JPS63140055A - Highly corrosion resistant precipitation hardening-type ni-base alloy - Google Patents
Highly corrosion resistant precipitation hardening-type ni-base alloyInfo
- Publication number
- JPS63140055A JPS63140055A JP28828286A JP28828286A JPS63140055A JP S63140055 A JPS63140055 A JP S63140055A JP 28828286 A JP28828286 A JP 28828286A JP 28828286 A JP28828286 A JP 28828286A JP S63140055 A JPS63140055 A JP S63140055A
- Authority
- JP
- Japan
- Prior art keywords
- less
- precipitation hardening
- highly corrosion
- environment
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007797 corrosion Effects 0.000 title claims abstract description 36
- 238000005260 corrosion Methods 0.000 title claims abstract description 36
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 34
- 239000000956 alloy Substances 0.000 title claims abstract description 34
- 238000001556 precipitation Methods 0.000 title abstract description 10
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 9
- 229910052742 iron Inorganic materials 0.000 claims abstract description 8
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 7
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract 6
- 238000004881 precipitation hardening Methods 0.000 claims description 20
- 238000005336 cracking Methods 0.000 abstract description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 7
- 239000001257 hydrogen Substances 0.000 abstract description 7
- 239000003129 oil well Substances 0.000 abstract description 6
- 239000000126 substance Substances 0.000 abstract description 5
- 229910052759 nickel Inorganic materials 0.000 abstract description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- 239000011593 sulfur Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000035882 stress Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- WHBHBVVOGNECLV-OBQKJFGGSA-N 11-deoxycortisol Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 WHBHBVVOGNECLV-OBQKJFGGSA-N 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 101100383698 Secale cereale rscc gene Proteins 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、腐食環境下、特に従来のサワーガス環境(l
hs COz C2−)下にあって、さらにイオウ
(S)がFeS、 NiS等の硫化物の形態でなく単体
として混入した環境において良好な耐応力割れ性および
耐水素割れ性を有する、油井用部材(特に抗日、抗底部
材)に用いられる高耐食性析出硬化型Ni基合金に関す
る。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is suitable for use in corrosive environments, particularly in conventional sour gas environments (l
An oil well component that has good stress cracking resistance and hydrogen cracking resistance in an environment where sulfur (S) is mixed in as a single substance rather than in the form of sulfides such as FeS and NiS under The present invention relates to a highly corrosion-resistant precipitation-hardening Ni-based alloy used for (particularly sun-resistant and bottom-resistant members).
(従来の技術)
近年、油井の深井戸化およびサワーガス環境下での掘井
が要求されてきており、高強度、高耐食性を有するNi
基合金等がそのような用途に適用されている。これらN
i基合金の耐食性能は特にCr。(Conventional technology) In recent years, there has been a demand for deeper oil wells and for drilling wells in sour gas environments.
Base alloys and the like have been applied to such applications. These N
The corrosion resistance of i-base alloys is particularly high for Cr.
Mo、 W含有量の増加によって向上するため、それら
を考慮しながら、対象となる腐食環境に適した合金成分
系が選択されている。さらに強度については、0.2%
耐力にて77 kgf/mm2以上、あるいは91 k
gf/mm”以上の高強度が要求されている。したがっ
て、これら合金成分系に対してチュービング、ケーシン
グ、ライナ等の管状部材については冷間加工にて高強度
化を図っており、一方、冷間加工の施せないような厚肉
あるいは異形状の抗日、・抗底部材等にはT゛あるいは
T”等の金属間化合物の析出硬化を利用して高強度化を
図っている。This is improved by increasing the Mo and W contents, so an alloy component system suitable for the target corrosive environment is selected while taking these into consideration. Furthermore, regarding strength, 0.2%
Proof strength of 77 kgf/mm2 or more, or 91 k
Therefore, for these alloy component systems, tubular members such as tubing, casings, and liners are required to have high strength through cold working. Precipitation hardening of intermetallic compounds such as T' or T' is used to increase the strength of thick-walled or irregularly shaped sun-resistant and bottom-resistant members that cannot be subjected to machining.
ところで、最近の油井情報によれば上記サワーガス環境
以外にさらにイオウ(S)が単体として、つまり硫化物
等の形態ではなく、混入する環境が見い出され、そのよ
うな環境においては従来の耐サワーガス用Ni1合金で
は耐食性が充分ではなくなってきている。By the way, according to recent oil well information, in addition to the above-mentioned sour gas environment, there are environments in which sulfur (S) is mixed as a single substance, that is, not in the form of sulfides, etc., and in such environments, conventional sour gas resistant Ni1 alloys no longer have sufficient corrosion resistance.
(発明が解決しようとする問題点)
上記のようにサワーガス環境(lIzs COz
Cf、−)にさらにイオウ(S)の単体が混入する環境
においては、Ni基合金部材等は特異な腐食形態を示す
が、本件出願人は、このような環境においても良好な耐
食性を維持する合金として、チュービング、ケーシング
、ライナ等の管状部材用には、冷間加工により強度上昇
を図れる合金系を特願昭61−1199号ないしくit
−1204号においてすでに提案している。(Problem to be solved by the invention) As mentioned above, in a sour gas environment (lIzs COz
In an environment where sulfur (S) is further mixed into Cf, -), Ni-based alloy members exhibit a unique form of corrosion, but the applicant has maintained good corrosion resistance even in such an environment. For tubing, casings, liners, and other tubular members, alloys whose strength can be increased by cold working are disclosed in Japanese Patent Application No. 1199/1983.
It has already been proposed in No.-1204.
しかしながら、上記合金系にあっても、油井坑口、抗底
部材等で冷間加工により強度上昇を図れない場合には、
T゛あるいはT”等の金属間化合物の析出硬化により高
強度化を図る必要がある。However, even with the above alloys, if the strength cannot be increased by cold working for oil wellheads, bottom shaft members, etc.,
It is necessary to increase the strength by precipitation hardening of intermetallic compounds such as T'' or T''.
しかし、これら析出硬化型の既存合金では上記のイオウ
(S)を単体として含むサワーガス環境においては、い
ずれも局部腐食あるいは応力腐食割れ(以下、rSCC
Jと称する)を発生ずることが確認された。すなわち、
単体Sは温度、圧力(特にHas分圧)に依存して(S
)l−1+I1.s =)1.5.)の反応に従い3a
(S、−+ 、lhs 、Ih5x)に変化するが、
Sm−1として遊離したイオウ (S)もしくはozs
xが存在すると、これが油井坑口、抗底部材に局所的に
付着し、その部分において孔食の発生あるいはSCCに
至ることがわかった。これは4S+411□S!311
□S+11□SO4の反応により11□Sン一度が局所
的に工賃することと、同時に11□S04を発生し低p
H化するためと考えられる。このような特異な腐食形態
を呈する環境において、充分な耐食性能を発揮するため
には、管状部材の場合(特願昭61−1199号その他
参照)と同様、抗日、抗底部材の析出硬化型合金におい
ても従来よりもさらに高強度かつ修復性の良好な耐食性
皮膜を形成させることが不可欠となる。ところが既存の
析出硬化型のNi基合金等では析出硬化能と組織安定性
(T”、γ”以外の脆化をもたらす第2相;シグマ相、
しaves相等の析出防止)の観点から合金元素に制約
があり、当該環境にて十分な耐食性を有する良好な耐食
性皮膜は得られなかった。However, these existing precipitation hardening alloys suffer from localized corrosion or stress corrosion cracking (rSCC) in sour gas environments containing the above-mentioned sulfur (S) as a single element.
It has been confirmed that the product (referred to as J) is generated. That is,
The simple substance S depends on temperature and pressure (especially Has partial pressure).
)l-1+I1. s =)1.5. ) According to the reaction of 3a
(S, -+, lhs, Ih5x), but
Sulfur (S) or ozs liberated as Sm-1
It was found that when x exists, it locally adheres to the oil well head and bottom shaft member, leading to pitting corrosion or SCC in those areas. This is 4S+411□S! 311
Due to the reaction of □S+11□SO4, 11□Sn is produced locally and at the same time 11□S04 is generated, resulting in low p.
This is thought to be due to H conversion. In order to exhibit sufficient corrosion resistance in an environment exhibiting such a unique form of corrosion, it is necessary to use precipitation hardening type anti-Japanese and anti-bottom members, as in the case of tubular members (see Japanese Patent Application No. 61-1199 and others). It is also essential to form a corrosion-resistant film on alloys that has higher strength and better repairability than before. However, in existing precipitation hardening type Ni-based alloys, etc., precipitation hardenability and structural stability (second phase that causes embrittlement other than T", γ"; sigma phase,
There are restrictions on alloying elements from the viewpoint of preventing the precipitation of aves phase, etc., and a good corrosion-resistant film having sufficient corrosion resistance in this environment could not be obtained.
したがって、本発明の目的は、従来のサワーガス環境(
HzS−COz −CQ−)にさらにイオウ(S)の単
体が混入した環境においても良好な耐応力腐食割れ性お
よび耐水素割れ性を有する油井用坑口、坑底部材用の高
強度析出硬化型Ni基合金を提供することである。Therefore, it is an object of the present invention to overcome the conventional sour gas environment (
HzS-COz -CQ-) and sulfur (S) mixed with a single element of sulfur (S) The objective is to provide a base alloy.
(問題点を解決するための手段)
そこで、本発明者らは、析出硬化能を1員なうことなく
、強硬かつ修復能の良好な皮膜が得られる合金成分系を
得るために、サワーガス環境における皮膜の強度および
修復能が、管状部材用の冷間加工型Ni基合金の場合に
は概ねCrs M2S Wの含有量に比例して向上する
ことと、さらに単体Sを含む場合には、Cu、 Nbが
有効であることに着目した検討を行った。(Means for Solving the Problems) Therefore, the present inventors have developed an alloy component system that can be used in a sour gas environment to obtain an alloy composition system that can provide a tough film with good repairability without decreasing precipitation hardening ability. In the case of a cold-worked Ni-based alloy for tubular members, the strength and repair ability of the film improve in proportion to the content of CrsM2SW, and in the case of containing elemental S, , conducted a study focusing on the effectiveness of Nb.
坑口、杭底部材用の析出硬化型Ni基合金の場合には、
CrSMaSWs Cu等の含有量を増加させていくと
、シグマ相、Laνes相等の脆化相が製品においても
残存するようになり、γ゛、γ”の析出硬化を妨げると
同時に皮膜自体の強度、修復能さえ有効に向上しなかっ
た。In the case of precipitation hardening Ni-based alloys for wellheads and pile bottom members,
When the content of CrSMaSWs Cu is increased, brittle phases such as sigma phase and Laνes phase remain in the product, which impedes precipitation hardening of γ゛ and γ'' and at the same time improves the strength and repair of the film itself. Even his abilities did not improve effectively.
さらにそのメカニズムを検討した結果、本発明者らは、
Mo:5.5%以上、9.0%未満、およびNb:4
゜O〜6.0%を含む特定成分系の組み合せにより、析
出硬化能すなわち、γ”、T”の金属間化合物の析出を
低下させることなく、かつ単体Sを含む200℃以下の
環境において十分な強度と良好な修復能を有する耐食性
皮膜が得られ、当該環境にて良好な耐SCC性および耐
水素割れ性を呈することを知見した。As a result of further studying the mechanism, the present inventors found that
Mo: 5.5% or more, less than 9.0%, and Nb: 4
The combination of a specific component system containing ~6.0% ゜O allows for sufficient hardening in an environment of 200°C or lower, including elemental S, without reducing the precipitation hardenability, that is, the precipitation of intermetallic compounds of γ'' and T''. It was found that a corrosion-resistant film having high strength and good repair ability was obtained, and exhibited good SCC resistance and hydrogen cracking resistance in the relevant environment.
すなわち、本発明は、そのような知見にもとづいて完成
されたもので、その要旨とするところは、重量%で、
Cr:12〜25%、 Mo: 5.5%以上、9.
0%未満、Nb: 4.0〜6.0%、 Fe: 5
.0〜25%、Ni: 45〜60%、 C:
0.050%以下、Si: 0.50%以下、 M
n: 1.0%以下、P : 0.025%以下、
s : 0.0050%以下、N : 0.050%以
下、
さらに所望によりTi:O,O1〜1.0%および/ま
たはAl:0.01〜2.0%、好ましくはへQ:0.
5〜2.0%、
からなる組成を有するサワーガス環境にさらにS単体が
混入する過酷な環境下ですぐれた耐SCC性を示す高耐
食性析出硬化型Ni基合金である。That is, the present invention was completed based on such knowledge, and its gist is as follows: Cr: 12 to 25%, Mo: 5.5% or more, 9.
Less than 0%, Nb: 4.0-6.0%, Fe: 5
.. 0-25%, Ni: 45-60%, C:
0.050% or less, Si: 0.50% or less, M
n: 1.0% or less, P: 0.025% or less,
S: 0.0050% or less, N: 0.050% or less, and optionally Ti: O, O 1 to 1.0% and/or Al: 0.01 to 2.0%, preferably Q: 0.
This is a highly corrosion-resistant precipitation-hardening Ni-based alloy that exhibits excellent SCC resistance in a harsh environment where elemental S is mixed in a sour gas environment having a composition of 5 to 2.0%.
さらに、上記成分系を下記(1)式なる範囲に限定すれ
ば、組織は安定化し、熱間加工性が極めて優れた均質な
合金が得られ、耐SCC性も良好となり、本発明の目的
がさらに一層効果的に達成される。Furthermore, if the above-mentioned component system is limited to the range expressed by the following formula (1), the structure will be stabilized, a homogeneous alloy with extremely excellent hot workability will be obtained, and the SCC resistance will also be good. This is achieved even more effectively.
Ni−2(Mo+1.5(Cr−12)] 3 (N
b+1.5Ti+0.5(Al−0,5) l ≧O・
・・・(11かくして、本発明によれば、200℃まで
の高温下にあっても、サワーガス環境にさらにS単体が
混合した過酷な環境下ですぐれた耐SCC性および耐水
素割れ性を示す析出硬化型Niy!E合金が得られる。Ni-2(Mo+1.5(Cr-12)] 3 (N
b+1.5Ti+0.5(Al-0,5) l ≧O・
(11) Thus, according to the present invention, even at high temperatures of up to 200°C, it exhibits excellent SCC resistance and hydrogen cracking resistance in a harsh environment in which simple S is mixed in a sour gas environment. A precipitation hardening Niy!E alloy is obtained.
(作用)
次に、本発明において成分組成を上述の如く限定する理
由を説明する。(Function) Next, the reason why the component composition is limited as described above in the present invention will be explained.
Cr: CrはMo、 Ni、 Fe等と共にγ゛、7
”析出硬化のためのオーステナイトマトリックスを構成
する。従来のサワーガス環境では特に高温での耐食性に
有効とされていたが、当該環境ではM2S Ni等とバ
ランスで耐食性皮膜に寄与する。このためにはCr11
2%は必要であるが、組織安定性の観点からCr525
%とした。Cr: Cr is γ゛,7 along with Mo, Ni, Fe, etc.
"Constitutes an austenite matrix for precipitation hardening. In the conventional sour gas environment, it is said to be effective for corrosion resistance, especially at high temperatures, but in this environment, it contributes to a corrosion-resistant film in balance with M2S Ni etc. For this purpose, Cr11
2% is necessary, but from the viewpoint of tissue stability, Cr525
%.
Mo: Moは当該環境にて耐食性皮膜を形成させるた
めに不可欠な元素であり200℃までを対象とした場合
、Mo≧5.5%必要である。しかじながら、多量添加
は経済性等の観点から不要でありMo<9.0%とする
。Mo: Mo is an essential element for forming a corrosion-resistant film in the relevant environment, and when temperatures up to 200° C. are targeted, Mo≧5.5% is required. However, it is unnecessary to add a large amount from the viewpoint of economic efficiency, etc., and Mo is set to <9.0%.
なお、WはMoと同様な効果を有すると一般的に考えら
れ、通常Wの原子量を考慮してl %Moに対し
て2%Wにて置換可能とされているが、当該成分系では
成分構成上品W添加は実質不可能である。ただし、Mo
の一部をWにて置換することは可能である。In addition, W is generally considered to have the same effect as Mo, and considering the atomic weight of W, it is usually said that 2% W can be substituted for 1%Mo, but in this component system, the component It is virtually impossible to add W as a component. However, Mo
It is possible to replace a part of with W.
Ni: NiはTo、T″析出硬化に不可欠な元素であ
るが、当該環境における耐食性皮膜の強化にも重要な役
割を果す。そのためには、N+945%必要だが、他成
分系とのバランスと耐水素割れ性の観点からN4560
%とする。Ni: Ni is an essential element for precipitation hardening of To and T″, but it also plays an important role in strengthening the corrosion-resistant film in the relevant environment.For this purpose, N + 945% is required, but the balance with other components and the resistance N4560 from the perspective of hydrogen cracking
%.
Fe: FeはTo、γ1析出硬化能の向上には不可欠
な元素である。そのためにはFe≧5.0%必要だが、
他成分系とのバランスを考慮してFc≦25%とする。Fe: Fe is an essential element for improving To and γ1 precipitation hardenability. For that purpose, Fe≧5.0% is required,
Considering the balance with other components, Fc≦25%.
Nb: Nbは本合金系では主にT”−NiJb(Do
□2型規則構造)の析出硬化により高強度かつ高耐食性
を与える。これはγ”特有の変形機構により応力集中が
小さく、また耐孔食性に優れているからである。そのた
めにはNb≧4.0%必要であるが、多量添加はLav
es相の生成等好ましくない第2相を析出するためNb
S2.0%とする。Nb: In this alloy system, Nb is mainly T”-NiJb (Do
□Precipitation hardening of type 2 regular structure) provides high strength and high corrosion resistance. This is because stress concentration is small due to the deformation mechanism unique to γ'', and it has excellent pitting corrosion resistance.For this purpose, Nb≧4.0% is required, but adding a large amount
Nb is used to precipitate undesirable second phases such as the formation of es phase.
S shall be 2.0%.
Ti: Tiは多量に添加されるとγ”相を形成するが
本合金系では微量であればT”析出を促進する効果があ
る。そのため、多量添加は不要であり、添加量はTiS
2.0%とする。その効果を得るのにTi添加の下限を
0.01%とする。Ti: When Ti is added in a large amount, it forms a γ'' phase, but in this alloy system, if it is added in a small amount, it has the effect of promoting T'' precipitation. Therefore, it is not necessary to add a large amount of TiS.
It shall be 2.0%. To obtain this effect, the lower limit of Ti addition is set to 0.01%.
Al:Alは、八Q≦0.5%で有効な脱酸剤として、
さらに組織の安定化に寄与する。それらの効果を得るの
にAl≧0.01%を必要とする。またγ“あるいはγ
′相の析出にも寄与するため、Al≧0.5%としても
よいが、Al>2%は却って強度向上には好ましくない
。Al: Al is an effective deoxidizing agent when 8Q≦0.5%.
Furthermore, it contributes to tissue stabilization. Al≧0.01% is required to obtain these effects. Also γ” or γ
Although Al≧0.5% may be acceptable since it also contributes to the precipitation of the ' phase, Al>2% is rather unfavorable for improving strength.
C:Cは、C>0.05%では粗大なMC型(M:Nb
、Ti等)炭化物を形成し、著しく延性、靭性が低下す
る。したがって、好ましくは、C50゜020%とする
ほうがよい。C:C becomes coarse MC type (M:Nb
, Ti, etc.) to form carbides, resulting in a significant decrease in ductility and toughness. Therefore, it is preferable to set C50°020%.
Sis Mn: Sis Mnは通常脱酸剤、脱硫剤と
して添加されるが多量添加は延性、靭性の低下につなが
るため、添加する場合には、Sis0.50%、MnS
2.0%とするのが好ましい。Sis Mn: Sis Mn is usually added as a deoxidizing agent and desulfurizing agent, but adding a large amount leads to a decrease in ductility and toughness.
The content is preferably 2.0%.
P、S: P、Sは不可避的に混入する不純物であり、
多量に存在すると熱間加工性、耐食性に悪影響を及ぼす
ため、P≦0.025%、S≦0゜0050%とするの
が好ましい。P, S: P and S are impurities that are inevitably mixed,
If present in a large amount, it will adversely affect hot workability and corrosion resistance, so it is preferable that P≦0.025% and S≦0°0050%.
NUNは、Nの多量添加がMN型(M: Nb、 Ti
等)窒化物の形成によりγ′、T”析出硬化の妨げにな
るとともに延性、靭性を低下させるためN≦0.050
%とするのが好ましい。NUN is MN type (M: Nb, Ti
etc.) N≦0.050 because the formation of nitrides impedes precipitation hardening and reduces ductility and toughness.
% is preferable.
本発明のその好適B様にあって下記(1)式によってさ
らにその合金組成が制限されてもよいが、その場合、熱
間加工性がさらに一層良好なものとなり、それにより組
織的にも一層均質となるため耐SCC性等の耐食性も相
乗的に改善される。In preferred embodiment B of the present invention, the alloy composition may be further limited by the following formula (1), but in that case, the hot workability will be even better, and the microstructure will be further improved. Since it becomes homogeneous, corrosion resistance such as SCC resistance is also synergistically improved.
Ni −2(Mo+1.5(Cr 12)) 3
(Nb+1.5Ti+0.5(Al−0,5)) ≧
0 ・・・・(11なお、本発明合金系にあっても、所
望成分として、必要によりCus C0% R[!M
、Mg、Cas Y等を適宜添加してもよいが、それら
を添加する場合には次のように制限される。Ni-2(Mo+1.5(Cr12)) 3
(Nb+1.5Ti+0.5(Al-0,5)) ≧
0...(11) Even in the alloy system of the present invention, Cus C0% R[!M
, Mg, Cas Y, etc. may be added as appropriate, but when they are added, the following restrictions apply.
Cuは当該環境にて耐食性皮膜の形成に寄与するが、多
量添加はγ′、γ”の析出硬化の妨げになるため、Cu
3P、0%とするのが好ましい。Cu contributes to the formation of a corrosion-resistant film in this environment, but adding a large amount hinders the precipitation hardening of γ' and γ'', so Cu
3P is preferably 0%.
Coは耐水素割れ性の向上に有効だが、多量添加は延性
、靭性の低下を招くため、Cas5.0%とするのが好
ましい。Although Co is effective in improving hydrogen cracking resistance, adding a large amount leads to a decrease in ductility and toughness, so it is preferable to set the Cas content to 5.0%.
REM 、Mg、Ca、 Yは少なくとも1種の添加に
より熱11加工性を向上させるが、それぞれ0.1θ%
、0.10%、0.10%、0.20%を越えると逆に
低融点化合物を生成し易くなり加工性が低下するため、
それぞれ0.10%、0.10%、0.10%、0.2
0%以下とするのが好ましい。The addition of at least one of REM, Mg, Ca, and Y improves thermal processability, but the addition of 0.1θ% each
, 0.10%, 0.10%, or 0.20%, conversely, low melting point compounds tend to be produced and processability decreases.
0.10%, 0.10%, 0.10%, 0.2 respectively
It is preferably 0% or less.
その他、V、 Zr、 Ta、、Hf等はCの安定化に
寄与するとされており本発明にかかる本合金系にあって
も、合計2.0%までは添加してもよい。In addition, V, Zr, Ta, Hf, etc. are said to contribute to the stabilization of C, and may be added up to a total of 2.0% even in the present alloy system according to the present invention.
またB、 Sn、 Zn、 Pb等は微量では特に影習
がないため不純物として合計0.10%までその存在が
許容される。Furthermore, since B, Sn, Zn, Pb, etc. do not have any particular adverse effects in trace amounts, their presence as impurities is allowed up to a total of 0.10%.
次に、本発明を実施例に基づいてさらに具体的に説明す
る。Next, the present invention will be explained in more detail based on examples.
実施例
第1表に示す化学組成を有する各合金をtm m 1&
、熱間加工によって板材とし、さらに第2表に示す所定
の固溶化処理後、種々の時効処理を施して、0.2%耐
力(室温)にて77 kgf/mm”以上という所定の
強度を得た。この板材から下記試験用試験片を採取し、
下記の各試験条件で各試験を実施した。Examples Each alloy having the chemical composition shown in Table 1 was tm m 1&
The material was made into a plate material by hot working, and after the specified solution treatment shown in Table 2, it was subjected to various aging treatments to achieve the specified strength of 77 kgf/mm" or more at 0.2% proof stress (room temperature). The following test specimens were taken from this plate material,
Each test was conducted under the following test conditions.
それらの結果を第2表にまとめて示す。The results are summarized in Table 2.
五跋験条佳
■■歪成験 温度 : 室温
試験片 : 4.Ons+φX GL = 20mm
歪み速度: I Xl0−’S−’
試験項目: 引張強度、伸び、絞り
■SC+ン」式1え ?合液 : 20%
NaCQ −1,0g/ pS40atm、llI25
−20at
温度 :200℃
浸漬時間:500h
試験片 : 2tX10w x75j! (ms)、
R0,2511ノンチ付
付加応カニ1.0 σy
■i漿計扛成駿
NACE条件: 5XNaCQ−0,5χclhCO
OIl−1atm 1lts、 25℃
試験片 : 炭素鋼カップリング、
2t X Low X 75 j! (am)、R0,
250ノフチ付
付加応力=1.0σy
浸漬時間: 1000h
上記の■、■の腐食試験において割れまたは孔食、局部
腐食の発生しなかったものを「O」、発生したもの「×
」にて示す。Strain test Temperature: Room temperature test piece: 4. Ons+φX GL = 20mm
Strain rate: I Mixed liquid: 20%
NaCQ -1,0g/pS40atm, llI25
-20at Temperature: 200°C Immersion time: 500h Test piece: 2tX10w x75j! (ms),
R0,2511 Non-chip added reaction crab 1.0 σy ■i Serum meter NACE conditions: 5XNaCQ-0,5χclhCO
OIl-1atm 1lts, 25℃ Test piece: Carbon steel coupling, 2t X Low X 75 j! (am), R0,
Added stress with 250 notches = 1.0σy Immersion time: 1000h In the above corrosion tests (■) and (■), those in which cracking, pitting corrosion, or local corrosion did not occur are ``O'', and those in which they occur are ``×''.
”.
(発明の効果)
Coz 以上のように、本発明によれば、耐食性即
ち耐応力割れ性、耐水素割れ性に抜群に優れた高強度の
油井坑口、坑底部材が得られる。(Effects of the Invention) Coz As described above, according to the present invention, a high-strength oil well entrance and bottom member with excellent corrosion resistance, that is, stress cracking resistance and hydrogen cracking resistance can be obtained.
したがって、本発明が斯界に与える利益は大きい。Therefore, the present invention is of great benefit to the industry.
Claims (4)
満、Nb:4.0〜6.0%、Fe:5.0〜25%、
Ni:45〜60%、C:0.050%以下、Si:0
.50%以下、Mn:1.0%以下、P:0.025%
以下、S:0.0050%以下、N:0.050%以下 からなる組成を有する、サワーガス環境にさらにS単体
が混入した過酷な環境下ですぐれた耐SCC性を示す高
耐食性析出硬化型Ni基合金。(1) In weight%, Cr: 12-25%, Mo: 5.5% or more, less than 9.0%, Nb: 4.0-6.0%, Fe: 5.0-25%,
Ni: 45-60%, C: 0.050% or less, Si: 0
.. 50% or less, Mn: 1.0% or less, P: 0.025%
The following is a highly corrosion-resistant precipitation hardening type Ni having a composition consisting of S: 0.0050% or less and N: 0.050% or less, which exhibits excellent SCC resistance in a harsh environment where S alone is mixed in a sour gas environment. Base alloy.
満、Nb:4.0〜6.0%、Fe:5.0〜25%、
Ni:45〜60%、C:0.050%以下、Si:0
.50%以下、Mn:1.0%以下、P:0.025%
以下、S:0.0050%以下、N:0.050%以下
、Ti:0.01〜1.0%からなる組成を有する、サ
ワーガス環境にさらにS単体が混入した過酷な環境下で
すぐれた耐SCC性を示す高耐食性析出硬化型Ni基合
金。(2) In weight%, Cr: 12 to 25%, Mo: 5.5% or more but less than 9.0%, Nb: 4.0 to 6.0%, Fe: 5.0 to 25%,
Ni: 45-60%, C: 0.050% or less, Si: 0
.. 50% or less, Mn: 1.0% or less, P: 0.025%
The following composition has a composition consisting of S: 0.0050% or less, N: 0.050% or less, and Ti: 0.01 to 1.0%, and is excellent in a harsh environment where S alone is mixed in a sour gas environment. A highly corrosion-resistant precipitation-hardening Ni-based alloy that exhibits SCC resistance.
満、Nb:4.0〜6.0%、Fe:5.0〜25%、
Ni:45〜60%、C:0.050%以下、Si:0
.50%以下、Mn:1.0%以下、P:0.025%
以下、S:0.0050%以下、N:0.050%以下
、Al:0.01〜2.0%からなる組成を有する、サ
ワーガス環境にさらにS単体が混入した過酷な環境下で
すぐれた耐SCC性を示す高耐食性析出硬化型Ni基合
金。(3) In weight%, Cr: 12-25%, Mn: 5.5% or more but less than 9.0%, Nb: 4.0-6.0%, Fe: 5.0-25%,
Ni: 45-60%, C: 0.050% or less, Si: 0
.. 50% or less, Mn: 1.0% or less, P: 0.025%
Below, it has a composition consisting of S: 0.0050% or less, N: 0.050% or less, and Al: 0.01 to 2.0%, and is excellent in a harsh environment where S alone is mixed in a sour gas environment. A highly corrosion-resistant precipitation-hardening Ni-based alloy that exhibits SCC resistance.
満、Nb:4.0〜6.0%、Fe:5.0〜25%、
Ni:45〜60%、C:0.050%以下、Si:0
.50%以下、Mn:1.0%以下、P:0.025%
以下、S:0.0050%以下、N:0.050%以下
、Ti:0.01〜1.0%、Al:0.01〜2.0
% からなる組成を有する、サワーガス環境にさらにS単体
が混入した過酷な環境下ですぐれた耐SCC性を示す高
耐食性析出硬化型Ni基合金。(4) In weight%, Cr: 12 to 25%, Mo: 5.5% or more but less than 9.0%, Nb: 4.0 to 6.0%, Fe: 5.0 to 25%,
Ni: 45-60%, C: 0.050% or less, Si: 0
.. 50% or less, Mn: 1.0% or less, P: 0.025%
Below, S: 0.0050% or less, N: 0.050% or less, Ti: 0.01-1.0%, Al: 0.01-2.0
%, a highly corrosion-resistant precipitation hardening Ni-based alloy that exhibits excellent SCC resistance in a harsh environment where elemental S is mixed in a sour gas environment.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28828286A JPS63140055A (en) | 1986-12-03 | 1986-12-03 | Highly corrosion resistant precipitation hardening-type ni-base alloy |
US07/123,878 US5000914A (en) | 1986-11-28 | 1987-11-23 | Precipitation-hardening-type ni-base alloy exhibiting improved corrosion resistance |
US07/619,980 US5217684A (en) | 1986-11-28 | 1990-11-30 | Precipitation-hardening-type Ni-base alloy exhibiting improved corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28828286A JPS63140055A (en) | 1986-12-03 | 1986-12-03 | Highly corrosion resistant precipitation hardening-type ni-base alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63140055A true JPS63140055A (en) | 1988-06-11 |
Family
ID=17728146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28828286A Pending JPS63140055A (en) | 1986-11-28 | 1986-12-03 | Highly corrosion resistant precipitation hardening-type ni-base alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63140055A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009515053A (en) * | 2005-11-07 | 2009-04-09 | ハンチントン、アロイス、コーポレーション | High strength corrosion resistant alloy for oil patch applications |
JP2011503366A (en) * | 2007-11-19 | 2011-01-27 | ハンチントン、アロイス、コーポレーション | Ultra-high strength alloy for harsh oil and gas environments and manufacturing method |
JP2011052303A (en) * | 2009-09-04 | 2011-03-17 | Hitachi Ltd | Ni-BASED CASTING ALLOY AND TURBINE CASING |
JP2018095952A (en) * | 2016-10-24 | 2018-06-21 | 大同特殊鋼株式会社 | Precipitation hardening type high nickel refractory alloy |
-
1986
- 1986-12-03 JP JP28828286A patent/JPS63140055A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009515053A (en) * | 2005-11-07 | 2009-04-09 | ハンチントン、アロイス、コーポレーション | High strength corrosion resistant alloy for oil patch applications |
KR101350725B1 (en) * | 2005-11-07 | 2014-01-14 | 헌팅턴 앨로이즈 코오포레이션 | High Strength Corrosion Resistant Alloy for Oil Patch Applications |
JP2011503366A (en) * | 2007-11-19 | 2011-01-27 | ハンチントン、アロイス、コーポレーション | Ultra-high strength alloy for harsh oil and gas environments and manufacturing method |
US9017490B2 (en) | 2007-11-19 | 2015-04-28 | Huntington Alloys Corporation | Ultra high strength alloy for severe oil and gas environments and method of preparation |
US10100392B2 (en) | 2007-11-19 | 2018-10-16 | Huntington Alloys Corporation | Ultra high strength alloy for severe oil and gas environments and method of preparation |
JP2011052303A (en) * | 2009-09-04 | 2011-03-17 | Hitachi Ltd | Ni-BASED CASTING ALLOY AND TURBINE CASING |
JP2018095952A (en) * | 2016-10-24 | 2018-06-21 | 大同特殊鋼株式会社 | Precipitation hardening type high nickel refractory alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2500162B2 (en) | High strength duplex stainless steel with excellent corrosion resistance | |
JPS6256556A (en) | High nitrogent content duplex stainless steel having high corrosion resistance and good structural stability and its use | |
EP3575427B1 (en) | Dual-phase stainless clad steel and method for producing same | |
KR0167783B1 (en) | Austenitic stainless steel | |
US5217684A (en) | Precipitation-hardening-type Ni-base alloy exhibiting improved corrosion resistance | |
US5000914A (en) | Precipitation-hardening-type ni-base alloy exhibiting improved corrosion resistance | |
WO1994026947A1 (en) | High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance | |
JPS63140055A (en) | Highly corrosion resistant precipitation hardening-type ni-base alloy | |
JPS61119641A (en) | Highly corrosion-resistant ni-base alloy and its production | |
JPS6261107B2 (en) | ||
JPH0674471B2 (en) | High corrosion resistance Ni-based alloy | |
JPH0114992B2 (en) | ||
JPS61113749A (en) | High corrosion resistance alloy for oil well | |
GB2133419A (en) | Nickel-based alloys | |
JPH0524218B2 (en) | ||
JPH0674472B2 (en) | High-strength Ni-based alloy with excellent corrosion resistance | |
US3533780A (en) | High-strength austenitic stainless steel for a boiler | |
JPH0674473B2 (en) | High corrosion resistance Ni-based alloy | |
JPS63140056A (en) | Highly corrosion resistant precipitation hardening-type ni-base alloy | |
JPS58199850A (en) | Martensitic stainless steel for acidic oil well | |
JPS63140054A (en) | Highly corrosion resistant precipitation hardening-type ni-base alloy | |
US2523838A (en) | Metal alloy | |
JP2833385B2 (en) | Corrosion resistant austenitic Fe-based alloy | |
US2861883A (en) | Precipitation hardenable, corrosion resistant, chromium-nickel stainless steel alloy | |
JPS61223155A (en) | Highly corrosion resistant ni-base alloy and its manufacture |