JPS63147839A - Doping method for porous glass base material - Google Patents
Doping method for porous glass base materialInfo
- Publication number
- JPS63147839A JPS63147839A JP29450486A JP29450486A JPS63147839A JP S63147839 A JPS63147839 A JP S63147839A JP 29450486 A JP29450486 A JP 29450486A JP 29450486 A JP29450486 A JP 29450486A JP S63147839 A JPS63147839 A JP S63147839A
- Authority
- JP
- Japan
- Prior art keywords
- porous glass
- base material
- raw material
- dope
- capsule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 91
- 239000005373 porous glass Substances 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 33
- 239000002994 raw material Substances 0.000 claims abstract description 54
- 239000002775 capsule Substances 0.000 claims abstract description 28
- 238000010438 heat treatment Methods 0.000 claims abstract description 18
- 230000008018 melting Effects 0.000 claims description 8
- 238000002844 melting Methods 0.000 claims description 8
- 238000001704 evaporation Methods 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 20
- 239000010453 quartz Substances 0.000 abstract description 18
- 239000002019 doping agent Substances 0.000 abstract description 16
- 239000007789 gas Substances 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 239000011261 inert gas Substances 0.000 abstract description 2
- 239000003779 heat-resistant material Substances 0.000 abstract 1
- 239000011521 glass Substances 0.000 description 10
- 238000004017 vitrification Methods 0.000 description 7
- 229910052779 Neodymium Inorganic materials 0.000 description 6
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 229910017544 NdCl3 Inorganic materials 0.000 description 4
- ATINCSYRHURBSP-UHFFFAOYSA-K neodymium(iii) chloride Chemical compound Cl[Nd](Cl)Cl ATINCSYRHURBSP-UHFFFAOYSA-K 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 101150004354 npp-22 gene Proteins 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 241000277331 Salmonidae Species 0.000 description 2
- 241000750631 Takifugu chinensis Species 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium oxide Inorganic materials [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 229910004664 Cerium(III) chloride Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 241000102542 Kara Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/34—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
r産業上の利用分野1
本発明は通信、光学などの分野に用いられる多孔質ガラ
スIJ材に所q!のドーパントをドープする方法に関す
る。[Detailed Description of the Invention] Industrial Application Field 1 The present invention is applicable to porous glass IJ materials used in fields such as communications and optics. The present invention relates to a method of doping with a dopant.
r従来の技術」
光フアイバ用、イメージガイド用、ライトガイド川、ロ
ーノドレンズ用などの合成石英母材とじてドープト石英
が広く用いられている。4. Prior Art Doped quartz is widely used as a synthetic quartz base material for optical fibers, image guides, light guides, lenses, etc.
L述したドープト石英は、気相化学反応法を介して多孔
質ガラスは材をつくり、その多孔質カラスCJ材を透明
カラス化することにより得られ、かかるドープト石英の
Jiii折−(iは、つぎの「段により設定される。The doped quartz described above is obtained by creating a porous glass material through a vapor phase chemical reaction method and converting the porous glass CJ material into transparent glass. Set by the next step.
その一つは、多孔質ガラス母材をつくる際。One of these is when creating a porous glass base material.
5i07とともにドーパントを合成してこれをS i0
7中に添加する方υ:であり(先行技術1)、他の一つ
ば、純石英製の多孔質ガラスIzI材を1・−プ原料含
有雰囲気内で透明ガラス化し、そのjzI材中にドーパ
ントを添加する方法である(先行技術2)。Synthesize the dopant with 5i07 and add it to S i0
(Prior Art 1), another method is to make a porous glass IzI material made of pure quartz into transparent vitrification in an atmosphere containing raw materials of 1. (Prior Art 2).
L記以外の先行技術として、先順発明(特炉閉81−2
02230)の方法では、ドープ原料の融点以4.に保
持されたドープ雰囲気内で多孔質ガラスfJ材中にドー
プ原料を取りこむ1°程と、その後、8該11材中のド
ープ原才゛lを、そのドープ原本1の融点以ドに温度保
持された醇化雰囲気内で醇化する1−稈とを繰り返し、
かくて所C11のドーパントかr−プされた多孔質カラ
スt−I材を透明カラス化するように1−ている。As prior art other than L, there are prior inventions (Special Furnace Closure 81-2).
In the method of 02230), the melting point of the dope raw material is 4. The dope material is introduced into the porous glass fJ material in a dope atmosphere maintained at about 1°, and then the temperature of the dope material in the 8 and 11 materials is maintained at a temperature below the melting point of the dope material 1. Repeat the process of 1-culm to liquefy in the molten atmosphere,
In this way, the dopant C11 doped porous glass T-I material is transformed into transparent glass.
1発明が解決しようとする問題点1
周知の通り、先行技術1の方法では、フッ素、燐のごと
く、ガス、反応生成物等の蒸気圧が高くなるドーパント
、またはネオジムのごとく、原料の蒸気圧が低くなるド
ーパントの場合、これを気相化学反応法の火炎中に導入
できず、その先行技(−に1において適用できないドー
パントの添加方法として案出された先行技術2の方法も
、種々の実験例で知られている通り、ドープ■を増やす
ことが“できない。1 Problem to be Solved by the Invention 1 As is well known, in the method of Prior Art 1, dopants such as fluorine, phosphorus, gases, reaction products, etc., which have a high vapor pressure, or neodymium, which has a high vapor pressure, In the case of a dopant with a low value, it cannot be introduced into the flame of the gas phase chemical reaction method, and the method of Prior Art 2, which was devised as a method of adding a dopant that cannot be applied in 1, has various methods. As is known from experimental examples, it is impossible to increase dope ■.
ちなみに、蒸気圧の高いフッ素添加方法として・膜化さ
れている先行技術2の方法は、フッ素をS io?にド
ープすることにより屈折率を下げ、ディプレストクラッ
ド型シングルモード光ファイバを製造する場合によく使
用されており、具体的には)1eと5iFaまたはSF
6 との混合雰囲気内で純石英製の多孔質ガラス母材を
透明ガラス化してその母材中のフッ素をドープしている
が、この場合のドープ■は、比屈折率差で最大0.4z
程度にしかならない。By the way, as a method of adding fluorine with high vapor pressure, the method of prior art 2, which is made into a film, uses Sio? It is often used to lower the refractive index by doping to produce depressed clad single mode optical fibers, specifically) 1e and 5iFa or SF.
A porous glass base material made of pure quartz is made into transparent glass in a mixed atmosphere with 6 and the base material is doped with fluorine.
It will only be to a certain extent.
・方、蒸気圧の低いドープ原本1を用いる先行技術2の
ドーパント添加方法として、ネオジムに関する報告(8
1年度電f通信学会総合全国人会)もみられ、この報告
例では、NdChを1000℃以[−の高温で気化させ
た雰囲気内において、純石英製の多孔質ガラスL;I材
を透明ガラス化しているが、この際のネオジムドープ■
は最大でも0.3wt$にとどまる。・On the other hand, a report on neodymium (8
In this report, in an atmosphere where NdCh was vaporized at a high temperature of 1000°C or higher, pure quartz porous glass L; However, neodymium dope at this time■
The maximum value remains at 0.3wt$.
なお、ネオジムドープを兼ねた多孔質ガラスL;I材の
透明ガラス化は、一般的なドープ例と同様、ドープ原料
蒸気1ooxの雰囲気で行なうのでなく、Heを共存さ
せた雰囲気中で行なうので、そのドープ埴は−に記雰囲
気内のNdCl3の分圧と相関関係があり、ネオジムが
ドープさiるメカニズムは、高温のNdCl3雰囲気内
においてNdC1:+が多孔質ガラスIJ材中に拡散し
、その多孔質ガラス母材の焼結進行にともない、NdG
13が!ll]該1’;)材中に封じこめられると考え
られる。Note that the transparent vitrification of the porous glass L and I material that also serves as neodymium doping is not carried out in an atmosphere containing 100x of dope raw material vapor as in the case of general doping, but is carried out in an atmosphere in which He coexists. The doping level is correlated with the partial pressure of NdCl3 in the atmosphere described below, and the mechanism by which neodymium is doped is that NdCl:+ diffuses into the porous glass IJ material in the high-temperature NdCl3 atmosphere. As the sintering of the porous glass base material progresses, NdG
13! ll] Said 1';) It is thought that it is confined in the material.
また、に記焼結後のドープト石英について、 NdとC
1とのC度分41を調べた結果では、C1とNdの挙動
が類似していた。In addition, regarding the doped quartz after sintering described in , Nd and C
According to the results of examining 41 C degrees with 1, the behavior of C1 and Nd was similar.
この点のみをとらえた場合、上記雰囲気内におけるNd
Cl:の分圧を高めることにより、母材中への2オジム
のドープt1.が増えるが、そのドープr許が−・定値
を越えた場合に、ヘリウムの分圧が下がり、Lす材の透
明化が不1−分となるので、結論的には、2オンムの場
合もドープ!11:を多くすることができない。Considering only this point, Nd in the above atmosphere
Doping 2-Odium into the base metal by increasing the partial pressure of Cl: t1. However, when the doping rate exceeds a certain value, the partial pressure of helium decreases, and the transparency of the L material becomes insufficient.Conclusively, even in the case of 2 ohm. Dope! 11: cannot be increased.
それに対し、先願発明(特願昭61−202230)の
方法では、例えば蒸気圧の低いドープ原本1であっても
、1111述した繰り返し1程により、当該ドープ原料
を多孔質カラスtit材中に1−分添加することができ
るとしている。On the other hand, in the method of the prior invention (Japanese Patent Application No. 61-202230), even if the original dope 1 has a low vapor pressure, the dope raw material is poured into the porous glass tit material by repeating 1 as described in 1111. It is said that it can be added for 1 minute.
しかし、1−記先願発明では、電気炉(加熱炉)の炉心
管内全域をドープ雰囲気に保持しているので、その広い
ドープ雰囲気内にドープ原わが拡散してしまい、−回(
−何二程)あたりのドープ原才゛1取込II;が少なく
なる。However, in the first invention mentioned above, since the entire area inside the core tube of the electric furnace (heating furnace) is maintained in a dope atmosphere, the dope raw material is diffused in the wide dope atmosphere, and - times (
- about 2), the dope original ability 1 uptake II; is reduced.
その結果、多孔f↓カラスlJ材、中のドーパントz度
を所定f〆1まで高めようとするとき、多くのドープ原
料を要し、そのドープ原料を取りこむための繰り返しI
]程が多くなる。As a result, when trying to increase the dopant z degree in the porous f↓glass lJ material to a predetermined f〆1, a large amount of dope raw material is required, and it is necessary to repeat I to incorporate the dope raw material.
] The number of degrees increases.
本発明は1−記の問題点に鑑み1石英系の多孔質ガラス
母材中にドープ原料をドープするとき、少z5のドープ
原料にて効率よくドープすることのできる方法を提供し
ようとするものである。In view of the problem described in 1-1, the present invention aims to provide a method that can efficiently dope a quartz-based porous glass base material with a dope material having a small amount of z5. It is.
l問題点を解決するための1段1
本発明に係るドープ方法は所期の目的を達成するため、
多孔質ガラス母材をドープ原料入りのカプセルで覆い、
そのカプセルにより覆われた多孔質ガラスC7材を、上
記ドープ原料の融点以1.に温度保持された加熱装置内
に入れて加熱することにより、I−記カプセル内のドー
プ原料を蒸発させ。Step 1 for solving the problems In order to achieve the intended purpose, the doping method according to the present invention:
Covering the porous glass base material with capsules containing dope raw materials,
The porous glass C7 material covered by the capsule is heated to a temperature higher than the melting point of the dope raw material. The dope raw material in the capsule described in I- is evaporated by heating it by placing it in a heating device whose temperature is maintained at .
その蒸発したドープ原料を多孔質ガラス母材中にドープ
することを特徴とする。The method is characterized in that the evaporated dope raw material is doped into a porous glass base material.
シ゛実 施 例、l
以ド、来光明方υ:実施例につき、IA面を8!に!し
て説明する。゛Example, l゛゛゛゛゛ ゛゛゛゛゛゛゛ To! and explain.
図にお4いて、加熱装置(電気炉)1は、ガス人[12
、ガス出[13を有する石英製の炉心管4と、その炉心
管4の11一部外用に設けられた電気ヒータ5とからな
る。4, the heating device (electric furnace) 1 is a gas heater [12
, a quartz-made furnace core tube 4 having a gas outlet [13], and an electric heater 5 provided for a part of the furnace core tube 4 for external use.
1−記加熱装置1を介して処理される純石英製の多孔質
ガラス母材6は、VAD法などの気相化学反応法を介し
て作製されたものであり、かかる多孔質ガラス母材6は
石英製の支持棒7により担持されている。1- The porous glass base material 6 made of pure quartz that is processed through the heating device 1 is produced through a vapor phase chemical reaction method such as the VAD method; is supported by a support rod 7 made of quartz.
支持棒7には、ドープ原料8を収容するための容器機能
と、多孔質ガラスI”k材6を覆うためのカバー機能と
を兼備したカプセル9が取り外し口ff+&に取りつけ
られる。A capsule 9 having both a container function for accommodating the dope raw material 8 and a cover function for covering the porous glass I''k material 6 is attached to the support rod 7 at the removal port ff+&.
カプセル8は1石英などの#熱材からなり、」−下に分
割できる構造、あるいは左右に分割できる構造を有する
。The capsule 8 is made of a thermal material such as quartz, and has a structure that can be divided downwardly or horizontally.
図に略示するごとく、例えばカプセル9が1−下に分割
できる構造を有する場合、そのアッパ一部材9aがネジ
止め、ピンl−めなどの手段で支持棒7の外周に取りつ
けられ、そのロウア一部材9bが螺合、嵌合などの「一
段で上記アッパ一部材9dの下端に取りつけられる。As shown schematically in the figure, for example, when the capsule 9 has a structure that can be divided into lower parts, the upper part 9a is attached to the outer periphery of the support rod 7 by screws, pins, etc. The one member 9b is attached to the lower end of the upper member 9d in one step, such as by screwing or fitting.
に述した加熱装置1を介して多孔質カラスIJ材6を処
理するとき、多孔質ガラスIす材6中にドープJ3:鱒
’+を取りこむ工程と、多孔質ガラスjす材6中のドー
プ原料を固化する工程と、多孔質ガラスIt材6中のド
ープ原料を酸化する工程とが必要回数だけ繰り返され、
しかる後、多孔質ガラス母材6を透明ガラス化する工程
が実施される。When processing the porous glass IJ material 6 through the heating device 1 described in , a step of incorporating the dope J3:trout '+ into the porous glass IJ material 6, and a step of incorporating the dope J3: Trout'+ into the porous glass IJ material 6. The process of solidifying the raw material and the process of oxidizing the dope raw material in the porous glass It material 6 are repeated as many times as necessary,
After that, a step of converting the porous glass base material 6 into transparent glass is carried out.
以下、これら各工程について説明する。Each of these steps will be explained below.
多孔質ガラス母材6中にドープ原料を取りこむ」程では
、加熱装置1の炉心管4内に、不活性ガスとしてヘリウ
ムが供給されるとともに、その炉心管4内が電気ヒータ
5により加熱され、かがる炉心/i?4内の上部に、ド
ープ原料8入りのカプセル9により覆われた多孔質ガラ
スrat材6が支持棒7を介して挿入される。At the stage of "taking the dope raw material into the porous glass base material 6," helium is supplied as an inert gas into the furnace core tube 4 of the heating device 1, and the inside of the furnace core tube 4 is heated by the electric heater 5. Kagaru core/i? A porous glass rat material 6 covered with a capsule 9 containing a dope raw material 8 is inserted into the upper part of the chamber 4 via a support rod 7.
その後、炉心管4内の多孔質ガラスfit材6とカプセ
ル9とが回転状態で降下され、当該炉心管4内の高温域
に移行する。Thereafter, the porous glass fit material 6 and the capsule 9 inside the furnace core tube 4 are lowered in a rotating state and transferred to a high temperature region within the furnace core tube 4 .
かくて、カプセル9内のドープ原料8がその融点以」二
に加熱されて蒸発し、当該カプセルS内がドープ雰囲気
となり、多孔質ガラス母材6中すなわら多孔質ガラス母
材6の各気孔中にドープ原料が取りこまれる。In this way, the dope raw material 8 in the capsule 9 is heated above its melting point and evaporated, and the inside of the capsule S becomes a dope atmosphere. The dope material is taken into the pores.
こうして多孔質ガラスlrJ材6中に1−プ原料8を取
りこんだ後は、その多孔質カラス母材6中のドープ原料
8を固化する1〕程を引き続き実施するが、かかる−1
.程に際しては、多孔質ガラス母材6を引き上げて炉心
管4内の低温域(ドープ原本゛18の融点以ド)に急速
移行させればよく、これにより多孔質カラス11材6中
のドープ原本゛18が冷却かつ析出(凝固)され、固化
状態となる。After the 1-p raw material 8 is incorporated into the porous glass lrJ material 6 in this way, step 1 of solidifying the dope raw material 8 in the porous glass base material 6 is continued.
.. In this case, the porous glass base material 6 may be pulled up and rapidly transferred to a low temperature region (below the melting point of the dope original material 18) in the furnace tube 4, thereby removing the dope original material in the porous glass material 6. 18 is cooled and precipitated (solidified) to a solidified state.
多孔質ガラス1、J材6中のドープ原料8が固化された
とき、カプセルS内のドープ原料8を外気により酸化さ
れない温度まで冷却した後、そのカプセル9のロウア一
部材9bをそのアッパ一部材9aから外して、当該ロウ
ア一部材9bをドープ原料8とともに−たん炉心管4外
に取り出す。When the dope raw material 8 in the porous glass 1 and the J material 6 is solidified, the dope raw material 8 in the capsule S is cooled to a temperature at which it will not be oxidized by outside air, and then the lower part 9b of the capsule 9 is replaced with the upper part of the capsule. The lower member 9b is removed from the furnace core tube 4 together with the dope raw material 8.
ついで、多孔質カラスl;I材8中のドープ原料8を酸
化する1稈を実施するが、これに際しては、炉心管4内
に酸素を供給してその炉心管4内を酸化雰囲気に保持し
、かつ、ドープ原料8の融点以下の温度域において多孔
質ガラス母材6中のドープ原料8を酸化する。Next, one culm of oxidizing the dope raw material 8 in the porous glass I material 8 is carried out, but at this time, oxygen is supplied into the furnace core tube 4 to maintain the inside of the furnace core tube 4 in an oxidizing atmosphere. , and the dope raw material 8 in the porous glass base material 6 is oxidized in a temperature range below the melting point of the dope raw material 8.
かかる酸化工程により、多孔質カラスfミ)材6中のド
ープ原$18は、酸化物の状態で完全に固定される。Through this oxidation step, the original dope 18 in the porous glass material 6 is completely fixed in an oxide state.
以ドは、1−述したドープ原料取込I程、ドープ原料固
化」程、ドープ原料酸化工程を必要な回数だけ繰り返し
て多孔質カラスは材6中に所望j、1のドーパントを添
加する。Hereinafter, the dope raw material oxidation process is repeated as many times as necessary to add the desired number of dopants to the porous glass material 6 in the steps 1--Introducing the dope raw material and solidifying the dope raw material.
なお、ドープ原料取込上程については、多孔質ガラスI
J材6をカプセル9により覆いながら行なうので、″″
′I+tA′I+tAカプセルS内料の分圧が高まり、
多孔質ガラス1q材に対する一回あたりのドープ原料取
込:11.が多イなる。Regarding the dope raw material intake process, porous glass I
Since the J material 6 is covered with the capsule 9,
'I + tA' I + tA The partial pressure of the contents inside the capsule S increases,
Dope raw material intake per time into porous glass 1q material: 11. There are many.
したがって、1.述した各上程を繰り返すとしても、そ
の繰り返し回数がか少なくて寸み、1・−プ原本′1の
使用j11も少なくてすむ。Therefore, 1. Even if each of the above-mentioned steps is repeated, the number of repetitions is small and the number of times of repetition is small, and the use of the 1.-p original '1 can also be reduced.
1、記のようにして多孔質カラスIzI材s中にドーバ
ントを添加した後は、多孔質カラス747材6を透明カ
ラス化する工程を実施するが、これに際しては、炉心管
4内にヘリウムを供給して10ozヘリウムの雰囲気に
保持するとともに、その炉心管4内を透明カラス化温度
に保持し、かかる透明ガラス化雰囲気において多孔質ガ
ラス母材6を透明ガラス化する。1. After dopant is added to the porous Karasu IzI material s as described above, a step is carried out to make the porous Karasu 747 material 6 transparent. At the same time, the inside of the furnace tube 4 is maintained at a transparent vitrification temperature, and the porous glass preform 6 is vitrified into transparent glass in this transparent vitrification atmosphere.
かくて、透1y1なガラス母材すなわちドープト石英が
71)られる。Thus, a transparent 1y1 glass matrix, ie, doped quartz 71) is obtained.
つぎに、本発明方法の具体例とその比較例について説明
する。Next, specific examples of the method of the present invention and comparative examples thereof will be explained.
具体例
多孔質カラス/1材は、VAD法により作製された純5
102製であり、外径30IIlfflφ、長さ100
mm 、平均密度0.35g/cm3である。Specific example Porous glass/1 material is pure 5 made by VAD method.
Made of 102, outer diameter 30IIlfflφ, length 100
mm, and the average density is 0.35 g/cm3.
かかる多孔質ガラスnl材は、石英製支持棒により担持
されている。Such a porous glass nl material is supported by a quartz support rod.
ドープ原料はNdCl3からなり、その使用量は20g
である。The dope raw material consists of NdCl3, and the amount used is 20g.
It is.
かかるドープ原料をカプセル内に入れ、該ドープ原料込
りのカプセルにより多孔質カラスn?材の外周を覆った
。The dope raw material is placed in a capsule, and the capsule containing the dope raw material forms a porous crow n? Covered the outer periphery of the material.
ドープ原料取込上程のとき、ドープ!!:(料入りのカ
プセルと、これにより覆われた多孔質カラスミ上材とを
、He:5交/minの雰囲気とした炉心管(内イ90
mmφ、長さ100100O内の100°C以ドの温度
域に挿入した後、これらを5℃/ff1inの昇温速度
で1000°Cに加熱し、60分間保持して、NdCl
3八気を多孔質ガラスミ2材の気孔中に取りこんだ。Dope! ! : (The capsule containing the material and the porous Karasumi upper material covered by it were placed in a furnace core tube (within 90 mA) in an atmosphere of He: 5 alternations/min.
After inserting them into a temperature range of 100°C or higher within mmφ and length 100100O, they were heated to 1000°C at a heating rate of 5°C/ff1in, held for 60 minutes, and NdCl
3 Haki was taken into the pores of porous glass material 2.
ドープ原料固化工程のとき、北記丁程後の多孔質ガラス
IJ材を炉心管内の400°C以下の温度域に急速移行
させ、多孔質カラスlす材中に拡散した1−記NdC1
1基気を凝固させた。During the dope raw material solidification process, the porous glass IJ material after the Kitaki process is rapidly transferred to a temperature range of 400°C or less in the furnace tube, and the NdC1 diffused into the porous glass material is
One base of Qi was solidified.
ドープ原料酸化工程のとき、に記カプセルのロウア一部
材をそのアッパ一部材から外すことにより、NdCl:
を炉心管外に取り出し、しかる後、その炉心管内の6
50〜750°Cの温度域に多孔質カラスII材を位置
せしめ、該炉心管内に10立/minの酸素を供給する
とともに、その酸化雰囲気内に多孔質ガラスCJ材を3
0分間保持し、これにより該nT材中のNdCl3 を
Nd2O3として酸化した。During the dope raw material oxidation process, by removing the lower part of the capsule from its upper part, NdCl:
6 out of the reactor core tube, and then
A porous glass II material is placed in a temperature range of 50 to 750°C, oxygen is supplied at a rate of 10 cubic meters/min into the furnace tube, and porous glass CJ material is placed in the oxidizing atmosphere at a rate of 3.
This was held for 0 minutes, thereby oxidizing NdCl3 in the nT material to Nd2O3.
以下、」記ドープ原料取込工程、ドープ原料固化■“程
、ドープ原料酸化工程を2回繰り返した。Hereinafter, the dope raw material taking-in step, the dope raw material solidification step, and the dope raw material oxidation step were repeated twice.
透明ガラス化丁:程のとき、1−記各工程の繰り返しに
よりドーパント(Nd20t)を添加した後の多孔質カ
ラスI:j材を、1550°C,100$Heとした炉
心管内に入れ、その透明ガラス化雰囲気内で所定時間加
熱して、育1該多孔質ガラスIJ材を透明ガラス化した
。Transparent vitrification: At the same time, the porous glass I:J material after adding the dopant (Nd20t) by repeating each step in 1-1 was placed in a furnace tube heated to 1550°C and 100$He. By heating in a transparent vitrification atmosphere for a predetermined time, the porous glass IJ material was transformed into transparent vitrification.
L記珪体例により得られた透明ガラスm材、すなわちド
ープト石英の組成c度、組成分布を測定したところ、平
均ドーパント濃度(Nd203e度)が1、ol$であ
り、Nd2O3が径方向に均一に分布しており、塩素は
検出されなかった。When we measured the composition c degree and composition distribution of the transparent glass m material obtained from the example L silica, that is, doped quartz, we found that the average dopant concentration (Nd203e degree) was 1.ol$, and Nd2O3 was uniformly distributed in the radial direction. chlorine was not detected.
かかる結果から明らかなように、この具体例では、j、
述した繰り返し]二程数が少ないにもかかわらす 1−
分なドーパントの添加i+1−が確保されている。As is clear from these results, in this specific example, j,
1-
A sufficient amount of dopant addition i+1- is ensured.
なお、具体例では、Nd2(h をドーパントとする例
を述へたが、例えばCeCl3. AlCl3等の低蒸
気圧のドープ原本[を用いて金属酸化物をドープする他
の具体例にも必用できる。In the specific example, we have described an example in which Nd2 (h) is used as a dopant, but it can also be used in other specific examples in which a metal oxide is doped using a low vapor pressure dope material such as CeCl3 or AlCl3. .
比較例
具体例と同様、 He雰囲気とした炉心管内に既述の多
孔質カラスIzJ材とNdCb とを入れ、これらを1
000°Cにて60分間保持した後、直ちに1550°
Cに51温して、s1/1.に多孔質ガラスIt材を透
明カラス化した。Similar to the comparative example, the porous Karas IzJ material and NdCb described above were placed in a reactor core tube in a He atmosphere, and these were
After holding at 000°C for 60 minutes, immediately heat to 1550°
Warm to 51C, s1/1. The porous glass It material was made into transparent glass.
この比較例により得られた透明カラスfJ材、すなわち
ドープト石英には、Nd20tか200ppIn添加さ
れるにとどまった。The transparent glass fJ material obtained in this comparative example, that is, the doped quartz, was doped with only 20 t of Nd or 200 ppl of In.
この比1咬例の場合、多孔質カラス1;上材の気孔中に
取りこまれたNdC1:の分圧と、ドープ雰囲気内にあ
るNdCトの分圧とか同じになった時点で直ちに焼結し
ているため、1・−パントの添加早か少なくなったと考
えられる。In the case of one bite of this ratio, the porous glass 1: sintering occurs immediately when the partial pressure of NdC 1: taken into the pores of the upper material becomes the same as the partial pressure of NdC 1: in the doped atmosphere. Therefore, it is thought that 1.-Punt was added earlier or less.
1゛発明の効果1
以1−説明した通り、本発明方法によるときは、多孔質
ガラスII材をドープ1!:(才1入りのカプセ1しで
覆い、そのカプセルにより’:a h Fl、た多孔質
カラスt;を材を、J−記ドープ原料の融点以上に温度
保持された加熱装置内に入れて加熱することにより、上
記カプセル内のドープ原料を蒸発させ、その蒸発したド
ープ原料を多孔質ガラスIJ材中にドープするから、汎
用されているドープ原料はもちろんのこと、蒸気圧の低
いドープ原料であっても、多植のドープ原料を用いるこ
となく、高効率、高濃度にして、そのat封材中ドーパ
ントを添加することができる。1゛Effect of the invention 1 As explained in 1-1 below, when using the method of the present invention, the porous glass II material is doped 1! :(Cover with 1 capsule containing 1 ml of dope, and put the material into a heating device whose temperature is maintained above the melting point of the dope raw material listed in J-). By heating, the dope raw material inside the capsule is evaporated, and the evaporated dope raw material is doped into the porous glass IJ material, so it is possible to use not only commonly used dope raw materials but also dope raw materials with low vapor pressure. Even if there is a dopant, it is possible to add the dopant into the AT sealing material with high efficiency and high concentration without using multiple dope raw materials.
図は本発明方法の一実施例を略示した説lJ1図である
。
1・・・・・・加熱装置
4・・・・・・加熱装置の炉心管
5・・・・・・加熱装置の電気ヒータ
6・・・・・・多孔質ガラスlzI材
7・・・・・・多孔質ガラス母材の支持体8・・・・・
・ドープ原料
9・・・・・・カプセルThe figure is a diagram 1J1 schematically showing an embodiment of the method of the present invention. 1... Heating device 4... Furnace tube 5 of the heating device... Electric heater 6 of the heating device... Porous glass lzI material 7... ... Porous glass base material support 8 ...
・Dope raw material 9... Capsule
Claims (1)
そのカプセルにより覆われた多孔質ガラス母材を、上記
ドープ原料の融点以上に温度保持された加熱装置内に入
れて加熱することにより、上記カプセル内のドープ原料
を蒸発させ、その蒸発したドープ原料を多孔質ガラス母
材中にドープすることを特徴とする多孔質ガラス母材用
のドープ方法。Covering the porous glass base material with capsules containing dope raw materials,
The porous glass base material covered with the capsule is placed in a heating device kept at a temperature higher than the melting point of the dope raw material and heated, thereby evaporating the dope raw material inside the capsule and the evaporated dope raw material. A doping method for a porous glass base material, which comprises doping into a porous glass base material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29450486A JPS63147839A (en) | 1986-12-10 | 1986-12-10 | Doping method for porous glass base material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29450486A JPS63147839A (en) | 1986-12-10 | 1986-12-10 | Doping method for porous glass base material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63147839A true JPS63147839A (en) | 1988-06-20 |
Family
ID=17808630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29450486A Pending JPS63147839A (en) | 1986-12-10 | 1986-12-10 | Doping method for porous glass base material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63147839A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004525842A (en) * | 2000-07-26 | 2004-08-26 | ヘレウス・テネボ・アクチェンゲゼルシャフト | Method for vitrifying porous soot body |
JP2013199400A (en) * | 2012-03-23 | 2013-10-03 | Fujikura Ltd | Method for producing glass preform |
JP2014162654A (en) * | 2013-02-21 | 2014-09-08 | Fujikura Ltd | Glass base material manufacturing device |
-
1986
- 1986-12-10 JP JP29450486A patent/JPS63147839A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004525842A (en) * | 2000-07-26 | 2004-08-26 | ヘレウス・テネボ・アクチェンゲゼルシャフト | Method for vitrifying porous soot body |
JP2013199400A (en) * | 2012-03-23 | 2013-10-03 | Fujikura Ltd | Method for producing glass preform |
JP2014162654A (en) * | 2013-02-21 | 2014-09-08 | Fujikura Ltd | Glass base material manufacturing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4225330A (en) | Process for producing glass member | |
SE439480B (en) | PROCEDURE FOR THE PREPARATION OF A RODFORM GLASS FOR OPTICAL FIBERS | |
US20060130530A1 (en) | Method of doping silica glass with an alkali metal, and optical fiber precursor formed therefrom | |
US6109065A (en) | Method of making optical waveguide devices using perchloryl fluoride to make soot | |
JP2004203736A (en) | Method of manufacturing high purity fused silica | |
AU3467093A (en) | Sol-gel process for forming a germania-doped silica glass rod | |
JPH05351B2 (en) | ||
JPS63147839A (en) | Doping method for porous glass base material | |
JPS62275035A (en) | Production of base material for optical fiber | |
US20030221454A1 (en) | EUV lithography glass structures formed by extrusion consolidation process | |
JPS6090836A (en) | Manufacture of synthetic quartz | |
Reichel et al. | Plasma technology for preparation of specialty fibers | |
JP2677871B2 (en) | Manufacturing method of quartz-based doped glass | |
US20020054741A1 (en) | Fabrication of optical fibers incorporating volatile constituents | |
JPS60239339A (en) | Preparation of parent material for optical fiber | |
JPS62108744A (en) | Transparent vitrification method of porous glass base material | |
JPS6360121A (en) | Production of doped quartz | |
JPH0559052B2 (en) | ||
JPH038744A (en) | Rare earth element-doped quartz glass fiber preform and preparation thereof | |
JP3163167B2 (en) | Method for producing rare earth element doped quartz glass | |
JPS60122741A (en) | Manufacture of parent material for optical fiber | |
JPH03265537A (en) | Rare-earth element-doped glass and its production | |
JPS6289B2 (en) | ||
GB1598760A (en) | Optical fibre preforms and their manufacture | |
JPS60263103A (en) | Base material for optical fiber and its production |