[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63150245A - Production of carboxylic acid ester - Google Patents

Production of carboxylic acid ester

Info

Publication number
JPS63150245A
JPS63150245A JP29617286A JP29617286A JPS63150245A JP S63150245 A JPS63150245 A JP S63150245A JP 29617286 A JP29617286 A JP 29617286A JP 29617286 A JP29617286 A JP 29617286A JP S63150245 A JPS63150245 A JP S63150245A
Authority
JP
Japan
Prior art keywords
anhydride
acid
ether
reaction
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29617286A
Other languages
Japanese (ja)
Inventor
Norio Okada
岡田 憲夫
Osamu Takahashi
収 高橋
Hiroaki Kezuka
博明 毛塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP29617286A priority Critical patent/JPS63150245A/en
Publication of JPS63150245A publication Critical patent/JPS63150245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To simplify post-treatment steps, e.g. distillation step of the product, etc., efficiently, industrially and advantageously obtain the titled novel compound in high yield without forming water, by reacting a carboxylic acid anhydride with an ether in the presence of an acid catalyst. CONSTITUTION:A carboxylic acid anhydride, e.g. acetic anhydride, etc. expressed by formula I (R<1> and R<2> are H or monofunctional hydrocarbon group) or phthalic anhydride, etc., expressed by formula II (R<3> is bifunctional hydrocarbon group, etc.) is reacted with an ether expressed by formula III (R<4> and R<5> are monofunctional hydrocarbon group), e.g. ethyl ether, etc., or formula IV (R<6>-R<11> are H or hydrocarbon group), e.g. dimethyl ether, etc., if necessary, in a solvent in the presence of an acid catalyst normally at 30-350 deg. under ordinary pressure - 50atmG pressure to afford the aimed compound, e.g. compound expressed by formula V, IV, etc. BF3.O(Et)2, FeCl2, SnCl4, heteropoly acids, sulfuric acid, zirconium phosphate, etc., are used as the acid catalyst.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、カルボン酸エステルの製造方法に関するす
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a carboxylic acid ester.

[従来の技術およびその問題点] カルボン酸エステルは、通常、対応するカルボン酸とア
ルコールとのエステル化(脱水縮合)により製造されて
いる。そして、エステル化に際して、通常、多量の水が
副生する。副生じた水は未反応アルコールおよび生成物
であるエステルと共沸物を形成するので、生成物の単離
が困難になるなどの欠点を有している。
[Prior art and its problems] Carboxylic acid esters are usually produced by esterification (dehydration condensation) of a corresponding carboxylic acid and an alcohol. During esterification, a large amount of water is usually produced as a by-product. Since the by-produced water forms an azeotrope with the unreacted alcohol and the product ester, it has drawbacks such as difficulty in isolating the product.

[発明の目的J この発明の目的は、前記問題点を解決し、水を生成する
ことがなく、カルボン酸エステルのみが生成するような
まったく新規な反応による、工業上著しく有利なカルボ
ン酸エステルの製造方法を提供することにある。
[Objective of the Invention J The object of the present invention is to solve the above-mentioned problems and to produce a carboxylic acid ester which is extremely advantageous industrially by a completely new reaction that does not produce water and only produces a carboxylic ester. The purpose is to provide a manufacturing method.

[前記目的を達成するための手段1 この発明者らが、前記事情に基き、新規でかつ工業上有
利なカルボン酸エステルの製造方法について鋭意研究を
重ねた結果、おどろくべきことに、カルボン酸無水物と
エーテルとを特定の触媒の存在下に反応させると、カル
ボン酸エステルのみが生成するという新規でかつ効率の
よい反応を見出し、この知見に基き、この発明を完成す
るに至った。
[Means for Achieving the Object 1 Based on the above circumstances, the present inventors have conducted intensive research into a new and industrially advantageous method for producing carboxylic acid esters, and have surprisingly discovered that carboxylic acid anhydride They discovered a novel and efficient reaction in which only carboxylic acid esters are produced when a compound and an ether are reacted in the presence of a specific catalyst, and based on this knowledge, they completed the present invention.

すなわち、この発明は、カルボン酸無水物とエーテルと
を酸触媒の存在下で反応させることを特徴とするカルボ
ン酸エステルの製造方法である。
That is, the present invention is a method for producing a carboxylic acid ester, which is characterized by reacting a carboxylic acid anhydride and an ether in the presence of an acid catalyst.

以下に、この発明の方法を詳細に説明する。The method of this invention will be explained in detail below.

この発明方法の反応原料の1つであるカルポン酸無水物
としては、鎖状のカルボン酸無水物、環状のカルボン酸
無水物など様々なカルボン酸無水物を使用することがで
きるが、通常、次の一般式(第[1]式、第[2]式)
で表されるカルボン酸無水物が好適に使用できる。
As the carboxylic anhydride, which is one of the reaction raw materials in the method of this invention, various carboxylic anhydrides such as chain carboxylic anhydride and cyclic carboxylic anhydride can be used, but the following are usually used. General formula (Equation [1], Equation [2])
A carboxylic acid anhydride represented by can be suitably used.

ここで、前記式中、1lil 、 R2は、それぞれ、
水素原子、1価の炭化水素基を表す。
Here, in the above formula, 1lil and R2 are each,
Represents a hydrogen atom or a monovalent hydrocarbon group.

この炭化水素基としては、飽和または不飽和の鎖式炭化
水素基、環式炭化水素基、芳香族系炭化水素基などがあ
り、より具体的には、たとえば、炭素数1−12(以下
、01〜C12のように示す。)のアルキル基、C3〜
C20好ましくは05〜C10のシクロアルキル基、0
2〜C20のアルケニル基、C2〜C20のアルキニル
基、C6〜cte、好ましくは08〜C12のアリール
基、C7〜C17、好ましくは、07〜C13のアラル
キル基などを挙げることができる。
Examples of this hydrocarbon group include a saturated or unsaturated chain hydrocarbon group, a cyclic hydrocarbon group, an aromatic hydrocarbon group, and more specifically, a carbon number of 1 to 12 (hereinafter referred to as 01-C12) alkyl group, C3-
C20 preferably 05 to C10 cycloalkyl group, 0
Examples include a 2-C20 alkenyl group, a C2-C20 alkynyl group, a C6-cte, preferably 08-C12 aryl group, and a C7-C17, preferably 07-C13 aralkyl group.

ただし、前記R1、R2は、必ずしも前記の基に限定さ
れるものではなく、この発明方法の反応に支障が生じな
いものであれば、たとえば、ハロゲン原子、酸素原子、
窒素原子、リン原子、イオウ原子、ケイ素原子などのへ
テロ原子を含有する置換基を有する1価の置換炭化水素
基、もしくは前記へテロ原子を含有する1価の置換炭化
水素基であってもよい。
However, R1 and R2 are not necessarily limited to the above-mentioned groups, and as long as they do not interfere with the reaction of the method of this invention, for example, halogen atoms, oxygen atoms,
Even if it is a monovalent substituted hydrocarbon group having a substituent containing a heteroatom such as a nitrogen atom, a phosphorus atom, a sulfur atom, or a silicon atom, or a monovalent substituted hydrocarbon group containing the above heteroatom. good.

なお、前記R1、R2は互いに同じ基であっても、異な
った基であってもよい。
Note that R1 and R2 may be the same group or different groups.

ここで、前記式中、R3は2価の炭化水素基等を表す。Here, in the above formula, R3 represents a divalent hydrocarbon group or the like.

この炭化水素基としては、飽和および不飽和の鎖状炭化
水素基、環式炭化水素基、芳香族系炭化水素基などがあ
る。
Examples of the hydrocarbon group include saturated and unsaturated chain hydrocarbon groups, cyclic hydrocarbon groups, and aromatic hydrocarbon groups.

この炭化水素基として、より具体的には、たとえば、0
2〜CI2のフルキレン基、C3〜C20の、好ましく
はC5〜CIOのシクロアルキレン基、C2〜C20の
アルキニレン、C2〜C2Gのアルキニレン基、06〜
C1Bの、好ましくは06〜C12のフェニレン等のア
リーレン基、C7〜C17の、好ましくは07〜C13
のアラルキレン基もしくは一方がアルキル基であって他
の一方がアリール基である2価の炭化水素基などを挙げ
ることができる。
More specifically, this hydrocarbon group includes, for example, 0
2-CI2 fullkylene group, C3-C20, preferably C5-CIO cycloalkylene group, C2-C20 alkynylene, C2-C2G alkynylene group, 06-
C1B, preferably 06-C12 arylene group such as phenylene, C7-C17, preferably 07-C13
Examples include an aralkylene group, or a divalent hydrocarbon group in which one side is an alkyl group and the other side is an aryl group.

ただし、前記R3は、必ずしも前記の基に限定されるも
のではなく、この発明方法の反応に支障を生じないもの
であれば、たとえば、ハロゲン原子、酸素原子、窒素原
子、リン原子、イオウ原子、ケイ素原子などのへテロ原
子を含有する置換基を有する2価の置換炭化水素基、も
しくは前記へテロ原子を含有する2価の置換′鹸化水素
基であってもよい。
However, R3 is not necessarily limited to the above-mentioned groups, and as long as it does not interfere with the reaction of the method of this invention, for example, a halogen atom, an oxygen atom, a nitrogen atom, a phosphorus atom, a sulfur atom, It may be a divalent substituted hydrocarbon group having a substituent containing a heteroatom such as a silicon atom, or a divalent substituted 'saponified hydrogen group containing the above-mentioned heteroatom.

前記第[11式で表されるカルボン酸無水物の具体例を
単なる例示の目的で示すと、たとえば;ギ酸無水物、無
水酢酸、プロピオン酸無水物、醋酸無水物、イソ醋酸無
水物、吉草酸無水物、イソ吉草酸無水物、2−メチル醋
酸無水物、ピバル酸無水物、ヘキサン酸無水物、ヘプタ
ン酸無水物、オクタン酸無水物、デカン酸無水物、ウン
デカン酸無水物、ドデカン酸無水物、テトラデカン酸無
水物、ヘキサデカン酸無水物、オクタデカン酸無水物、
酢酸プロピオン酸無水物、酢酸ブタン酸無水物などの飽
和鎖式カルボン酸無水物ニ アクリル酸無水物、メタクリル酸無水物、l。
Specific examples of the carboxylic acid anhydride represented by the formula [11] are shown for the purpose of mere illustration: formic acid anhydride, acetic anhydride, propionic anhydride, acetic acid anhydride, isoacetic anhydride, valeric acid Anhydride, isovaleric anhydride, 2-methylacetic anhydride, pivalic anhydride, hexanoic anhydride, heptanoic anhydride, octanoic anhydride, decanoic anhydride, undecanoic anhydride, dodecanoic anhydride , tetradecanoic anhydride, hexadecanoic anhydride, octadecanoic anhydride,
Saturated chain carboxylic acid anhydrides such as acetic propionic anhydride, acetic butanoic anhydride, diacrylic anhydride, methacrylic anhydride, l.

2−ブテン酸無水物、3−ブテン酸無水物、ペンテン酸
無水物、ヘキセン酸無水物、オクテン酸無水物、デセン
酸無水物、ウンデセン酸無水物、ドデセン酸無水物、テ
トラデセン酸無水物、ヘキサデセン酸無水物、オクタデ
セン酸無水物、2−ブチン酸無水物、3−〜キシじ酸無
水物、オクタデシン酸無水物、酢酸アクリル酸無水物、
酢酸ブテン酸無水物、酢酸ヘキシン酸無水物、などの不
飽和鎖式カルボン酸無水物: シフはペンタンカルボン酸無水物、シクロヘキサンカル
ボン酸無水物、メチルシクロヘキサンカルポン酸無水物
、シクロヘキシルメタンカルボン酸無水物、シクロヘキ
サンカルボン酸無水物、シクロオクタンカルボン酸無水
物、シクロヘキシンカルボン酸無水物、酢酸シクロヘキ
サン無水物などの飽和または不飽和の環式カルボン酸の
酸無水物: 安息香酸無水物、オルトメチル安息香酸無水物、メタメ
チル安息香酸無水物、パラメチル安息香酸無水物、ジメ
チル安息香酸無水物、トリメチル安息香酸無水物、テト
ラメチル安息香酸無水物、ペンタメチル安息香酸無水物
、エチル安息香酸無水物、プロピル安息香酸無水物、ブ
チル安息香酸無水物、ヘキシル安息香酸無水物、ドデシ
ル安息香酸無水物、ビニル安息香酸無水物、プロペニル
安息香酸無水物、フェニル安息香酸無水物、シクロヘキ
シル安息香酸無水物、フェニルメタンカルボン酸無水物
、1−フェニルエタンカルボン酸無水物、2−フェニル
エタンカルボン酸無水物、ナフタレンカルボン酸無水物
、メチルナフタレンカルボン酸無水物、酢酸安息香酸無
水物、酢酸メチル安息香酸無水物、テレフタル酸二酢酸
無水物などの芳香族カルボン酸無水物: クロロ酢酸無水物、フルオロ酢酸無水物、クロロ安息香
酸無水物、アセチル安息香酸無水物などの置換カルボン
酸無水物等を挙げることができる。
2-butenoic anhydride, 3-butenoic anhydride, pentenoic anhydride, hexenoic anhydride, octenoic anhydride, decenoic anhydride, undecenoic anhydride, dodecenoic anhydride, tetradecenoic anhydride, hexadecene Acid anhydride, octadecenoic anhydride, 2-butic acid anhydride, 3- to xydic acid anhydride, octadecic acid anhydride, acetic acid acrylic anhydride,
Unsaturated chain carboxylic anhydrides such as acetic butenoic anhydride, acetic hexic anhydride, etc. Schiff is pentanecarboxylic anhydride, cyclohexanecarboxylic anhydride, methylcyclohexanecarboxylic anhydride, cyclohexylmethanecarboxylic anhydride Anhydrides of saturated or unsaturated cyclic carboxylic acids such as cyclohexanecarboxylic anhydride, cyclooctanecarboxylic anhydride, cyclohexanecarboxylic anhydride, acetic acid cyclohexane anhydride: benzoic anhydride, orthomethylbenzoic acid Anhydride, metamethylbenzoic anhydride, paramethylbenzoic anhydride, dimethylbenzoic anhydride, trimethylbenzoic anhydride, tetramethylbenzoic anhydride, pentamethylbenzoic anhydride, ethylbenzoic anhydride, propylbenzoic anhydride Butylbenzoic anhydride, hexylbenzoic anhydride, dodecylbenzoic anhydride, vinylbenzoic anhydride, propenylbenzoic anhydride, phenylbenzoic anhydride, cyclohexylbenzoic anhydride, phenylmethanecarboxylic anhydride , 1-phenylethanecarboxylic anhydride, 2-phenylethanecarboxylic anhydride, naphthalenecarboxylic anhydride, methylnaphthalenecarboxylic anhydride, acetic benzoic anhydride, acetic methylbenzoic anhydride, terephthalic diacetic anhydride Aromatic carboxylic acid anhydrides such as chloroacetic anhydride, fluoroacetic anhydride, chlorobenzoic anhydride, acetylbenzoic anhydride, and other substituted carboxylic acid anhydrides.

これらの中でも、無水酢酸、プロピオン酸無水物等のア
ルカン酸無水物;安息香酸無水物、メチル安息香酸無水
物等の芳香族カルボン酸無水物等が好適に使用できる。
Among these, alkanoic acid anhydrides such as acetic anhydride and propionic anhydride; aromatic carboxylic acid anhydrides such as benzoic anhydride and methylbenzoic anhydride can be preferably used.

前記第[21式で表される環状カルボン酸無水物の具体
例を限定ではなく単に例示の目的で示すと、 たとえば、無水コハク酸、無水マレイン酸、メチルフタ
ル酸無水物、エチルフタル酸無水物、ジメチルフタル酸
無水物、メチル−2−ブテンニ酸無水物、エチルフタル
酸無水物、ペンタンニ酸無水物、メチルフタル酸無水物
、エチルフタル酸無水物、ヘキサンニ酸無水物、無水フ
タル酸、メチルフタル酸無水物、ジメチルフタル酸無水
物、エチルフタル酸無水物、1,2,4.5−ベンゼン
テトラカルボン酸無水物などを挙げることができる。
Specific examples of the cyclic carboxylic acid anhydride represented by the formula [21] are shown merely for the purpose of illustration and not limitation: For example, succinic anhydride, maleic anhydride, methyl phthalic anhydride, ethyl phthalic anhydride, dimethyl Phthalic anhydride, methyl-2-butene dianhydride, ethyl phthalic anhydride, pentanedic anhydride, methyl phthalic anhydride, ethyl phthalic anhydride, hexane dianhydride, phthalic anhydride, methyl phthalic anhydride, dimethyl phthalic anhydride Examples include acid anhydride, ethyl phthalic anhydride, and 1,2,4.5-benzenetetracarboxylic anhydride.

これらの中でも、無水マレイン酸、無水フタル酸、無水
コハク酸等を好適に使用することができる。
Among these, maleic anhydride, phthalic anhydride, succinic anhydride, etc. can be preferably used.

なお、これらのカルボン酸無水物は1種単独で用いても
、2種以上を併用してもよい。
Note that these carboxylic acid anhydrides may be used alone or in combination of two or more.

この発明の方法の他の1つの反応原料である前記エーテ
ルは、エーテル結合と炭化水素酸より構成されるエーテ
ル類であれば特に制限はなく、たとえば、次の一般式(
第[31式、第[4]式)で表されるエーテル等の鎖状
エーテルおよび環状エーテルを挙げることができる。
The ether, which is another reaction raw material in the method of the present invention, is not particularly limited as long as it is an ether composed of an ether bond and a hydrocarbon acid. For example, the ether has the following general formula (
Examples include chain ethers and cyclic ethers such as the ethers represented by formulas [31 and 4].

R4−0−R5[3] ここで、1li4 、1li5は、それぞれ1価の炭化
水素基を表す。この炭化水素基としては、前記第[1]
式のl(I 、 1li2の中で炭化水素に該当するも
のを挙げることができる。なお、R4とR5は、互いに
異なる基であっても、同一の基であってもよい。
R4-0-R5[3] Here, 1li4 and 1li5 each represent a monovalent hydrocarbon group. As this hydrocarbon group, the above-mentioned [1]
Of the formulas 1(I and 1li2), those corresponding to hydrocarbons can be mentioned. Note that R4 and R5 may be different groups or may be the same group.

ここで、1li6 、 R7、R8、R9、RIGおよ
びR11は、それぞれ水素原子または炭化水素基を表し
、より具体的には前記第[11式のR1、R2の中で、
水素源□子または炭化水素基に該当する基を表す。
Here, 1li6, R7, R8, R9, RIG and R11 each represent a hydrogen atom or a hydrocarbon group, and more specifically, among R1 and R2 in the formula [11],
Represents a group corresponding to a hydrogen source or a hydrocarbon group.

なお、前記R6〜R11は、互いに同一の基であっても
、異なった基であってもよい。また、nは、θ〜10の
整数、好ましくは、1〜8の整数を表す。
Note that R6 to R11 may be the same group or different groups. Further, n represents an integer of θ to 10, preferably an integer of 1 to 8.

また、前記エーテルの例として、上記の一般式で示され
るエーテルのほかに、ベンゾフラン、ジオキサン、トリ
オキサン等の環状エーテル、1.2−    ’ジメト
キシエタン、1.2−ジメトキシエタン、1.3−ジメ
トキシプロパン、1.4−ジメトキシブタン、〇−エチ
ルポリオキシエチレンなどの鎖式ポリエーテルおよびこ
れらの炭化水素基置換誘導体等を挙げることができる。
In addition to the ether represented by the above general formula, examples of the ether include cyclic ethers such as benzofuran, dioxane, and trioxane, 1.2-'dimethoxyethane, 1.2-dimethoxyethane, and 1.3-dimethoxyethane. Examples include chain polyethers such as propane, 1,4-dimethoxybutane, and 0-ethylpolyoxyethylene, and hydrocarbon group-substituted derivatives thereof.

前記エーテルの具体例を限定ではなく単に例示の目的で
示すと、たとえば、ジメチルエーテル、ジエチルエーテ
ル、ジプロピルエーテル、ジイソプロピルエーテル、ジ
ブチルエーテル、ジアリルエーテル、ジアリルエーテル
、ジオクチルエーテル、ジシクロヘキシルエーテル、ジ
フェニルエーテル、ビス(4〜メチルフエニル)エーテ
ル、ジベンジルエーテル、ジビニルエーテル、ジアリル
エーテル、エチルメチルエーテル、メチルフェニルエー
テル、エチルフェニルエーテル、エチルビニルエーテル
、エチルプロピルエーテル、メチルプロピルエーテル、
1,2−ジェトキシエタン、1゜2−ジメトキシエタン
、1.2−ヅメキシ−1−メチルエタン、1,3−ジメ
トキシプロパン、1.4−ジェトキシエタン、0−エチ
ルポリオキシエチレン、0−フェニルポリオキシフェニ
レン、ジメトキシベンゼン、ジェトキシベンゼン等の鎖
状エーテル;エチレンオキシド、プロピレンオキシド、
1,2−エポキシブタン、2−ブテンエポキシド、2,
3−エポキシブタン、スチレンオキシド1.1,3−エ
ポキシプロパン、1,3−エポキシブタン、テトラヒド
ロフラン、メチルオキソラン、ジメチルオキソラン、エ
チルオキソラン、プロピルオキソラン、2,5−ジヒド
ロフラン、フラン、1,3−ジオキソラン、1,5−エ
ポキシペンタン、1,4−ジオキサン、1.3−ジオキ
サン、4,4−ジメチル−1,3−ジオキサン、1,3
.5−トリオキサン、メチル−1,5−エポキシペンタ
ン、l。
Specific examples of the ethers are given by way of illustration and not limitation, such as dimethyl ether, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, diallyl ether, diallyl ether, dioctyl ether, dicyclohexyl ether, diphenyl ether, bis( 4-methyl phenyl) ether, dibenzyl ether, divinyl ether, diallyl ether, ethyl methyl ether, methyl phenyl ether, ethyl phenyl ether, ethyl vinyl ether, ethyl propyl ether, methyl propyl ether,
1,2-jethoxyethane, 1゜2-dimethoxyethane, 1,2-dumexy-1-methylethane, 1,3-dimethoxypropane, 1,4-jethoxyethane, 0-ethylpolyoxyethylene, 0-phenylpolyoxyphenylene, Chain ethers such as dimethoxybenzene and jetoxybenzene; ethylene oxide, propylene oxide,
1,2-epoxybutane, 2-butene epoxide, 2,
3-epoxybutane, styrene oxide 1.1,3-epoxypropane, 1,3-epoxybutane, tetrahydrofuran, methyloxolane, dimethyloxolane, ethyloxolane, propyloxolane, 2,5-dihydrofuran, furan, 1,3-dioxolane, 1,5-epoxypentane, 1,4-dioxane, 1,3-dioxane, 4,4-dimethyl-1,3-dioxane, 1,3
.. 5-trioxane, methyl-1,5-epoxypentane, l.

6−ニポキシヘキサン、1,7−エポキシへブタン、1
゜4−エポキシシクロヘキサン等の環状エーテル等を挙
げることができる。
6-nipoxyhexane, 1,7-epoxyhebutane, 1
Examples include cyclic ethers such as 4-epoxycyclohexane.

これらの中でもジメチルエーテル、ジエチルエーテル、
テトラヒドロフラン等を特に好適に使用することができ
る。
Among these, dimethyl ether, diethyl ether,
Tetrahydrofuran and the like can be particularly preferably used.

なお、これらのエーテルは1種単独で用いても2種以上
を併用しても良い。
Note that these ethers may be used alone or in combination of two or more.

この発明の方法で触媒として使用する前記酸触媒として
は、プロトン酸、非プロトン酸、プロトン酸でありかつ
非プロトン酸である酸物質、あるいはこれらを含有する
酸物質、使用時にプロトン酸および/または非プロトン
酸として機能することのできる酸物質前駆体などを挙げ
ることができる。
The acid catalyst used as a catalyst in the method of the present invention includes a protic acid, an aprotic acid, an acid substance that is both a protic acid and an aprotic acid, or an acid substance containing these, and when used, a protic acid and/or Examples include acid substance precursors that can function as aprotic acids.

これらの酸、酸を含有する酸物質は、有機酸、無機酸、
有機酸でありかつ無機酸である酸物質もしくは酸物質前
駆体あるいは、これらのうちの1種または2種以上を含
有する酸物質もしくは酸物質前駆体のいずれのものであ
ってもよく、また、その使用する状態あるいは使用時の
状態が、固体状、気体状、液体状または、溶液状もしく
は分散状あるいはこれらの任意の組み合せの状態であっ
てもよい。
These acids and acid substances containing acids include organic acids, inorganic acids,
It may be any acid substance or acid substance precursor that is both an organic acid and an inorganic acid, or an acid substance or acid substance precursor containing one or more of these, and The state in which it is used or the state in which it is used may be a solid state, a gaseous state, a liquid state, a solution state, a dispersion state, or any combination thereof.

これらの様々の酸、酸物質もしくは酸物質前駆体のうち
、本発明方法において好適に使用されるものを、慣例と
して行われている群に分類して限定ではなく単に例示の
目的で示すと。
Among these various acids, acid substances or acid substance precursors, those suitable for use in the process of the present invention are presented by way of example only, and not by way of limitation, in the customary groupings.

(a群) 周期表Ia、Ib、IIa、Ilb、ma、I[Ib、
IVa 、 IVb 、 Va 、 Vb 、 VIa
 、■bおよび■族の金属元素もしくは半金属元素また
はリン、イオウ等のハロゲン化物、オキシハロゲン化物
またはこれらの金属元素、半金属元素、リン、イオウ等
の元素の中から選択される2種以上の元素を含有する複
合ハロゲン化物、複合オキシハロゲン化物等のいわゆる
狭義のルイス酸; (ここで、ハロゲンとしては、フッ素、塩素、臭素、ヨ
ウ素の中から選択される1種または2種以上のものを挙
げることができる。): (b群) ツー2化水素、塩化水素、臭化水素、ヨウ化水素等のハ
ロゲン化水素酸等の非酸素酸系プロトン酸:硫酸、リン
酸等の無機酸素酸系プロトン酸;クロロスルホン酸、フ
ロオロスルホン酸、ベンゼンスルホン酸、トルエンスル
ホン酸、メタンスルホン酸、エタンスルホン酸、トリフ
ルオロメタンスルホン酸等のスルホン酸系プロトン酸等
のプロトン酸; (0群) ゼオライト、モルデナイト等の結晶性アルミノシリケー
トもしくはアルミノケイ酸、ベントナイト、モンモリロ
ナイト、活性目土等の酸性粘土鉱物;シリカアルミナ、
アルミナボリア、シリアチタニア、イソポリ酸、ヘテロ
ポリ酸等の酸性複合酸化物;五酸化リン、三酸化イオウ
、酸化ニオブ、酸タングステン等の強酸性固体酸化物;
リン酸ジルコニウム、結晶性リン酸ジルコニウム、無水
リン酸アルミニウム等の酸性金属リン酸塩;硫酸アルミ
ニウム、硫酸チタこル、硫酸ジルコニル等の酸性硫酸塩
または酸性オキシ硫酸塩;強酸性型陽イオン交換樹脂;
硫酸、リン酸等を、シリカ、アルミナ、ケイソウ士およ
び活性炭などの担体に担持もしくは付着させた固体酸な
どの固体酸;など挙げることができる。
(Group a) Periodic table Ia, Ib, IIa, Ilb, ma, I[Ib,
IVa, IVb, Va, Vb, VIa
, ■ b and ■ group metal elements or metalloid elements, halides such as phosphorus, sulfur, oxyhalides, or two or more types selected from these metal elements, metalloid elements, phosphorus, sulfur, etc. So-called Lewis acids in the narrow sense, such as complex halides and complex oxyhalides containing the elements; (Here, halogen is one or more selected from fluorine, chlorine, bromine, and iodine. ): (Group b) Non-oxygen protonic acids such as hydrohalic acid such as hydrogen dihydride, hydrogen chloride, hydrogen bromide, and hydrogen iodide: Inorganic oxygen such as sulfuric acid and phosphoric acid Acidic protonic acids; Protonic acids such as sulfonic protonic acids such as chlorosulfonic acid, fluorosulfonic acid, benzenesulfonic acid, toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid; (Group 0) Crystalline aluminosilicate or aluminosilicate such as zeolite and mordenite, acidic clay minerals such as bentonite, montmorillonite, and activated clay; silica alumina,
Acidic composite oxides such as alumina boria, syria titania, isopoly acid, and heteropolyacid; strongly acidic solid oxides such as phosphorus pentoxide, sulfur trioxide, niobium oxide, and tungsten acid;
Acidic metal phosphates such as zirconium phosphate, crystalline zirconium phosphate, and anhydrous aluminum phosphate; Acidic sulfates or acidic oxysulfates such as aluminum sulfate, titanium sulfate, and zirconyl sulfate; Strongly acidic cation exchange resins ;
Examples include solid acids such as sulfuric acid, phosphoric acid, etc., supported or attached to a carrier such as silica, alumina, diatomite, and activated carbon;

前記(a群)の具体例としては、たとえば、NaX、 
LiX 、  BeXz、 MgX2. BI3 、 B2 I4、AJLh、Ga
X3、InX、  InX2、InX3 、 TiX 
、 TiX3、TiX4.5iXn 、 5i2es 
、 5i3Xs、5ipX+a、5i5X+2、GeX
、  GeX2、GeX4.5nX2.5nX4. P
X3 、 PXs 、 P2X4、AsX3、AsX5
  、5bx3  、5bXs  、 BiX、  B
1X2  、Bih  、  TiX2 、  TiX
3 、 TiXa  、 ZrX2  、ZrX3  
、 ZrXa  、  VX2  、  VX3  、
  WXa  、 CrX2  、CrX3  、 M
oX2  、 MOX3  、 MOX4  、 MO
X5  、WX2.  Wh  、  WX4.  W
Xs  、  WXa  、 MnX2  、N!Ix
3  、 NllX4  、 ReX3  、 R[!
X4  、 ReX5  、FeX2  、 FeX3
  、 COx2  、 CoX:+  、 GoXn
  、NiX2  、  RuX 、  RuX2  
、 RIIX3  、 RuX1+  、RuX:+ 
 、 Ir13  、 PtX2  、 PtX4  
、 PdXz  、08X3  、 GuX 、  C
uX2  、 AuX、  AuX2  、 ZnXz
  、CdX2.  Hg2X 2  、 HgX2 
 、 5nOX2  、 POX3  、GrOXn 
、 MOOX4 、 NaI4. Re0X3(コ;−
テ、Xは、F、C1、Br、Iの中から選ばれる1種ま
たは2種以上を表す。)などを挙げることができる。
Specific examples of the above (group a) include, for example, NaX,
LiX, BeXz, MgX2. BI3, B2 I4, AJLh, Ga
X3, InX, InX2, InX3, TiX
, TiX3, TiX4.5iXn, 5i2es
, 5i3Xs, 5ipX+a, 5i5X+2, GeX
, GeX2, GeX4.5nX2.5nX4. P
X3, PXs, P2X4, AsX3, AsX5
, 5bx3 , 5bXs , BiX, B
1X2, Bih, TiX2, TiX
3, TiXa, ZrX2, ZrX3
, ZrXa, VX2, VX3,
WXa, CrX2, CrX3, M
oX2, MOX3, MOX4, MO
X5, WX2. Wh, WX4. W
Xs, WXa, MnX2, N! Ix
3, NllX4, ReX3, R[!
X4, ReX5, FeX2, FeX3
, COx2, CoX:+, GoXn
, NiX2, RuX, RuX2
, RIIX3 , RuX1+ , RuX:+
, Ir13, PtX2, PtX4
, PdXz, 08X3, GuX, C
uX2, AuX, AuX2, ZnXz
, CdX2. Hg2X 2, HgX2
, 5nOX2, POX3, GrOXn
, MOOX4, NaI4. Re0X3(ko;-
TE and X represent one or more selected from F, C1, Br, and I. ), etc.

なお、これらのルイス酸、プロトン酸、固体酸等は、前
記反応時に酸触媒として機能できるものであれば、それ
らのエーテル錯体、アミン錯体、アンミン錯体、ホスフ
ィン錯体、ニトリル錯体、カルボニル錯体、オレフィン
錯体、アクア錯体、などの様々な錯体として、あるいは
、アンモニウム錯体、ホスホニウム塩、オキソニウム塩
のようなオニウム塩などの塩、水、アルコール、ケトン
、ニトリル、ハロゲン化炭化水素、エステル、エーテル
などの溶液などとして使用することも可能である。
In addition, these Lewis acids, protonic acids, solid acids, etc. can be used as ether complexes, amine complexes, ammine complexes, phosphine complexes, nitrile complexes, carbonyl complexes, and olefin complexes, as long as they can function as acid catalysts during the above reaction. , as various complexes such as aqua complexes, or as ammonium complexes, phosphonium salts, salts such as onium salts such as oxonium salts, solutions of water, alcohols, ketones, nitriles, halogenated hydrocarbons, esters, ethers, etc. It is also possible to use it as

また、これらの酸、酸物質もしくは酸物質前駆体は、前
記反応に使用する前に、必要に応じて。
Furthermore, these acids, acid substances, or acid substance precursors may be used as necessary before being used in the reaction.

熱処理、脱水処理等の活性化処理を施して用いることが
可能であり、中でも、固体酸化物系の固体酸触媒は、通
常、この加熱脱水処理によって活性化したのち、反応に
使用するのが望ましい。
It can be used after being subjected to activation treatments such as heat treatment and dehydration treatment. Among these, solid oxide-based solid acid catalysts are usually desirably activated by this heat dehydration treatment before being used in the reaction. .

前記固体酸等の固体状の酸触媒は、その使用する形状に
は特に制限はなく、必要に応じて、ピース状(球状)、
ペレット状、棒状、細片状、板状、顆粒状、粉末状、微
粉末状、超微粒子状、繊維状、中空系状、管状、円管状
、クロス状、モノリス体などの様々な形状で用いること
ができ、その使用方式としても、固定層方式、流通層、
移動層、懸濁状態などの様々の方式で用いることができ
る。
The solid acid catalyst such as the solid acid mentioned above is not particularly limited in its shape, and may be piece-shaped (spherical),
Used in various shapes such as pellets, rods, strips, plates, granules, powder, fine powder, ultrafine particles, fibers, hollow systems, tubes, cylinders, crosses, and monoliths. It can be used in fixed layer method, distribution layer method,
It can be used in various ways, such as in a moving bed or in a suspended state.

これらの様々な酸触媒の中でも、とくに好適に使用でき
るものを限定ではなく、単に例示の目的で示すと、たと
えば、三フフ化ホウ素、エーテル錯体、塩化第二鉄、四
塩化スズ、 12−モリブドリン酸、 I2−モリブド
ケイ酸、 12−タングストリン酸、 12−タングス
トケイ酸などのへテロポリ酸、硫酸、結晶性リン酸ジル
コニウム、等を挙げることができる。
Among these various acid catalysts, those which can be particularly preferably used are shown merely for the purpose of illustration and not limitation, such as boron trifluoride, ether complex, ferric chloride, tin tetrachloride, and 12-molybdoline. Acids, heteropolyacids such as I2-molybdosilicic acid, 12-tungstophosphoric acid, and 12-tungstosilicic acid, sulfuric acid, crystalline zirconium phosphate, and the like.

なお、これら酸触媒は、1種単独で用いても、2種以上
を組合せて用いることもできる。さらに、これらの触媒
中には、必要により、活性の向上、選択性の向上、触媒
寿命改善等を目的とした、種々の助触媒、添加物等を添
加して用いてもよい。
Note that these acid catalysts may be used alone or in combination of two or more. Furthermore, various co-catalysts, additives, etc. may be added to these catalysts, if necessary, for the purpose of improving activity, improving selectivity, improving catalyst life, etc.

この発明の方法では、前記カルボン酸無水物と前記エー
テルとを前記酸触媒の存在下に反応させて1種または2
種以上のカルボン酸エステルを生成せしめる。
In the method of the present invention, one or two of the carboxylic acid anhydrides and the ether are reacted in the presence of the acid catalyst.
Generates more than one type of carboxylic acid ester.

この生成するカルボン酸エステルの種類やその種類の数
、2種以上のカルボン酸エステルが生成する場合にはそ
れらの割合などは、使用するカルボン酸無水物、エーテ
ルの種類、使用割合その他の条件によって異なる。
The types of carboxylic acid esters produced, the number of these types, and if two or more types of carboxylic esters are produced, their proportions, etc. will depend on the carboxylic acid anhydride used, the type of ether, the usage ratio, and other conditions. different.

この生成するカルボン酸エステルの一般式の例を限定で
はなく、単に使用する反応原料との対応を例示する目的
で以下に示す。
An example of the general formula of the produced carboxylic ester is shown below, not by way of limitation, but merely for the purpose of illustrating the correspondence with the reaction raw materials used.

すなわち、たとえば前記第[月で表されるカルボン酸無
水物と前記第[31式で表されるエーテルとが、副反応
なしに反応した場合には、それぞれ、 RI GOOR4、RIGOOR5、R2GOOR4、
R2GOOR5の一般式で表されるカルボン酸エステル
の生成が可能である。ここで、R1とR2が同一の基で
あり、かつR4とR5とが同一の基である場合には、1
種類のカルボン酸エステルが生成シ、R1とR2または
R4とR5のいずれか一方の組の基が互いに異なる場合
には、2種類のカルボン酸エステルが生成し、さらに、
R1、!−12、R4とR5とのそれぞれが異なる場合
には4種類のカルポン酸エステルの生成が可能である。
That is, for example, when the carboxylic acid anhydride represented by the above [month] and the ether represented by the above [31 formula] react without side reactions, RI GOOR4, RIGOOR5, R2GOOR4,
It is possible to produce a carboxylic acid ester represented by the general formula R2GOOR5. Here, when R1 and R2 are the same group, and R4 and R5 are the same group, 1
Two types of carboxylic esters are generated, and when the groups of either one of R1 and R2 or R4 and R5 are different from each other, two types of carboxylic esters are generated, and further,
R1,! -12, when R4 and R5 are different, four types of carboxylic acid esters can be produced.

前記第【21式で表されるカルボン酸無水物と前記第[
31式で表されるエーテルとが副反応なしに反応した場
合には、 R4−0CO−R3−GOOR5、R40CO−R3−
GOOR4、R50GO−R3−GOOR5 で表されるカルボン酸エステルの生成が可能である。
The carboxylic acid anhydride represented by the formula [21] and the carboxylic acid anhydride represented by the formula [21]
When the ether represented by formula 31 reacts without side reactions, R4-0CO-R3-GOOR5, R40CO-R3-
It is possible to produce a carboxylic acid ester represented by GOOR4, R50GO-R3-GOOR5.

この際、生成するカルボン酸エステルの種類の数は、R
4とR5の組み合せ、 1li3−の対称性などによっ
て変化する。
At this time, the number of types of carboxylic acid esters produced is R
It changes depending on the combination of 4 and R5, the symmetry of 1li3-, etc.

また、前記第[1]式で示されるカルボン酸無水物と、
前記第[41式で表される環状エーテルとが副反応なし
に反応した場合には、 R12GO0C:R6R7−(GR8R9)、l−0R
IOR11OGOR13(ただしR12、R13は、前
記R1またはR2を表す。) で表されるカルボン酸エステルもしくはその混合物生成
が可能である さらに前記第〔21式で表される環状カルボン酸無水物
と前記第[41式で表される環状エーテルとが副反応な
しに長地した場合には、たとえば次式の一般式 (ただし、Pは1以上の整数を表す。)により代表して
表現されるような環状ポリエステル等のポリエステルの
生成が可能である。
Further, a carboxylic acid anhydride represented by the above formula [1],
When the cyclic ether represented by the formula [41] reacts without side reactions, R12GO0C:R6R7-(GR8R9), l-0R
IOR11OGOR13 (wherein R12 and R13 represent R1 or R2) It is possible to produce a carboxylic acid ester or a mixture thereof. When the cyclic ether represented by the formula 41 is produced for a long time without side reactions, for example, the cyclic ether represented by the general formula of the following formula (where P represents an integer of 1 or more) It is possible to produce polyesters such as polyester.

この発明方法において、前記反応は、通常、次に示す方
法によって行うことができる。
In the method of this invention, the reaction can generally be carried out by the following method.

反応に用いる前記カルボン酸無水物([AI酸成分と前
記エーテル([B]酸成分とのモル比(【B]/[A]
 ) Ji、通常0.01〜100 、好マシくは0.
1〜10とする。反応を連続式で行う場合には、このモ
ル比の範囲になるように、適宜連続供給して反応を行え
ばよい。このモル比が、0.01未満であると未反応の
[A] !分の量が多くなり、一方、100を超えると
未反応の[B]酸成分量が多くなって、経済上、生産性
などの点で不利となる場合がある。
The carboxylic acid anhydride ([AI acid component and the ether ([B] molar ratio of the acid component ([B]/[A]
) Ji, usually 0.01-100, preferably 0.
1 to 10. When the reaction is carried out in a continuous manner, the reaction may be carried out by continuously supplying them as appropriate so that the molar ratio falls within this range. If this molar ratio is less than 0.01, unreacted [A]! On the other hand, if it exceeds 100, the amount of unreacted [B] acid component increases, which may be disadvantageous in terms of economy and productivity.

前記酸触媒([C1成分)の使用割合の表現方法は、回
分式、様々な連続流通式などの反応操作法もしくは反応
方式などによって異なり、また、その使用割合は、使用
する酸触媒の種類、形態あるいは他の様々の条件によっ
て異なるので一様に規定もしくは表現することができな
い。したがって、前記[01式分の使用割合を単に例示
の目的で以下に示す。
The method of expressing the usage ratio of the acid catalyst ([C1 component)] differs depending on the reaction operation method or reaction method, such as batch type or various continuous flow type, and the usage ratio depends on the type of acid catalyst used, It cannot be uniformly defined or expressed because it varies depending on the form and various other conditions. Therefore, the usage ratio for the formula [01] is shown below for illustrative purposes only.

すなわち、前記反応を回分式で行う場合、あるいは触媒
と反応物とを同時に流通させて行う反応方式を用いる場
合で、かつ、酸触媒である酸物質自体もしくは酸触媒中
の有効な酸物質成分が、分子式もしくは組成式によって
規定できる酸触媒を使用する場合には、使用する酸触媒
の割合を((プロトン酸のモル数+非プロトン酸のモル
数) / ([A]酸成分モル数十[B]酸成分モル数
))の値が、たとえば、通常0.001〜10程度、好
ましくは0.01〜2程度の範囲に選定して行うことが
できる。この値がo、ootより小さいと反応速度が充
分でない場合があり、一方、10を超えると経済性、生
産性などの点で不利になる場合がある。
That is, when the above reaction is carried out batchwise, or when a reaction method is used in which the catalyst and the reactants are passed through at the same time, and the acid substance itself as the acid catalyst or the effective acid substance component in the acid catalyst is When using an acid catalyst that can be defined by a molecular formula or a compositional formula, the ratio of the acid catalyst used is ((number of moles of protic acid + number of moles of aprotic acid) / ([A] number of moles of acid component [ The value of B] (number of moles of acid component)) can be selected within a range of, for example, usually about 0.001 to about 10, preferably about 0.01 to about 2. If this value is smaller than o or oot, the reaction rate may not be sufficient, while if it exceeds 10, it may be disadvantageous in terms of economy, productivity, etc.

なお、酸触媒として、固体酸や酸成分を含有する混合物
等につき上記の表現法が困難であったり、不適当である
ような酸触媒を使用する場合には、その使用割合を適宜
調節して前記反応を実施することができる。たとえば、
酸触媒として、固体酸等の固体状酸触媒を使用する場合
には、(固体酸の重量(g)/(前記[Al成分の重量
(g)+前記[B]酸成分重量(g) ) )の値が、
通常、0.001〜10程度好ましくは0.01〜2程
度の範囲に設定して行うことができる。この値が0.0
01未満であると反応速度が十分でない場合があり、一
方、10を超えると、経済性、生産性などの点で不利に
なる場合がある。
In addition, when using an acid catalyst for which the above expression is difficult or inappropriate for a solid acid or a mixture containing an acid component, the proportion used should be adjusted as appropriate. The reaction can be carried out. for example,
When using a solid acid catalyst such as a solid acid as the acid catalyst, (weight of solid acid (g)/(weight of the above [Al component (g) + weight of the [B] acid component (g))] ) is
Usually, it can be set to about 0.001 to 10, preferably about 0.01 to 2. This value is 0.0
If it is less than 01, the reaction rate may not be sufficient, while if it exceeds 10, it may be disadvantageous in terms of economy, productivity, etc.

また、固体酸触媒や固定化酸触媒などのような固体状酸
触媒を固定層などのように充填方式で使用し、連続流通
法によって反応を行う場合には、その使用割合を空間速
度で表現するのが適当であるのでこの表現方法を用いる
と、前記反応は、重星空間速度(WH3Vすなわち(1
時間当りに供給する前記rA]Al成分B]酸成分の合
計重量)/(使用する酸触媒の重量)〕が、たとえば通
常0.001〜100hr″1程度、好ましくは0.1
〜50hrl程度に限定して行うことができる。この値
が、0.001未満であると経済性、生産性などの点で
不利になる場合があり、一方、100を超えると反応率
が十分でなく、生産性などが低下する場合がある。
In addition, when a solid acid catalyst such as a solid acid catalyst or a fixed acid catalyst is used in a packed system such as a fixed bed and the reaction is performed by a continuous flow method, the usage ratio is expressed in terms of space velocity. Using this expression, the reaction can be expressed as a double star space velocity (WH3V, or (1
The above rA] Al component B] total weight of acid component supplied per hour/(weight of acid catalyst used)] is, for example, usually about 0.001 to 100 hr''1, preferably 0.1
It can be carried out limited to about 50 hrl. If this value is less than 0.001, it may be disadvantageous in terms of economy and productivity, while if it exceeds 100, the reaction rate may not be sufficient and productivity may decrease.

この反応方式もしくは反応特性法としては、前記の回分
式、連続流通式のほかに、半回分式、パルス式、断続流
通式、循環式、再循環式などの様々な方式・方法を用い
ることができ、これらは必要に応じて適宜組み合せて用
いることが可能である。
As this reaction method or reaction characteristic method, in addition to the batch method and continuous flow method described above, various methods such as semi-batch method, pulse method, intermittent flow method, circulation method, recirculation method can be used. These can be used in appropriate combinations as necessary.

このような場合には、前記[Al成分、[B]酸成分前
記酸触媒、あるいは必要ならば後述の溶媒、不活性ガス
等の希釈剤等信の成分を、同時にまたは別々に、あるい
は、適宜分割して反応系に供給して実施することも可能
である。
In such a case, the [Al component, the [B] acid component, the acid catalyst, or if necessary, the following components such as a solvent and a diluent such as an inert gas may be added simultaneously or separately, or as appropriate. It is also possible to carry out the reaction by dividing it and supplying it to the reaction system.

前記反応を行うに際しての、反応温度は使用する触媒の
種類等によって一様に規定できないが通常30〜350
℃、好ましくは50〜250℃の範囲に設定する。反応
温度が50℃未満であると反応速度が十分でない場合が
あり、一方350℃より高くなると、分解反応などの副
反応が増加したり、触媒の寿命が短かくなるなど不利な
点が生じることがある。
The reaction temperature in carrying out the above reaction cannot be uniformly specified depending on the type of catalyst used, etc., but is usually 30 to 350℃.
℃, preferably in the range of 50 to 250℃. If the reaction temperature is less than 50°C, the reaction rate may not be sufficient, while if it is higher than 350°C, disadvantages such as an increase in side reactions such as decomposition reactions and a shortened catalyst life may occur. There is.

反応圧力は、とくに制限はなく、減圧、常圧、反応系の
自圧、加圧のいずれかの圧力を選択して用いることがで
きるが、通常常圧〜100気圧(ゲージ圧)好ましくは
常圧〜50気圧(ゲージ圧)の範囲に設定して行うこと
ができる。
The reaction pressure is not particularly limited and can be selected from reduced pressure, normal pressure, the autogenous pressure of the reaction system, and increased pressure, but is usually normal pressure to 100 atm (gauge pressure), preferably normal pressure. The pressure can be set in the range of pressure to 50 atmospheres (gauge pressure).

なお、前記反応は、必要に応じて、溶媒および/または
不活性ガス等の希釈剤、および/または添加剤の存在下
で行うことも可能である。
Note that the reaction can be carried out in the presence of a solvent and/or a diluent such as an inert gas, and/or an additive, if necessary.

この溶媒としては、前記反応に実質的に支障の生じない
ものであれば特に制限はなく、様々のものを用いること
が可能である。そのような溶媒の具体例を単に例示・目
的で示すと、たとえば、ベンゼン、トルエン、キシレン
、エチルベンゼン、トリメチルベンゼン等の芳香族炭化
水素類:ヘキサン、オクタン、デカン、ヘキサデカン等
の脂肪族炭化水素類ニジクロヘキサン、メチルシクロヘ
キサン、デカリン、等のナフテン系炭化水素類;酢酸エ
チル、酢酸ブチル、安息香酸メチル、酢酸フェニル、酢
酸シクロヘキシル等のエステル類:アセトン、エチルメ
チルケトン、ベンゾフェノン、アセトフェノン等のケト
ン類;アセトニトリル、ベンゾニトリル等のニトリル類
等;塩化メチレン、四塩化炭素、テトラメチルエチレン
、クロロベンゼン、ジクロロベンゼン、フルオロベンゼ
ン、フルオロトルエン、クロロトルエン等のハロゲン化
炭化水素類の様々な不活性溶媒等を挙げることができる
This solvent is not particularly limited as long as it does not substantially interfere with the reaction, and various solvents can be used. Specific examples of such solvents include, for illustrative purposes only, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and trimethylbenzene; aliphatic hydrocarbons such as hexane, octane, decane, and hexadecane; Naphthenic hydrocarbons such as dichlorohexane, methylcyclohexane, and decalin; Esters such as ethyl acetate, butyl acetate, methyl benzoate, phenyl acetate, and cyclohexyl acetate; Ketones such as acetone, ethyl methyl ketone, benzophenone, and acetophenone Nitriles such as acetonitrile and benzonitrile; Various inert solvents such as halogenated hydrocarbons such as methylene chloride, carbon tetrachloride, tetramethylethylene, chlorobenzene, dichlorobenzene, fluorobenzene, fluorotoluene, and chlorotoluene. can be mentioned.

なお、これらは1種単独で用いても2種以上を組み合せ
て使用することができる。
In addition, these can be used individually or in combination of two or more types.

前記不活性ガスとしては、前記反応に支障のないもので
あれば特に制限はなく、そのようなものの具体例を単に
例示の目的で示すと、たとえば、ヘリウム、アルゴン、
窒素、二酸化炭素、−酸化炭素、水素、メタン、エタン
等を挙げることができる。
The inert gas is not particularly limited as long as it does not interfere with the reaction, and specific examples of such gases are shown merely for illustrative purposes, such as helium, argon,
Nitrogen, carbon dioxide, -carbon oxide, hydrogen, methane, ethane, etc. can be mentioned.

なお、これらは、1種単独で用いても、2種以上の混合
物として用いてもよい。
In addition, these may be used individually by 1 type, or may be used as a mixture of 2 or more types.

前記添加剤としては、たとえば、水、アルコール、フェ
ノール類、アセチルアセトン類などの活性水素含有化合
物、オレフィン、ジエン、アセチレン等の不飽和化合物
等を挙げることができる。
Examples of the additives include water, alcohols, active hydrogen-containing compounds such as phenols and acetylacetones, and unsaturated compounds such as olefins, dienes, and acetylenes.

これらの添加剤は、その適量を1種単独または2種以上
適宜組み合せて触媒の活性、選択性、寿命の改善、反応
の効率の向上などをはかることも可能である。
These additives can be used alone or in appropriate combinations of two or more in appropriate amounts to improve the activity, selectivity, and life of the catalyst, and to improve the efficiency of the reaction.

前記反応を行うに際しての1反応の手順としては特に制
限はなく、前記各成分を、同時に、別途にあるいは分割
して様々の順序で反応器に供給して、実施することが可
能であるが、たとえば、回分式で反応を行う場合には、
通常、不活性ガス等で置換した反応器に適量の前記[A
]酸成分[B]酸成分必要があればこれらと前記溶媒と
を供給し。
There is no particular restriction on the procedure for one reaction when carrying out the reaction, and it is possible to carry out the reaction by supplying each of the above components to the reactor simultaneously, separately, or in divided order in various orders, For example, when performing a reaction batchwise,
Usually, an appropriate amount of the above [A] is placed in a reactor purged with inert gas etc.
] Acid component [B] Acid component If necessary, supply these and the above solvent.

次いで、前記酸触媒もしくはその溶液を加え、必要なら
ばさらに前記不活性ガスにて加圧して、反応を実施する
Next, the acid catalyst or its solution is added, and if necessary, the reaction is carried out by further pressurizing with the inert gas.

反応時の反応系の状態としては、特に制限はなく、気体
状、液体または溶液状もしくは分散状態、気液共存状態
、液筒共存状態、気固共存状態、気液固共存状態のいず
れの状態でも可能であるが、通常、反応原料の少なくと
も1部が液相状態に保持されている状態で反応を実施す
る方法が好適である。
There are no particular restrictions on the state of the reaction system during the reaction, and it may be any of the following states: gas, liquid, solution, or dispersed state, gas-liquid coexistence state, liquid cylinder coexistence state, gas-solid coexistence state, gas-liquid-solid coexistence state. However, it is usually preferable to carry out the reaction while at least a portion of the reaction raw materials are kept in a liquid phase.

以上のような方法によって、目的生成物であるカルボン
酸エステルを1種または2種以上を含有する反応生成物
を得ることができる。
By the method described above, it is possible to obtain a reaction product containing one or more carboxylic acid esters as the desired product.

生成したカルボン酸エステルは、得られた反応生成液に
、必要に応じて、濾別、洗浄、蒸留、抽出などの公知の
分#争精製などの後処理を適宜施して、場合により反応
生成物中に存在する使用触媒、溶媒、添加物、未反応原
料、副生成物などの他の成分を適宜に分離除去して、精
製し、製品として回収することができる。
The produced carboxylic acid ester is obtained by subjecting the obtained reaction product liquid to appropriate post-treatments such as filtration, washing, distillation, extraction, etc., as necessary. Other components present therein, such as the used catalyst, solvent, additives, unreacted raw materials, and by-products, can be appropriately separated and removed, purified, and recovered as a product.

[発明の効果] この発明によると、水を実質的に生成せずにカルボン酸
エステルのみを生成するという、新規でかつ実用的な反
応を用いているので、従来の水を生成するカルボン酸と
アルコールとの縮合反応を用いる方法に比較して、生成
物の蒸留工程などの後処理工程を著しく簡単にすること
ができ、かつその効率が高く、また、反応の熱力学的平
衡の点でも著しく有利であるなどの長所を有しており。
[Effects of the Invention] According to the present invention, a novel and practical reaction is used that produces only carboxylic acid ester without substantially producing water, so it is different from the conventional carboxylic acid that produces water. Compared to methods using condensation reactions with alcohols, post-treatment steps such as distillation of the product can be significantly simplified, the efficiency is high, and the thermodynamic equilibrium of the reaction is also significantly improved. It has advantages such as being advantageous.

したがって、反応およびプロセスの効率、生産性、経済
性、製品の品質などの点で著しく優れている新規でかつ
工業的に有利なカルボン酸エステルの製造方法を提供す
ることができる。
Therefore, it is possible to provide a novel and industrially advantageous method for producing carboxylic acid esters that is significantly superior in terms of reaction and process efficiency, productivity, economy, product quality, and the like.

[実施例] (実施例1) ハステロイ−C製の100 ccオートクレーブにエチ
ルエーテル2:12g、無水酢酸30.83 g、フッ
化ホウ素: BF3・0(Et)z  4.25 gを
装入した。この反応器を窒素で30 Kg/c■2に加
圧した。次に、反応器を加熱し150℃にした後2時間
反応を実施した。反応終了後、冷却し、反応器の内容物
を取り出してガスクロマトグラフィーによって、分析し
た。分析によると、この反応では、無水酢酸に関して8
8,6%の゛収率で酢酸エチルが生成した。
[Example] (Example 1) A 100 cc autoclave manufactured by Hastelloy-C was charged with 2:12 g of ethyl ether, 30.83 g of acetic anhydride, and 4.25 g of boron fluoride: BF3.0(Et)z. . The reactor was pressurized with nitrogen to 30 Kg/cm@2. Next, the reactor was heated to 150°C and a reaction was carried out for 2 hours. After the reaction was completed, it was cooled, and the contents of the reactor were taken out and analyzed by gas chromatography. Analysis shows that this reaction yields 8 for acetic anhydride.
Ethyl acetate was produced with a yield of 8.6%.

(実施例2〜5) 触媒1反応条件を表の様に変更した以外は、実施例1と
同様の操作を行った。第1表に結果を示す。
(Examples 2 to 5) The same operation as in Example 1 was performed except that the catalyst 1 reaction conditions were changed as shown in the table. Table 1 shows the results.

第  1  表 (実施例6) 一触媒調製− amo立/文のリン酸水溶液830mM中へ0.5II
an/lのZr0GJlz  [オキシ塩化ジルコニウ
ム]水溶液855mMをかきまぜながらゆっくり加え、
生じた沈澱を一晩放置後、ろ過水洗を繰り返して十分洗
浄した後110℃で24時間乾燥した。得られた無定形
リン酸ジルコニウム40gを2文の10moJ1/uリ
ン酸中で48時間還流し、十分水洗した後、110℃で
乾燥し、結晶性リン酸ジルコニウムをえた。
Table 1 (Example 6) Catalyst Preparation - Amo 0.5II in 830mM aqueous phosphoric acid solution
An/l Zr0GJlz [zirconium oxychloride] aqueous solution 855 mM was slowly added while stirring,
The resulting precipitate was left overnight, thoroughly washed by repeated filtration and water washing, and then dried at 110° C. for 24 hours. 40 g of the obtained amorphous zirconium phosphate was refluxed for 48 hours in two portions of 10 moJ1/u phosphoric acid, thoroughly washed with water, and then dried at 110° C. to obtain crystalline zirconium phosphate.

一反応一 上記のようにして得られたリン酸ジルコニウム5.0g
をガラス製反応管に充填し、常圧にて窒素101 /h
rにて2時間300℃に保存する。その後、常圧、18
0℃とし、エチルエーテル/無水酢酸(重量比4/6)
混合液10g1hrを希釈剤の窒素7n /hrととも
に供給する。触媒層から流出した液をガスクロマトグラ
フィーによって、分析した。
1 Reaction 1 5.0 g of zirconium phosphate obtained as above
was filled into a glass reaction tube, and 101/h of nitrogen was added at normal pressure.
Store at 300°C for 2 hours at r. After that, normal pressure, 18
0°C, ethyl ether/acetic anhydride (weight ratio 4/6)
10 g/hr of the mixed solution is supplied together with 7 n/hr of nitrogen as a diluent. The liquid flowing out from the catalyst layer was analyzed by gas chromatography.

分析によるとこの反応では、無水酢酸に関して86.3
%の収率で酢酸エチルが生成した。
Analysis shows that this reaction yields 86.3% for acetic anhydride.
% yield of ethyl acetate.

(実施例7) 実施例1においてエチルエーテルの代りにジメチルエー
テル18.4gを用いた以外同様の操作で実施した。分
析によるとこの反応では、無水酢酸に関して31.1%
の収率で酢酸メチルが生成した。
(Example 7) The same procedure as in Example 1 was carried out except that 18.4 g of dimethyl ether was used instead of ethyl ether. Analysis shows that this reaction yields 31.1% with respect to acetic anhydride.
Methyl acetate was produced in a yield of .

(実施例8) 実施例7において触媒としてFeel 2 :4.87
gを用いた以外、実施例7と同様の操作で実施した。
(Example 8) Feel 2: 4.87 as a catalyst in Example 7
The same procedure as in Example 7 was carried out except that g was used.

分析によるとこの反応では、無水酢酸に関して4fi、
91%の収率で酢酸メチルが生成した。
Analysis shows that in this reaction, 4fi for acetic anhydride,
Methyl acetate was produced with a yield of 91%.

(実施例9) 実施例1において無水酢酸の代りに無水プロピオン酸3
9.0gを用いた以外同様の操作で実施した。分析によ
るとこの反応では、無水プロピオン酸に関して85.8
%の収率でプロピオン酸エチルが生成した。
(Example 9) In Example 1, propionic anhydride 3 was used instead of acetic anhydride.
The same procedure was performed except that 9.0 g was used. Analysis shows that this reaction yields 85.8% for propionic anhydride.
% yield of ethyl propionate.

(実施例10) ハステロイ−C製の100 ccオートクレーブにブチ
ルエーテル39.0g、無水醋酸47.49 g、フッ
化ホウ素: BF3.0(Et)24.25 gを装入
した。反応器を加熱し150℃にした後2時間反応を実
施した。
(Example 10) A 100 cc autoclave manufactured by Hastelloy-C was charged with 39.0 g of butyl ether, 47.49 g of acetic anhydride, and 24.25 g of boron fluoride: BF3.0 (Et). After heating the reactor to 150° C., the reaction was carried out for 2 hours.

反応終了後、冷却し、反応器の内容物を取り出してガス
クロマトグラフィーによって、分析し3 ま た。分析によるとこの反応では、無水醋酸に関して84
.3%の収率で醋酸ブチルが生成した。
After the reaction was completed, it was cooled, and the contents of the reactor were taken out and analyzed by gas chromatography. Analysis shows that this reaction yields 84% of acetic anhydride.
.. Butyl acetate was produced with a yield of 3%.

(実施例11) 実施例1Oにおいて無水醋酸の代りに無水フタル酸30
.0g、ブチルエーテルの代りにエチルエーテル22.
2gを用いた以外同様の操作で実施した。分析によると
この反応では、無水フタル酸に関して73.4%の収率
でフタル酸ジエチルが生成した。
(Example 11) Phthalic anhydride 30 was used instead of acetic anhydride in Example 1O.
.. 0 g, ethyl ether instead of butyl ether 22.
The same procedure was performed except that 2 g was used. Analysis showed that the reaction produced diethyl phthalate in a yield of 73.4% relative to phthalic anhydride.

(実施例12) 実施例1Oにおいて無水醋酸の代りに無水マレイン酸4
4.4g、ブチルエーテルの代りにエチルエーテル22
.2gを用いた以外同様の操作で実施した。
(Example 12) Maleic anhydride 4 was used instead of acetic anhydride in Example 1O.
4.4 g, 22 ethyl ether instead of butyl ether
.. The same procedure was performed except that 2 g was used.

分析によるとこの反応では、無水マレイン酸に関して7
1.1%の収率でマレイン酸ジエチルが生成した。
Analysis shows that in this reaction, 7
Diethyl maleate was produced in a yield of 1.1%.

(実施例13) 実施例1Oにおいて無水醋酸の代りに無水フタル酸44
.4gを用いた以外同様の操作で実施した。分析による
とこの反応では無水フタル酸に関して88.5%の収率
でフタル酸ジブチルが生成した。
(Example 13) Phthalic anhydride 44 was used instead of acetic anhydride in Example 1O.
.. The same procedure was carried out except that 4 g was used. Analysis showed that the reaction produced dibutyl phthalate in a yield of 88.5% based on phthalic anhydride.

Claims (1)

【特許請求の範囲】[Claims] (1)カルボン酸無水物とエーテルとを酸触媒の存在下
に反応させることを特徴とするカルボン酸エステルの製
造方法。
(1) A method for producing a carboxylic acid ester, which comprises reacting a carboxylic anhydride and an ether in the presence of an acid catalyst.
JP29617286A 1986-12-12 1986-12-12 Production of carboxylic acid ester Pending JPS63150245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29617286A JPS63150245A (en) 1986-12-12 1986-12-12 Production of carboxylic acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29617286A JPS63150245A (en) 1986-12-12 1986-12-12 Production of carboxylic acid ester

Publications (1)

Publication Number Publication Date
JPS63150245A true JPS63150245A (en) 1988-06-22

Family

ID=17830091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29617286A Pending JPS63150245A (en) 1986-12-12 1986-12-12 Production of carboxylic acid ester

Country Status (1)

Country Link
JP (1) JPS63150245A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348362A (en) * 1999-08-16 2001-12-18 Nippon Shokubai Co Ltd Method for producing hydroxyalkyl ester
JP2002265416A (en) * 2001-03-14 2002-09-18 Japan Science & Technology Corp Method of decomposing ether
EP1268391A1 (en) 2000-03-29 2003-01-02 Bayer Aktiengesellschaft Method for producing carboxylic acid benzyl esters
EP1328500A1 (en) * 2000-09-04 2003-07-23 Bayer Aktiengesellschaft Method for the production of carboxylic acid benzyl esters
JP2004503518A (en) * 2000-06-09 2004-02-05 セラニーズ・インターナショナル・コーポレーション Production of tertiary butyl acetate from MTBE
JP2009149586A (en) * 2007-12-21 2009-07-09 Tokyo Ohka Kogyo Co Ltd Method for producing compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2030835A (en) * 1934-10-26 1936-02-11 Union Carbide & Carbon Corp Preparation of esters
JPS554307A (en) * 1978-06-23 1980-01-12 Nissan Chem Ind Ltd Preparation of phthalic ester
JPS61155346A (en) * 1984-12-12 1986-07-15 シンテツクス(ユー・エス・エイ)インコーポレイテツド Alkoxymethyl ether and alkoxymethyl ester derivative

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2030835A (en) * 1934-10-26 1936-02-11 Union Carbide & Carbon Corp Preparation of esters
JPS554307A (en) * 1978-06-23 1980-01-12 Nissan Chem Ind Ltd Preparation of phthalic ester
JPS61155346A (en) * 1984-12-12 1986-07-15 シンテツクス(ユー・エス・エイ)インコーポレイテツド Alkoxymethyl ether and alkoxymethyl ester derivative

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348362A (en) * 1999-08-16 2001-12-18 Nippon Shokubai Co Ltd Method for producing hydroxyalkyl ester
EP1268391A1 (en) 2000-03-29 2003-01-02 Bayer Aktiengesellschaft Method for producing carboxylic acid benzyl esters
US6800780B2 (en) 2000-03-29 2004-10-05 Bayer Aktiengesellschaft Method for producing carboxylic acid benzyl esters
JP2004503518A (en) * 2000-06-09 2004-02-05 セラニーズ・インターナショナル・コーポレーション Production of tertiary butyl acetate from MTBE
EP1328500A1 (en) * 2000-09-04 2003-07-23 Bayer Aktiengesellschaft Method for the production of carboxylic acid benzyl esters
JP2002265416A (en) * 2001-03-14 2002-09-18 Japan Science & Technology Corp Method of decomposing ether
JP4510312B2 (en) * 2001-03-14 2010-07-21 独立行政法人科学技術振興機構 Method for decomposing ether compounds
JP2009149586A (en) * 2007-12-21 2009-07-09 Tokyo Ohka Kogyo Co Ltd Method for producing compound

Similar Documents

Publication Publication Date Title
US6812351B2 (en) Hollow cylindrical catalyst and a method for producing a maleic acid anhydride
US20140343319A1 (en) Process for preparing acrylic acid with high space-time yield
US6803473B2 (en) Method for producing maleic acid anhydride
KR20090036552A (en) Method for the continuous production of unsaturated carboxylic acid anhydrides
JPH02257A (en) Preparation of nitrile
US4070393A (en) Ammoxidation process
US4171316A (en) Preparation of maleic anhydride using a crystalline vanadium(IV)bis(metaphosphate) catalyst
JP3568225B2 (en) Method for producing alkylene carbonate
JPS63150245A (en) Production of carboxylic acid ester
KR100663685B1 (en) Ester synthesis
US3470239A (en) Process for preparing methacrylic acid and its esters from isobutane
US3922294A (en) Process for the manufacture of isopropyl esters by the reaction of propylene with carboxylic acids
JP3656030B2 (en) Method for producing tertiary butyl alcohol
US3282860A (en) Catalyst and process for preparing the same
US3393222A (en) Process for the production of nitriles
JPS6341380B2 (en)
US7345167B2 (en) Method for the production of maleic anhydride
US3287394A (en) Catalytic synthesis of unsaturated nitriles
US3313840A (en) Process for the production of the dinitriles of fumaric acid and maleic acid
KR20070009693A (en) Process for the production of ethyl acetate
US3452077A (en) Ammoxidation of alkylated aromatic hydrocarbons to aromatic nitriles using a heteropolycompound as a catalyst
US3849448A (en) Vapor phase oxidation of benzene to maleic anhydride at low oxygen to benzene molar ratios and high benzene concentrations
US3253051A (en) Process of producing isoprene
JP3818697B2 (en) Ammoxidation catalyst and method for producing nitrile using the same
EP3135661B1 (en) Method for producing halogenated acrylic acid derivative