層の光学的異方体全備え
ることを特徴とするわ 〔実施列〕 第1図は、本発明のん;気光学素子の閘造紮モデル的に
示した酌1面図である。同図において、1はth:側偏
光板、2は光学的異方体としての液晶セル(以後、上セ
ルと呼ぶ)、3は上セルの上側基体、4は上セルの下側
基体、5は上セルの液晶、6は表示を行なう液晶セル(
以後、表示セルと呼ぶ)。
The electro-optical element of the present invention includes a liquid crystal cell formed by sandwiching twisted oriented nematic liquid crystal between two electrode substrates facing each other, a pair of polarizing plates disposed on both sides sandwiching the liquid crystal cell, and In an electro-optical element having a twist angle of more than 90 degrees and less than 360 degrees in the thickness direction of the element by adding an optically active substance to the nematic liquid crystal, at least one layer of optically anisotropic material is provided between the pair of polarizing plates. Characteristics [Implementation row] FIG. 1 is a top view of a cup of the present invention, which is shown as a rigging model of the pneumatic optical element. In the figure, 1 is a th: side polarizing plate, 2 is a liquid crystal cell as an optically anisotropic body (hereinafter referred to as the upper cell), 3 is the upper base of the upper cell, 4 is the lower base of the upper cell, and 5 is the liquid crystal of the upper cell, and 6 is the liquid crystal cell that performs display (
(Hereafter referred to as display cell).

7は表示セルの上側電極基体、8は表示セルの下01l
11!極基体、9は表示セルの液晶、 10は下側偏光
板を示したものである。第2図は本発明の電気光学素子
の各軸の関係を示した図である。同図において、 11
は表示セルの下側電極基体のラビ/グ方向、 12は表
示セルのと側電極基体のラビング方向。
7 is the upper electrode base of the display cell, 8 is the lower 01l of the display cell
11! A polar substrate, 9 a liquid crystal of a display cell, and 10 a lower polarizing plate. FIG. 2 is a diagram showing the relationship between the respective axes of the electro-optical element of the present invention. In the same figure, 11
12 is the rubbing direction of the lower electrode base of the display cell, and 12 is the rubbing direction of the lower electrode base of the display cell.

13は上セルの下側基体に隣接する上セル内の液晶分子
の分子軸の方向、 14は上セルの上側基体に隣接する
上セル内の液晶分子の分子軸の方向、15は下側偏光板
の偏光軸(吸収軸)の方向、16は上側偏光板の偏光軸
(吸収軸)の方向、 17は表示セル内の液晶分子が土
から下に向ってねじれる方向とその角度%18は上セル
の下側基体に隣接する上セル内の液晶分子の分子軸の方
向13に対する表示セルの北側電極基体のラビング方向
12のなす角度、19は上側偏光板の偏光軸(吸収軸)
の方向16に対するとセルの上側基体に隣接する上セル
内の液晶分子の分子軸の方向14のな丁角反、20は表
示セルの下側電極基体のラビング方向11に対する下側
偏光板の偏光軸(吸収軸)の方向15のなす角度、21
は上セル内の液晶分子が上から下に向ってねじれる方向
とその角度を示している。ここでは左回りを正としてい
る。
13 is the direction of the molecular axis of the liquid crystal molecules in the upper cell adjacent to the lower substrate of the upper cell, 14 is the direction of the molecular axis of the liquid crystal molecules in the upper cell adjacent to the upper substrate of the upper cell, and 15 is the lower polarized light. The direction of the polarization axis (absorption axis) of the plate, 16 is the direction of the polarization axis (absorption axis) of the upper polarizing plate, 17 is the direction in which the liquid crystal molecules in the display cell are twisted downward from the soil, and the angle % 18 is the upward direction. The angle formed by the rubbing direction 12 of the north electrode substrate of the display cell with respect to the molecular axis direction 13 of the liquid crystal molecules in the upper cell adjacent to the lower substrate of the cell, 19 is the polarization axis (absorption axis) of the upper polarizing plate.
20 is the polarization of the lower polarizing plate with respect to the rubbing direction 11 of the lower electrode substrate of the display cell. Angle formed by direction 15 of axis (absorption axis), 21
indicates the direction and angle in which the liquid crystal molecules in the upper cell are twisted from top to bottom. Here, counterclockwise rotation is considered positive.

〔実施同−l〕[Implementation same-l]

WIt造は第1図と同様である。第2図に示した関係に
ついては1表示セルの液晶9のねじれ角17を約左21
0度とし、Δn−dk約0.9μmとするそして、上セ
ルの液晶セルの液晶5のねじれ角21を約右330度、
Δnodを約右よ、05μmとした。さらに、角度18
’1i80度から100度の範囲、角度19y!c−4
0度から一50度の範囲、角度20に40度から50度
の範囲とした。このときの電気光学素子の外観のスペク
トルを第5図に示す、第5図において、カーブIは電圧
無印加状態、カーブ■は1/100 chbty駆動に
よる選択電圧印加状態でのスペクトルであることを示す
、第4図かられかるように従来技術による電気光学素子
の外観は%電圧無印加状態では黄色となジ%選択電圧印
加状態では黄色となってしまう、しかし、本実施列の電
気光学素子では、第5図に示したように、電圧無印加状
態では白色に近く1選択電圧印加状態では黒色に近い外
観色となっている。
The structure of WIt is the same as that shown in FIG. Regarding the relationship shown in Figure 2, the twist angle 17 of the liquid crystal 9 of one display cell is approximately 21 to the left.
0 degrees and Δn-dk about 0.9 μm, and the twist angle 21 of the liquid crystal 5 of the upper liquid crystal cell is about 330 degrees to the right.
Δnod was set to about 05 μm on the right. Furthermore, the angle 18
'1i range from 80 degrees to 100 degrees, angle 19y! c-4
The range was 0 degrees to 150 degrees, and the angle was 20 degrees to 40 degrees to 50 degrees. The spectrum of the appearance of the electro-optical element at this time is shown in Fig. 5. In Fig. 5, curve I is the spectrum with no voltage applied, and curve ■ is the spectrum with the selective voltage applied by 1/100 chbty drive. As can be seen from FIG. 4, the appearance of the electro-optical element according to the prior art is yellow when no voltage is applied, and yellow when a selective voltage is applied.However, the electro-optical element of this embodiment As shown in FIG. 5, the appearance color is close to white when no voltage is applied, and close to black when one selection voltage is applied.

以上より実施列−1では%電気光学素子において、液晶
セルを挾んで両側に配置された一対の偏光板の間に少な
くとも一層の光学的異方体に備えることより、電気光学
素子の外観が、電圧無印加状態で白色に近い色2選択電
圧印加状態で黒色に近い色となることを確簡できた。
From the above, in Example 1, the appearance of the electro-optical element is improved by providing at least one layer of optically anisotropic material between the pair of polarizing plates placed on both sides of the liquid crystal cell. It was confirmed that when the voltage was applied, the color was close to white, and when the voltage was applied, the color was close to black.

〔実!M例−2〕 構造は第1図と同様である。第2図に示した関係につい
ては1表示セルの液晶9のねじれ角17を左210度と
し、Δn・dを約0.9μmとする。
〔fruit! Example M-2] The structure is the same as in FIG. 1. Regarding the relationship shown in FIG. 2, the twist angle 17 of the liquid crystal 9 of one display cell is 210 degrees to the left, and Δn·d is approximately 0.9 μm.

そして、とセルの液晶5のねじれ角21t−右210度
、Δn*df約0.9Amとした。さらに、角度18を
80度から100度の範囲、角度19’i140度から
一50度の範囲、角度20’に40度から関度の範囲と
した。このときの電気光学素子の外観のスペクトルt−
第6図に示す、同図において、カーブIは電圧無印加状
態、カーブ■は1/100d1Lty駆動による選択電
圧印加状態でのスペクトルであることを示す、第4図か
られかるように従来技術による電気光学素子の外観は、
電圧無印加状態でに黄色となり1選択電圧印加状態では
青色となってしまう、しかし1本発明の電気光学素子で
は、第6図に示したように、を田無印加状態では白色に
近く、選択電圧印加状態では無色に近い外物色となり、
コントラストも十分となっている。
The twist angle of the liquid crystal 5 of the cell was 21t - 210 degrees to the right, and Δn*df was about 0.9 Am. Further, the angle 18 was set in the range from 80 degrees to 100 degrees, the angle 19'i was set in the range from 140 degrees to 150 degrees, and the angle 20' was set in the range from 40 degrees to 150 degrees. Spectrum t- of the appearance of the electro-optical element at this time
As shown in Fig. 6, curve I is the spectrum in the state where no voltage is applied, and curve 2 is the spectrum in the state in which the selected voltage is applied by 1/100d1Lty drive. The appearance of the electro-optical element is
When no voltage is applied, the color becomes yellow, and when a selected voltage is applied, it becomes blue. However, in the electro-optical element of the present invention, as shown in FIG. In the applied state, the external color becomes almost colorless,
Contrast is also sufficient.

以上より1本発明の実施例−2でに表示セルの液晶のね
じれ角が左210°でΔnodが約0.9μm、hセル
の液晶のねじれ角が右210°で△nodが約0.9μ
mであるような電気光学素子において、液晶セルを挾ん
で両側に配置された一対の偏光板の間に少なくとも一層
の光学的異方体を備えること、iに液晶セルのΔnod
と光学的異方体のΔル・di等しくすることによフ電気
光学素子の外殼が、電圧無印加状態で白色に近い色、選
択電圧印加状態で黒色に近い色となり、コントラストも
十分であることを確認できた。
From the above, in Example 2 of the present invention, when the twist angle of the liquid crystal of the display cell is 210° to the left, Δnod is about 0.9 μm, and when the twist angle of the liquid crystal of the h cell is 210° to the right, Δnod is about 0.9 μm.
m, an electro-optical element having at least one layer of optical anisotropy between a pair of polarizing plates disposed on both sides of the liquid crystal cell, and where i is Δnod of the liquid crystal cell.
By making ΔL-di of the optical anisotropic body equal to ΔL-di of the optical anisotropic body, the outer shell of the electro-optical element becomes a color close to white when no voltage is applied, and a color close to black when a selective voltage is applied, and the contrast is sufficient. I was able to confirm that.

〔実施例−3〕 構造は第1図と同様である。第2図に示した関係につい
ては1表示セルの液晶9のねじれ角17を左120,1
50,180,240,270゜300.330度とし
、ΔnIIdを約0.9μmとする。そしてとセルの液
晶5のねじれ角21を表示セルに対応して右120−,
150.180.240.270,300,330度と
し、Δn・dk約0.9μmとした。さらに、角度18
’e80度から100度の範囲、角度19を一40度か
ら一50反の範囲、角度20t”40度から50度の範
囲とした。このときの電気光学特性の外観上表1に示す
[Example 3] The structure is the same as that shown in FIG. Regarding the relationship shown in Figure 2, the twist angle 17 of the liquid crystal 9 of one display cell is 120,1
50, 180, 240, 270 degrees, 300 degrees, and 330 degrees, and ΔnIId is approximately 0.9 μm. And the twist angle 21 of the liquid crystal 5 of the cell is set to the right 120-, corresponding to the display cell.
The angles were 150, 180, 240, 270, 300, and 330 degrees, and Δn·dk was approximately 0.9 μm. Furthermore, the angle 18
'e ranged from 80 degrees to 100 degrees, angle 19 ranged from 140 degrees to 150 degrees, and angle 20t ranged from 40 degrees to 50 degrees.The appearance of the electro-optical characteristics at this time is shown in Table 1.

第4図かられかるように従来技術による電気光学素子の
外観は、電圧無印加状態では黄色となシ選択電圧印加状
態では青色となってしまう、しかし2本笑施例の電気光
学素子では2表1に示したように、電圧無印加状態では
白色に近く1選択電圧印加状態では黒色に近い外観色と
なり、コントラストも十分となっている。
As can be seen from FIG. 4, the appearance of the electro-optical element according to the prior art is yellow when no voltage is applied, and blue when a selective voltage is applied. As shown in Table 1, the appearance color is white when no voltage is applied, and close to black when one selection voltage is applied, and the contrast is sufficient.

以上よ)、実施列−3では1表示セルの液晶のねじれ角
が左120.150.180.240 。
Above), in implementation row-3, the twist angle of the liquid crystal of one display cell is 120.150.180.240 to the left.

270.300,330度でΔB*dが約0.9μm、
とセルの液晶のねじれ角が表示セルに対応して右120
,150,180,240,270,300.330度
でΔnodが約0.9Amであるような電気光学素子に
おいて、液晶セルを挾んで両側に配置された一対の偏光
板の間に少なくとも一層の光学的異方体ヲ伽えること、
更に液晶セルのΔnodと光学的異方体のΔn@df%
しくすることにより、電気光学素子の外観が、電圧無印
加状態で白色に近い色1選択電圧印加状態で黒色に近い
色になり、コントラストも十分であることを確認できた
270. ΔB*d is approximately 0.9 μm at 300 and 330 degrees,
and the twist angle of the liquid crystal of the cell is 120 to the right corresponding to the display cell.
, 150, 180, 240, 270, 300. In an electro-optical element in which Δnod is approximately 0.9 Am at 330 degrees, there is at least one layer of optical difference between a pair of polarizing plates placed on both sides of the liquid crystal cell. To celebrate the square,
Furthermore, Δnod of the liquid crystal cell and Δn@df% of the optical anisotropic body
By adjusting the electro-optical element, the appearance of the electro-optical element became close to white when no voltage was applied, and close to black when a color 1 selection voltage was applied, and it was confirmed that the contrast was sufficient.

表  1 〔実施列−4〕 構造は第1図と同様である。第2図に示した関係につい
ては1表示セルの液晶9のねじれ角17を左210°と
し、Δn @ d ヲ0.5 、0.6 、0.7 。
Table 1 [Implementation row-4] The structure is the same as that in FIG. Regarding the relationship shown in FIG. 2, assuming that the twist angle 17 of the liquid crystal 9 of one display cell is 210 degrees to the left, Δn @ d is 0.5, 0.6, 0.7.

0.8 、1.0 、1.1 、1.2 、1.3μm
とする。そして上セルの液晶5のねじれ角21t−右2
1o0とし、Δ7@adf表示セApに対応して0.5
 、0.6 、0.7、0.8 、1.0 、1.1 
、1.2 、1.3μmとした。
0.8, 1.0, 1.1, 1.2, 1.3μm
shall be. And the twist angle 21t of the liquid crystal 5 in the upper cell - right 2
1o0, and 0.5 corresponding to Δ7@adf display SE Ap
, 0.6 , 0.7, 0.8 , 1.0 , 1.1
, 1.2, and 1.3 μm.

さらに、角曳18’t80度から1001iの範囲。Furthermore, the angle range is 18't80 degrees to 1001i.

角度19に一40度から一50度の範囲、角度加を40
度から50度の範囲とした。このときの電気光学特性の
外観を表2に示す。
Add 40 degrees to angle 19 in the range of 140 degrees to 150 degrees.
The range was from 50 degrees to 50 degrees. Table 2 shows the appearance of the electro-optical characteristics at this time.

第4図かられかるように従来技術による電気光学素子の
外観は、電圧無印加状態では黄色となフ選択電圧印加状
態では青色となってしまう、しかし1本実施列の電気光
学素子では1表2に示したように、電圧無印加状態では
白色に近く、選択電圧印加状態では黒色に近い外観色と
なり、コントラストも十分となっている。
As can be seen from Fig. 4, the appearance of the electro-optical element according to the prior art is yellow when no voltage is applied and blue when a selective voltage is applied. As shown in Fig. 2, the appearance color is close to white when no voltage is applied, and the appearance color is close to black when a selected voltage is applied, and the contrast is sufficient.

以上より、実施列−4では、表示セルの液晶のねじれ角
が左210度テΔn ψdが0.5 、0.6 。
From the above, in implementation row-4, the twist angle of the liquid crystal of the display cell is 210 degrees to the left, and Δn ψd is 0.5 and 0.6.

0.7 、0.8 、1.0 、1.1 、1.2 、
1.3μmg上セル上セルのねじれ角が右210度でΔ
n@dが表示セルに対応して0.5 、0.6 、0.
7 、0.8 、1.0、1.1 、1.2 、1.3
 Jimであるような電気光学素子において、液晶セル
を挾んで両側に配置された一対の偏光板の間に少なくと
も一層の光学的異方体を備えること、更に液晶セルのΔ
n@dと光学的異方体のΔn−df等しくすることによ
り1、電気光学素子の外観が、電圧無印加状態で白色に
近い色1選択電圧印加状態で黒色に近い色になり。
0.7, 0.8, 1.0, 1.1, 1.2,
1.3 μmg Upper cell The twist angle of the upper cell is 210 degrees to the right and Δ
n@d corresponds to the display cell and is 0.5, 0.6, 0.
7, 0.8, 1.0, 1.1, 1.2, 1.3
In an electro-optical element such as Jim, at least one optically anisotropic material is provided between a pair of polarizing plates placed on both sides of a liquid crystal cell, and further, the Δ of the liquid crystal cell is
By making n@d equal to Δn-df of the optically anisotropic body, the appearance of the electro-optical element becomes close to white when no voltage is applied, and close to black when a selective voltage is applied.

コントラストも十分であることを確認できた。It was confirmed that the contrast was also sufficient.

表  2 〔実施列−5〕 構造は第1図と同様である。第2図に示した関係につい
ては1表′示セルの液晶9のねじれ角17を左210度
とし、dt−6Amとする。そして。
Table 2 [Implementation row-5] The structure is the same as in FIG. Regarding the relationship shown in FIG. 2, it is assumed that the twist angle 17 of the liquid crystal 9 of the cell shown in Table 1 is 210 degrees to the left and dt-6Am. and.

上セルの液晶5のねじれ角21を右210度、dt″6
μmとした。また1表示セル、上セルに△n= 0.1
5  の液晶を封入した。さらに角度18’i80度か
ら100度の範囲、角度19’!5−40度から一50
度の範囲、角度20t−40度から50度の範囲とした
。このときの温度と電気光学特注の外観の関係を表3に
示す。
The twist angle 21 of the liquid crystal 5 in the upper cell is 210 degrees to the right, dt″6
It was set as μm. Also, △n = 0.1 in 1 display cell, upper cell
5 liquid crystals were sealed. Furthermore, angle 18'i ranges from 80 degrees to 100 degrees, angle 19'! 5-40 degrees to 150 degrees
The angle ranged from 20t-40 degrees to 50 degrees. Table 3 shows the relationship between the temperature and the appearance of the custom-made electro-optic.

表  3 第4図かられかるように従来技術による電気光学素子の
外観は電圧無印加状態では黄色となり、選択電圧印加状
態では青色となってしまう、しかし1本発明の電気光学
素子では5表3に示したように、a度が1υ℃〜50’
Cの間では外観の変化が全くなく、常に電圧無印加状態
では白色に近く1選択電圧印加状態では黒色に近い外観
色となり、コントラストも十分となっている。
Table 3 As can be seen from FIG. 4, the appearance of the electro-optical element according to the prior art is yellow when no voltage is applied, and blue when a selective voltage is applied.However, in the electro-optical element of the present invention, As shown in , a degree is 1υ℃~50'
There is no change in appearance between C and C, and the appearance color is close to white when no voltage is applied, and close to black when one selection voltage is applied, and the contrast is sufficient.

以上より、実施列−5では1表示セルの液晶のねじれ角
が左210度でdが6μm、上セルの液晶のねじれ角が
右210度でdが6μm9表示セルと上セルの液晶のΔ
nが0.15  で等しいような電気光学素子において
、液晶セルを挾んで両側に配置された一対の偏光板の間
に少なくとも一層の光学的異方体t−備えること、更に
液晶セルのdと光学的異方体のdが等しいこと、液晶セ
ルと光学的異方体に等しいΔnの液晶全封入することに
より電気゛光学素子の外観が少なくとも10℃〜・50
’Cの間で、常に、1!圧無印加状態では白色に近い色
From the above, in row-5, the twist angle of the liquid crystal in one display cell is 210 degrees to the left and d is 6 μm, and the twist angle of the liquid crystal in the upper cell is 210 degrees to the right and d is 6 μm.
In an electro-optical element in which n is equal to 0.15, at least one layer of optically anisotropic material t- is provided between a pair of polarizing plates placed on both sides of the liquid crystal cell, and d of the liquid crystal cell and optically The appearance of the electro-optical element is at least 10°C to 50°C by making sure that the d of the anisotropic body is equal and completely filling the liquid crystal cell with Δn equal to that of the liquid crystal cell and the optically anisotropic body.
Between 'C, always 1! When no pressure is applied, the color is close to white.

選択電圧印加状態で黒色に近い色となり、コントラスト
も十分であることを確認できた。
When the selective voltage was applied, the color became close to black, and it was confirmed that the contrast was sufficient.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、対向する2枚の電極
基体間にねじれ配向したえマチック液晶を挾持してなる
液晶セルと、その液晶セルを挾んで両側に配置された一
対の偏光板を備え、ネマチック液晶に旋光性物質を添加
することにより素子の厚さ方向に90度よシ大きく36
0度未満のねじれ角を有する電気光学素子において、一
対の偏光板の間に少なくとも一層の液晶セル内の液晶の
ねじれ方向と異なる方向にねじれたネマチック液晶を封
入した光学的異方体を備えることにより。
As described above, according to the present invention, there is provided a liquid crystal cell in which twistedly oriented ematic liquid crystal is sandwiched between two electrode substrates facing each other, and a pair of polarizing plates disposed on both sides sandwiching the liquid crystal cell. By adding an optically active substance to the nematic liquid crystal, it is possible to increase the angle by 90 degrees in the thickness direction of the device.
In an electro-optical element having a twist angle of less than 0 degrees, an optically anisotropic body having at least one layer of nematic liquid crystal twisted in a direction different from the twist direction of the liquid crystal in a liquid crystal cell is enclosed between a pair of polarizing plates.

電気光学素子の外観が%電圧無印加状部で白色に近い色
、選択電圧印加状態で黒色に近い色となるという極めて
優れた効果が得られる。
An extremely excellent effect can be obtained in that the appearance of the electro-optical element becomes a color close to white when no voltage is applied, and a color close to black when a selective voltage is applied.

更に、液晶セルと光学的異方体の液晶のねじれ全異方向
に等しくシ、Δn*dfそろえることにより、電気光学
素子の外観が、電圧無印加状態では白色に近い〜色、選
択電圧印加状態で黒色に近い色となり、−コントラスト
も十分であるという効果が得られる。
Furthermore, by aligning the liquid crystal cell and the liquid crystal of the optically anisotropic body in all different directions of twist, the appearance of the electro-optical element can be changed to a color that is close to white when no voltage is applied, and when a selected voltage is applied. The effect is that the color becomes close to black and the contrast is sufficient.

また、液晶セルと光学異方体のdt−等しくシ。Also, the dt of the liquid crystal cell and the optically anisotropic body are equal.

同じΔnを持つ液晶を封入することにより少なくともl
O℃〜50’Cの間では、温度による電気光学素子の外
観の変化がなく、常に電圧印加状部で白色に近い色1選
択電圧印加状態で黒色に近い色となシ、コントラストも
十分であるという効果が得られる。
By enclosing liquid crystals with the same Δn, at least l
Between 0°C and 50'C, there is no change in the appearance of the electro-optical element due to temperature, and the color is always close to white in the voltage application state, and the color is close to black in the 1 selection voltage application state, and the contrast is sufficient. You can get the effect that there is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電気光学素子の構造をモデル的に説明
した断面図、第2図は本発明の電気光学素子の各軸の関
係を示した図、第3図は従来技術による電気光学素子の
各軸の関係を示した図、第4図は従来技術による電気光
学素子の外観の波長と透過率特性の関係を示した図、第
5図は本発明の実施列−1の電気光学素子の外観の波長
と透過率%注の関係を示した図、第6図は本発明の実施
列−2の電気光学素子の外観の波長と透過率特性の関係
金示した図。 l・・・上側偏光板 2−・・光学的異方体としての液晶セル(上セル) 3書・・上セルの上側基体 4・拳・上セルの下側基体 5・・・1セルの液晶 6・・・表示を行なう液晶セル(表示セル)7自・・表
示セルの上側電極基体 8・・・表示セルの下側電極基体 9・・・表示セルの液晶 10・°・・下側偏光板 11−・・表示セルの下側電極基体のラビング方向 12・・・表示セルの上側電極基体のラビング方向 13・・・上セルの下側基体に隣接する上セル内の液晶
分子の分子軸の方向 14・・・とセルの上側基体に隣接する上セル内の液晶
分子の分子軸の方向 15・・拳下側偏光板の偏光軸(吸収軸)の方向16・
・・上側偏光板の偏光軸(吸収軸)の方向17・・・表
示セル内の液晶分子が上から下に向かってねじれた方向
とその角度 18・・・方向13に対する方向12のなす角度19・
・・方向16に対する方向14のなす角度頷・・・方向
11に対する方向15のなす角度21@・・とセルの中
の液晶分子が上から下に向かってねじれる方向とその角
度 ご・・・液晶セルの上側電極基体のラビング方向 お・・・液晶セルの下側電極基体のラビング方向 ス・・・上側偏光板の偏光軸(吸収軸)の方向δ・・・
下側偏光板の偏光軸(吸収軸)の方向茂・・・液晶セル
の液晶分子のねじれ角の方向とその角度 n・・・上側電極基体のラビング方向nと上側偏光板の
偏光軸(吸収軸)の方向2!とのなす角 あ・・・下側電極基体のラビング方向羽と下側偏光板の
偏光軸(吸収軸)の方向5と のなす角。 以   上 出願人 セイコーエプソン株式会社 代理人 弁珈士最 上  務他1名 :==::=:=====チー1 □10 第1 図 第71図 (%) 第今1ズ
FIG. 1 is a cross-sectional view illustrating the structure of the electro-optical element of the present invention as a model, FIG. 2 is a diagram showing the relationship between the axes of the electro-optical element of the present invention, and FIG. 3 is an electro-optic according to the prior art. FIG. 4 is a diagram showing the relationship between the respective axes of the element, FIG. 4 is a diagram showing the relationship between external wavelength and transmittance characteristics of an electro-optical element according to the prior art, and FIG. 5 is an electro-optical element according to embodiment row-1 of the present invention. FIG. 6 is a diagram showing the relationship between the wavelength of the external appearance of the element and the transmittance characteristic; FIG. l... Upper polarizing plate 2 -... Liquid crystal cell as an optically anisotropic body (upper cell) Book 3... Upper base of upper cell 4, fist, lower base of upper cell 5... of 1 cell Liquid crystal 6...Liquid crystal cell (display cell) that performs display 7...Upper electrode base of display cell 8...Lower electrode base of display cell 9...Liquid crystal 10 of display cell...°...lower side Polarizing plate 11 -- Rubbing direction of the lower electrode base of the display cell 12 -- Rubbing direction of the upper electrode base of the display cell 13 -- Molecules of liquid crystal molecules in the upper cell adjacent to the lower base of the upper cell The direction of the axis 14... and the direction of the molecular axis of the liquid crystal molecules in the upper cell adjacent to the upper substrate of the cell 15... The direction of the polarization axis (absorption axis) of the lower polarizing plate 16.
... Direction of the polarization axis (absorption axis) of the upper polarizing plate 17 ... The direction in which the liquid crystal molecules in the display cell are twisted from top to bottom and its angle 18 ... Angle 19 formed by direction 12 with respect to direction 13・
...The angle formed by the direction 14 with respect to the direction 16...The angle 21 @ formed by the direction 15 with respect to the direction 11...The direction in which the liquid crystal molecules in the cell are twisted from top to bottom and the angle thereof...Liquid crystal Rubbing direction of the upper electrode base of the cell...Rubbing direction of the lower electrode base of the liquid crystal cell...Direction δ of the polarization axis (absorption axis) of the upper polarizing plate...
The direction of the polarization axis (absorption axis) of the lower polarizing plate...The direction of the twist angle of the liquid crystal molecules of the liquid crystal cell and its angle n...The rubbing direction n of the upper electrode base and the polarization axis (absorption axis) of the upper polarizing plate. axis) direction 2! Angle between the rubbing direction wing of the lower electrode substrate and direction 5 of the polarization axis (absorption axis) of the lower polarizing plate. Applicant: Seiko Epson Co., Ltd. Agent, Attorney Mogami Tsutomu and 1 other person: ==::=:=====Qi 1 □10 Figure 1 Figure 71 (%) Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)対向する2枚の電極基体間にねじれ配向したネヤ
チック液晶を挾持してなる液晶セルと、前記液晶セルを
挾んで両側に配置された一対の偏光板を備え、前記ネマ
チック液晶に旋光性物質を添加することにより素子の厚
さ方向に90度より大きく360度未満のねじれ角を有
する、気光学素子において、前記一対の偏光板の間に少
なくとも一層の光学的異方体を備えることを特徴とする
電気光学素子。
(1) A liquid crystal cell consisting of a twistedly oriented nematic liquid crystal sandwiched between two opposing electrode substrates, and a pair of polarizing plates placed on both sides sandwiching the liquid crystal cell, the nematic liquid crystal has optical rotation. An air optical element having a twist angle of more than 90 degrees and less than 360 degrees in the thickness direction of the element by adding a substance, characterized in that at least one layer of optically anisotropic material is provided between the pair of polarizing plates. electro-optical element.
(2)光学的異方体の屈折率異方性Δnと層厚dとの積
Δn・dが液晶セルのΔn・dと相等しいことを特徴と
する特許請求の範囲第1項記載の電気光学素子。
(2) The electricity according to claim 1, characterized in that the product Δn·d of the refractive index anisotropy Δn of the optically anisotropic body and the layer thickness d is equal to Δn·d of the liquid crystal cell. optical element.
(3)光学的異方体がネマチック液晶からなり、該ネマ
チック液晶のねじれ角と液晶セル内のネマチック液晶の
ねじれ角がほぼ等しく、且つねじれ方向が異なることを
特徴とする特許請求の範囲第1項又は第2項記載の電気
光学素子。
(3) Claim 1, wherein the optically anisotropic body is made of nematic liquid crystal, and the twist angle of the nematic liquid crystal is approximately equal to that of the nematic liquid crystal in the liquid crystal cell, and the twist directions are different. The electro-optical element according to item 1 or 2.
(4)光学的異方体の屈折率異方性と液晶セルの屈折率
異方性とが相等しいことを特徴とする特許請求の範囲第
1項又は第3項記載の電気光学素子。
(4) The electro-optical element according to claim 1 or 3, wherein the refractive index anisotropy of the optically anisotropic body and the refractive index anisotropy of the liquid crystal cell are equal.
JP61299691A 1986-12-16 1986-12-16 Electrooptical element Pending JPS63151924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61299691A JPS63151924A (en) 1986-12-16 1986-12-16 Electrooptical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61299691A JPS63151924A (en) 1986-12-16 1986-12-16 Electrooptical element

Publications (1)

Publication Number Publication Date
JPS63151924A true JPS63151924A (en) 1988-06-24

Family

ID=17875798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61299691A Pending JPS63151924A (en) 1986-12-16 1986-12-16 Electrooptical element

Country Status (1)

Country Link
JP (1) JPS63151924A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6478231A (en) * 1987-09-18 1989-03-23 Ricoh Kk Liquid crystal display element
JPH01235925A (en) * 1988-03-16 1989-09-20 Sharp Corp Projection type display device
JPH0219825A (en) * 1988-07-07 1990-01-23 Fujitsu Ltd Liquid crystal display device
JPH0233129A (en) * 1988-07-22 1990-02-02 Matsushita Electric Ind Co Ltd Liquid crystal panel
JPH02123325A (en) * 1988-11-01 1990-05-10 Asahi Glass Co Ltd Color liquid crystal display device
JPH02210322A (en) * 1989-02-09 1990-08-21 Sharp Corp Projection type liquid crystal display device
US5134507A (en) * 1988-07-12 1992-07-28 Sharp Kabushiki Kaisha Liquid crystal display apparatus having a particular optical compensating member
US5291322A (en) * 1991-03-25 1994-03-01 Hitachi, Ltd. Supertwisted, nematic liquid crystal display device with LC birefringence at least 0.2 and LC retardation at least 1 micrometer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6478231A (en) * 1987-09-18 1989-03-23 Ricoh Kk Liquid crystal display element
JPH01235925A (en) * 1988-03-16 1989-09-20 Sharp Corp Projection type display device
JPH0219825A (en) * 1988-07-07 1990-01-23 Fujitsu Ltd Liquid crystal display device
US5134507A (en) * 1988-07-12 1992-07-28 Sharp Kabushiki Kaisha Liquid crystal display apparatus having a particular optical compensating member
US5462621A (en) * 1988-07-12 1995-10-31 Sharp Kabushiki Kaisha Method of forming an optical compensating plate of a liquid crystal display apparatus
JPH0233129A (en) * 1988-07-22 1990-02-02 Matsushita Electric Ind Co Ltd Liquid crystal panel
JPH02123325A (en) * 1988-11-01 1990-05-10 Asahi Glass Co Ltd Color liquid crystal display device
JPH02210322A (en) * 1989-02-09 1990-08-21 Sharp Corp Projection type liquid crystal display device
US5291322A (en) * 1991-03-25 1994-03-01 Hitachi, Ltd. Supertwisted, nematic liquid crystal display device with LC birefringence at least 0.2 and LC retardation at least 1 micrometer

Similar Documents

Publication Publication Date Title
JP2537608B2 (en) Liquid crystal display
JPS63151924A (en) Electrooptical element
JPH02124529A (en) Two-layer type liquid crystal display device
JP3990754B2 (en) Reflective monochrome liquid crystal display
JPH01219720A (en) Liquid crystal electrooptic element
JPS6073525A (en) Liquid crystal display element
JP2813222B2 (en) Liquid crystal display device
JPH01118113A (en) Liquid crystal display panel
JP2789595B2 (en) Liquid crystal electro-optical element
JPS62145215A (en) Liquid crystal display element
KR100326440B1 (en) Liquid crystal display having film type compensation cell and method for fabricating the same
JPS62247329A (en) Liquid crystal display element
JPH02153315A (en) Liquid crystal display device
JPS63274924A (en) Liquid crystal display element
JPS63291031A (en) Electrooptic element
JPS63289526A (en) Electrooptic element
JP2651843B2 (en) Operation method of liquid crystal element
JPS6329726A (en) Liquid-crystal display element
JPS6423224A (en) Liquid crystal display device
JPH0229629A (en) Liquid crystal element
JP2780221B2 (en) Electro-optical device
JPH01282519A (en) Liquid crystal element
JPH0228618A (en) Liquid crystal display element
JP2815006B2 (en) Electro-optical device
JPS6290619A (en) Liquid crystal display device