[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63156604A - Milling method - Google Patents

Milling method

Info

Publication number
JPS63156604A
JPS63156604A JP30057386A JP30057386A JPS63156604A JP S63156604 A JPS63156604 A JP S63156604A JP 30057386 A JP30057386 A JP 30057386A JP 30057386 A JP30057386 A JP 30057386A JP S63156604 A JPS63156604 A JP S63156604A
Authority
JP
Japan
Prior art keywords
axis direction
spindle head
movement
tool
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30057386A
Other languages
Japanese (ja)
Inventor
Toshiaki Hosoi
細井 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP30057386A priority Critical patent/JPS63156604A/en
Publication of JPS63156604A publication Critical patent/JPS63156604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Milling Processes (AREA)

Abstract

PURPOSE:To make roughing performable as well as to aim at the promotion of efficiency for deep recess machining by means of an end mill, by tilting a spindle head supporting a face milling cutter to some extent, while interlocking an axial movement of the spindle head with each movement in both X-axis and Y-axis directions. CONSTITUTION:A support 2 is reciprocated in a Y-axis direction, a table 9 is moved in an X-axis direction, and the inside of a flat surface is machined by a face milling cutter 7. And, a spindle head 5 is moved in a Z-axis direction at pitch feed, machined to the extent of a bottom part, then movement of the Z-axis direction is interlocked with movement of the X-axis direction, and the face milling cutter 7 is interlocked by controlling a table driving servomotor and a spindle head driving servomotor 3a so as to make a workpiece move to the inside of a vertical surface in the tilting direction of a spindle. With this constitution, an unmachined part 30 is machinable by the face milling cutter 7 without lengthening a shank 6, thus a recess part 20 is also machinable accurately with a short end mill.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、深い凹部の加工にとくに適するフライス加
工方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a milling method particularly suitable for machining deep recesses.

(従来技術) 自動車のバンパー用の金型なと、深い凹形形状の工作物
の四部をフライス加工によって形成させる場合、加工能
率の点からフライス工具として多数の植え刃を有する正
面フライスを用いると加1効率がよい。この場合、第3
図に示すように、先端部に正面フライス7を有するシャ
ンク6を主軸頭5によって保持した状態で主軸頭5をY
軸方向(紙面に直交する方向)に移動させるとともに、
工作物10をX情り向(第3図の左右り向)に移動させ
て、平面の所定深さを削り取り加工しく1段目15)、
ついで主軸頭5を2軸方向(第3図の上下方向)にピッ
ク送りして同様に2段目16を加工、さらに3段目、・
・・・・・・・・と、上方から順次段階的に加工する。
(Prior art) When forming four parts of a deeply concave workpiece, such as a mold for an automobile bumper, by milling, it is recommended to use a face milling cutter with a large number of planted blades as a milling tool from the viewpoint of processing efficiency. Additionally, it is highly efficient. In this case, the third
As shown in the figure, with the spindle head 5 holding the shank 6 having the face milling cutter 7 at its tip, the spindle head 5 is
While moving in the axial direction (direction perpendicular to the page),
The workpiece 10 is moved in the X direction (horizontal direction in Fig. 3), and a predetermined depth of the plane is machined in the first stage 15).
Next, pick-feed the spindle head 5 in two axial directions (vertical direction in Fig. 3), process the second stage 16 in the same way, and then process the third stage, etc.
・・・・・・・・・Processing is performed step by step starting from the top.

そして加工[する凹部が深くなるほど、幅(図示の例で
はX@方向の長さ)が狭くなって、所定の凹部20の底
部隅部(斜線部)30が未加工状態で残さ、れることに
なる。このように隅部に未加工部30が生じるのは、隅
部を加工するために正面フライス7を凹部中に下降させ
ると主軸頭5が凹部の上部角部14に当ってしまうため
に加工できないからである。
The deeper the recess to be processed, the narrower the width (in the illustrated example, the length in the Become. The reason why unprocessed parts 30 are created at the corners is that when the face milling cutter 7 is lowered into the recess to process the corners, the spindle head 5 hits the upper corner 14 of the recess, making it impossible to process the corners. It is from.

したがって、このような未加工部30を土ビさせないよ
うにするには、主軸頭5が角部14に当らないようにシ
ャンク6として充分に長いものを用いる必要があるが、
シャンク6が良くなるとたわみが生じることが避けられ
ず、ビビリ現象が生じて正面フライスでは切削が行えな
い。
Therefore, in order to prevent the unprocessed part 30 from becoming rusty, it is necessary to use a sufficiently long shank 6 so that the spindle head 5 does not hit the corner part 14.
As the shank 6 improves, it is inevitable that the shank 6 will bend, causing a chatter phenomenon and making cutting impossible with a face mill.

また正面フライス7の代りにボールエンドミル12を用
いて未加工部30の加工を行うことも考えられるが、こ
の場合でも工具の頭部の直径が小さいために、何とか切
削は行えるが、シャンクがたわみ、効率のよい加工が不
可能な上に、工具寿命は短く、精1σよく切削すること
は期待できない。
It is also conceivable to use a ball end mill 12 instead of the face milling cutter 7 to machine the unmachined part 30, but even in this case, since the diameter of the head of the tool is small, cutting can be done somehow, but the shank may be bent. In addition, efficient machining is not possible, the tool life is short, and cutting with 1σ precision cannot be expected.

(発明の目的) この発明はこのような従来の欠点を解消づるためになさ
れたものであり、深い凹形の型面でも正面フライスを用
いて高能率に加−[を行うことができるとともに、隅部
に未加工部を残すことなく深い凹部の加工を行うことが
できるフライス加工方法を提供するものである。
(Objective of the Invention) The present invention was made in order to eliminate such conventional drawbacks, and it is possible to perform addition with high efficiency even on a deeply concave mold surface using a face milling cutter, and To provide a milling method capable of machining deep recesses without leaving unprocessed corners at corners.

(発明の構成) この発明は、X−Y軸方向に工具または加工物を移動さ
せて等高線上の輪郭内側または外側の平面を加工し、さ
らにZ軸方向にピック送りを行って上記の動作を繰返し
て三次元形状の切削加工を行うフライス盤において、工
具を保持するよ@頭をZ軸方向から所定角度傾斜させた
状態で、フライス工具が主軸頭の傾斜と直交する方向の
面内で移動するように主軸頭を2軸方向に移動させ、そ
の移動量をX軸またはY軸方向の移動用との関係で制御
しつつ加工を行うようにしたものである。
(Structure of the Invention) This invention moves a tool or a workpiece in the X-Y axis direction to machine the inner or outer plane of the contour line, and then performs the above operation by performing pick feeding in the Z-axis direction. In a milling machine that repeatedly cuts three-dimensional shapes, the milling tool moves in a plane perpendicular to the inclination of the spindle head while holding the tool @ with the head tilted at a predetermined angle from the Z-axis direction. In this way, the spindle head is moved in two axial directions, and machining is performed while controlling the amount of movement in relation to the movement in the X-axis or Y-axis direction.

これによって使用工具として、深い凹形の型面の加工に
も正面フライスを最も適合した条件で使用することがで
きるようになった。
As a result, the face milling tool can now be used under the most suitable conditions for machining deep concave mold surfaces.

またこの発明の第2の要旨は、X−Y軸方向に工具また
は加工物を移動させて笠高線上の輪郭内側または外側の
平面を加工し、さらにZ@h向にピック送りを行って上
記の動作を繰返して三次元形状の切削加工を行うフライ
ス盤において、正面フライスで工作物の深い凹部をその
底部の隅部を残して加工した後、工具を保持する主軸頭
をZ軸方向から所定角度傾斜させた状態で、フライス工
具が主軸頭の傾斜と直交する方向の面内で移動でるよう
に主軸頭の軸方向の移動させその移i1]aをX軸また
はY軸方向の移IJ 11との関係で制御しつつ上記隅
部の加工を行うようにしたものである。
The second gist of the invention is to move the tool or the workpiece in the X-Y axis direction to process the inner or outer plane of the contour on the cap height line, and then perform pick feeding in the Z@h direction to process the above-mentioned In a milling machine that repeatedly performs cutting into three-dimensional shapes by repeating the following operations, after machining a deep concave part of a workpiece with a face miller leaving the bottom corners intact, the spindle head that holds the tool is cut at a predetermined angle from the Z-axis direction. In the tilted state, move the spindle head in the axial direction so that the milling tool can move in a plane perpendicular to the inclination of the spindle head. The above-mentioned corner portion is machined while being controlled according to the following relationship.

上記構成では、主軸頭が傾斜するとともに、主軸頭の軸
方向の移動がX軸、Y軸方向の移動と連動することによ
り、傾斜した主軸と直交する平面に沿って工具が移動す
るために正面フライスでの切削が可能になり、主軸頭が
凹部の角部に当ることなく能率よく加工を行うことにな
る。
In the above configuration, the spindle head is tilted and the movement of the spindle head in the axial direction is linked with the movement in the X-axis and Y-axis directions, so that the tool moves along a plane perpendicular to the inclined spindle. Cutting with a milling cutter becomes possible, and machining can be performed efficiently without the spindle head hitting the corners of the recess.

(実施例〉 第1図および第2図において、コラム1の上部にはガイ
ド40に沿ってY軸方向に往復動する保持体2が取付け
られ、この保持体2にはガイド3に沿ってZ軸方向に往
復動する)F軸頭5が取付けられ、これらはそれぞれサ
ーボモータ4a、3aにより駆動されるようにしている
。そして主軸頭5により、先端部に正面フライス7を有
で”るシャンク6が保持され、駆動モータ4により主軸
頭5とともに正面フライス7が回転するようにしている
。またならいフライスのスタイラス41も同様にX軸方
向およびZ軸方向に往復動するように構成されている。
(Example) In FIGS. 1 and 2, a holder 2 that reciprocates in the Y-axis direction along a guide 40 is attached to the upper part of the column 1. An F-axis head 5 (which reciprocates in the axial direction) is attached, and these are driven by servo motors 4a and 3a, respectively. A shank 6 having a face milling cutter 7 at its tip is held by the spindle head 5, and the drive motor 4 rotates the face milling cutter 7 together with the spindle head 5.The stylus 41 of the profiling cutter is also rotated in the same manner. It is configured to reciprocate in the X-axis direction and the Z-axis direction.

そしてこのスタイラス41が図示しない模型をならい移
動することにより、その移動に応じて正面フライス7が
1作物10を加工するように構成されている。
By moving this stylus 41 along a model (not shown), the face milling cutter 7 is configured to process one crop 10 in accordance with the movement.

またベース1a上にはガイド8に沿ってX軸方向に往復
動するテーブル9が配置され、このテーブル9上に模型
と工作物10が固定して取付けられるようにしている。
Further, a table 9 that reciprocates in the X-axis direction along a guide 8 is arranged on the base 1a, and a model and a workpiece 10 are fixedly mounted on this table 9.

このテーブル9は図示しないサーボモータにより駆動さ
れる。
This table 9 is driven by a servo motor (not shown).

上記構成の装置により工作物10の凹部の加工を行うに
は、まず従来同様に保持体2をガイド40に沿ってY軸
方向に往復動させるとともに、テーブル9をガイド8に
沿ってX軸方向に移動させつつ駆動モータ4により正面
フライス7を回転させて平面内を切削加工し、その主軸
頭5をガイド3に沿ってZ軸方向にピック送りを行い、
これを繰返し、第3図の1段目15.2段目16.3段
目17と順次加工して底部まで加工する。この加工によ
って凹部20の底部隅部には未加][部30が残される
In order to machine the concave portion of the workpiece 10 using the apparatus configured as described above, first, as in the conventional case, the holder 2 is reciprocated in the Y-axis direction along the guide 40, and the table 9 is moved in the X-axis direction along the guide 8. The face milling cutter 7 is rotated by the drive motor 4 while moving to perform cutting in the plane, and the spindle head 5 is pick fed in the Z-axis direction along the guide 3.
This process is repeated until the bottom part is processed by sequentially processing the first stage 15, the second stage 16, and the third stage 17 in FIG. This processing leaves an unfinished portion 30 at the bottom corner of the recess 20.

つぎに第2図の仮想線に示すように主軸頭5を保持体2
とともに傾斜させる。この状態のままでテーブル9の移
動により工作物10をX軸方向に移動させると、工具を
長く突出させなくても主軸頭5が加工物の角部14と接
触しなくなるが、正面フライス7に対して斜めに当り、
切削能力のない工具の底面が加工物と干渉することにな
る。このように、主軸頭5を傾斜させた状態のままでは
上記のようなX軸、Y軸の各方向の移動を行わせても、
正面フライス7による切削を行うことができない。
Next, as shown in the imaginary line in FIG.
tilt with If the workpiece 10 is moved in the X-axis direction by moving the table 9 in this state, the spindle head 5 will not come into contact with the corner 14 of the workpiece even if the tool does not protrude for a long time, but the face milling cutter 7 It hits diagonally against the
The bottom surface of the tool, which has no cutting ability, will interfere with the workpiece. In this way, even if the spindle head 5 is moved in the X-axis and Y-axis directions as described above while it is in an inclined state,
Cutting with the face milling cutter 7 is not possible.

そこで、X軸方向の移動に対してZ軸力向の移動を連動
させ、かつ正面フライス7が主軸の傾斜り向に垂直な面
内に加工物が移動するように、図示しない制御装置によ
りテーブル9駆初用サーボ[−タと、主軸頭5駆動用サ
ーボモータ3aとを制御して連動させる。すなわち、X
軸方向の移動に対して、例えば第3図の状態で工作物1
0を右方向に移動させる際には、工作物10の右方向の
移iFJ+ aに対応して主軸頭5をその軸方向に上昇
させて正面フライス7がその底面と平行な加工面を切削
げるようにする。
Therefore, the table is controlled by a control device (not shown) so that the movement in the Z-axis force direction is linked to the movement in the X-axis direction, and the workpiece is moved in a plane perpendicular to the direction of inclination of the main axis. The servo motor 3a for driving the spindle head 5 is controlled and interlocked with the servo motor 3a for driving the spindle head 5. That is, X
For example, when the workpiece 1 is moved in the axial direction in the state shown in FIG.
When moving the workpiece 10 to the right, the spindle head 5 is raised in the axial direction in response to the rightward movement iFJ+ a of the workpiece 10, and the face milling cutter 7 cuts a machined surface parallel to the bottom surface of the workpiece 10. so that

これによって未加工部を加工しく1段目31)、ついで
主軸頭5をその軸′方向にピック送りして同様に2段目
32を加工し、さらに3段目33、・・・・・・・・・
と、上方から順次段階的に正面フライス加工する。ぞし
てこの加工では主軸頭5が凹部20の上部角部14に当
ることがないために、シャンク6を長くすることなく、
正面フライス7によって未加工部30を完全に加工する
ことができる。このようにして未加工部を最小限になる
ように粗削りした後、凹部20の表面をさらにボールエ
ンドミルにより仕上げ加工する。この仕上げ過程におい
ても軸部の短いエンドミルが使用でき、能率と精度のよ
い加工を行うことができる。
With this, the unprocessed part is machined in the first stage 31), then the spindle head 5 is pick fed in the direction of its axis', and the second stage 32 is similarly machined, and then the third stage 33, etc. ...
Then, face milling is performed step by step from the top. Therefore, in this machining, the spindle head 5 does not come into contact with the upper corner 14 of the recess 20, so the shank 6 does not need to be lengthened.
The face milling cutter 7 allows the blank part 30 to be completely machined. After rough-machining the unprocessed portion to a minimum in this manner, the surface of the recess 20 is further finished by a ball end mill. An end mill with a short shaft can be used in this finishing process as well, making it possible to perform processing with high efficiency and precision.

なお、第3図では工作物10の一端部の隅部のみの加工
状態を示しているが、他方の隅部の未加工部30の加工
、あるいはそれと直交1ノ向の部分の隅部の加工も、同
様にして主軸頭5を傾斜させることにより加工すること
ができる。
Although FIG. 3 shows the machining state of only the corner of one end of the workpiece 10, machining of the unmachined part 30 at the other corner or the machining of the corner of the part in one direction perpendicular to the unmachined part 30 is also possible. The spindle head 5 can also be machined by tilting the spindle head 5 in the same manner.

また、上記実施例では工作物の四部を通常の方法で加工
した後、底部隅部に生じる未加工部の加工を主軸頭を傾
斜させることにより行う方法について説明したが、この
発明はこのような場合に限らず、主軸頭を鉛直状態にし
て互いに直交するX軸、Y軸、Z軸方向の移動を行いな
がら加工するのでは加工が困難な形状の工作物の加工に
も同様に適用可能であり、最初から主軸頭を傾斜させて
加工してもよい。
In addition, in the above embodiment, after machining the four parts of the workpiece in the usual manner, the unmachined part that occurs at the bottom corner is machined by tilting the spindle head. It can also be applied to machining workpieces with shapes that are difficult to machine by keeping the spindle head vertical and moving in the mutually perpendicular X, Y, and Z axes. Yes, the spindle head may be tilted from the beginning.

(発明の効果) 以上説明したように、この発明は正面フライスを保持す
る主軸頭が傾斜するとともに、主@頭の軸り向の移動が
X+Il、Y軸方向の移動と連動することにより、正面
フライスによる荒加工を可能にし、さらにボールエンド
ミルによる仕上げ7)[I Iも効率よく、かつ精度よ
く基西4行えるようにしたものである。
(Effects of the Invention) As explained above, in this invention, the main spindle head that holds the face milling cutter is tilted, and the movement of the main head in the axial direction is linked with the movement in the It enables rough machining with a milling cutter, and also enables finishing with a ball end mill7) [II] efficiently and accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施例する装置の正面図、第2図は
その側面図、第3図はこの発明の加工方法を示J説明図
である。 1・・・コラム、2・・・保持体、3・・・Z軸ブノ向
のガイド、5・・・主軸頭、6・・・シャンク、7・・
・正面フライス、8・・・X軸方向のガイド、9・・・
テーブル、10・・・]:作物、14・・・凹部の角部
、20・・・凹部、30・・・未加工部。 特許出願人      細 井 俊 明銭 理 人  
    弁理士 小谷悦司同        弁理士 
長1)正 向        弁理士 板谷康夫 第  3  図
FIG. 1 is a front view of an apparatus embodying the present invention, FIG. 2 is a side view thereof, and FIG. 3 is an explanatory view showing the processing method of the present invention. DESCRIPTION OF SYMBOLS 1...Column, 2...Holding body, 3...Guide in Z-axis direction, 5...Spindle head, 6...Shank, 7...
・Front milling cutter, 8... Guide in the X-axis direction, 9...
Table, 10...]: Crop, 14... Corner of recess, 20... Recess, 30... Unprocessed part. Patent applicant: Toshi Hosoi, Michihito Akizen
Patent Attorney Etsushi Kotani Patent Attorney
1) Masamukai Patent Attorney Yasuo Itaya Figure 3

Claims (1)

【特許請求の範囲】 1、X−Y軸方向に工具または加工物を移動させて等高
線上の輪郭内側または外側の平面を加工し、さらにZ軸
方向にピック送りを行って上記の動作を繰返して三次元
形状の切削加工を行うフライス盤において、工具を保持
する主軸頭をZ軸方向から所定角度傾斜させた状態で、
フライス工具が主軸頭の傾斜と直交する方向の面内で移
動するように主軸頭を軸方向に移動させ、その移動量を
X軸またはY軸方向の移動量との関係で制御しつつ加工
を行うことを特徴とするフライス加工方法。 2、X−Y軸方向に工具または加工物を移動させて等高
線上の輪郭内側または外側の平面を加工し、さらにZ軸
方向にピック送りを行って上記の動作を繰返して三次元
形状の切削加工を行うフライス盤において、正面フライ
スで工作物の深い凹部をその底部の隅部を残して加工し
た後、工具を保持する主軸頭をZ軸方向から所定角度傾
斜させた状態で、フライス工具が主軸頭の傾斜と直交す
る方向の面内で移動するように主軸頭をZ軸方向に移動
させ、その移動量をX軸またはY軸方向の移動間との関
係で制御しつつ上記隅部の加工を行うことを特徴とする
フライス加工方法。
[Claims] 1. Move the tool or workpiece in the X-Y axis direction to process the inner or outer plane of the contour line, and then repeat the above operation by feeding the pick in the Z-axis direction. In a milling machine that performs cutting into three-dimensional shapes, the spindle head that holds the tool is tilted at a predetermined angle from the Z-axis direction.
The spindle head is moved in the axial direction so that the milling tool moves in a plane perpendicular to the inclination of the spindle head, and processing is performed while controlling the amount of movement in relation to the amount of movement in the X-axis or Y-axis direction. A milling method characterized by: 2. Move the tool or workpiece in the X-Y axis direction to process the inner or outer plane of the contour line, then feed the pick in the Z-axis direction and repeat the above operation to cut the three-dimensional shape. In a milling machine that performs machining, after machining a deep recess in a workpiece with a face miller, leaving the bottom corners intact, the milling tool rotates the main shaft with the spindle head that holds the tool tilted at a predetermined angle from the Z-axis direction. The spindle head is moved in the Z-axis direction so as to move in a plane perpendicular to the inclination of the head, and the corner is processed while controlling the amount of movement in relation to the movement in the X-axis or Y-axis direction. A milling method characterized by performing the following steps.
JP30057386A 1986-12-16 1986-12-16 Milling method Pending JPS63156604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30057386A JPS63156604A (en) 1986-12-16 1986-12-16 Milling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30057386A JPS63156604A (en) 1986-12-16 1986-12-16 Milling method

Publications (1)

Publication Number Publication Date
JPS63156604A true JPS63156604A (en) 1988-06-29

Family

ID=17886465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30057386A Pending JPS63156604A (en) 1986-12-16 1986-12-16 Milling method

Country Status (1)

Country Link
JP (1) JPS63156604A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6357977B1 (en) * 1998-01-27 2002-03-19 Toshiba Kikai Kabushiki Kaisha Processing method for carving a workpiece
US20120076598A1 (en) * 2010-09-27 2012-03-29 Mag Ias Gmbh Milling machine for producing toothed wheels
CN102825269A (en) * 2012-09-22 2012-12-19 无锡华联精工机械有限公司 Spindle anti-series structure for circular seam back chipping type edge milling machine
US20140202299A1 (en) * 2010-12-17 2014-07-24 Gustav Klauke Gmbh Method for milling a cutout in a workpiece, and workpiece having a cutout
JP2015066637A (en) * 2013-09-30 2015-04-13 ローランドディー.ジー.株式会社 Processing device, and tool moving method
CN106180832A (en) * 2016-07-27 2016-12-07 四川明日宇航工业有限责任公司 A kind of processing method being applicable to deep cavity shape material
CN110385465A (en) * 2019-07-09 2019-10-29 安徽英力电子科技股份有限公司 Plastic mills material machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6357977B1 (en) * 1998-01-27 2002-03-19 Toshiba Kikai Kabushiki Kaisha Processing method for carving a workpiece
US20120076598A1 (en) * 2010-09-27 2012-03-29 Mag Ias Gmbh Milling machine for producing toothed wheels
US20140202299A1 (en) * 2010-12-17 2014-07-24 Gustav Klauke Gmbh Method for milling a cutout in a workpiece, and workpiece having a cutout
US9561535B2 (en) * 2010-12-17 2017-02-07 Gustav Klauke Gmbh Method for milling a cutout in a workpiece, and workpiece having a cutout
CN102825269A (en) * 2012-09-22 2012-12-19 无锡华联精工机械有限公司 Spindle anti-series structure for circular seam back chipping type edge milling machine
JP2015066637A (en) * 2013-09-30 2015-04-13 ローランドディー.ジー.株式会社 Processing device, and tool moving method
CN106180832A (en) * 2016-07-27 2016-12-07 四川明日宇航工业有限责任公司 A kind of processing method being applicable to deep cavity shape material
CN110385465A (en) * 2019-07-09 2019-10-29 安徽英力电子科技股份有限公司 Plastic mills material machine

Similar Documents

Publication Publication Date Title
KR100434156B1 (en) Method and tool for cutting inside corner
EP0563399A1 (en) Composite machine tool
US9101991B1 (en) Method and apparatus for non-spindle multi-axis machining
JP7516035B2 (en) Processing device, processing method, and cutting tool
KR101815143B1 (en) Cutting Method and Tool Path Generating Device
US20100111632A1 (en) Method and apparatus for non-rotary machining
JPS63156604A (en) Milling method
JP2004074394A5 (en) Radius end mill and manufacturing method of forging die
US20120201623A1 (en) Method and apparatus for non-rotary machining
JP3590800B1 (en) End mill
JP2007283452A (en) Cutting method
JPH11151606A (en) Profile machining method and machining machinery
JPH11207514A (en) Machining method and finishing machine
JPH0349701B2 (en)
JP5433344B2 (en) Composite tool, machine tool and machining method
WO2021172065A1 (en) Processing method, processing device, processing program, and end mill
KR100706716B1 (en) Milling cutter and milling method for circular processed product
JPS63127867A (en) Helical groove machining method by use of machining center
JP3984313B2 (en) Three-dimensional curved surface processing method and processing apparatus
JP2002052447A (en) Notch grinding device for semiconductor wafer and notched groove chamfering method
JP2894903B2 (en) Rib groove processing method and equipment
JP4855587B2 (en) One-way grinding method of workpiece
JP2001179519A (en) Cutting work method and nc data originating device for carrying out the method
KR102185089B1 (en) Manufacturing method of metalworking tool made of poly crystal diamond using by electrical discharge grinding
JP4813052B2 (en) Workpiece copying stylus