JPS63131882A - Vane pump - Google Patents
Vane pumpInfo
- Publication number
- JPS63131882A JPS63131882A JP61276689A JP27668986A JPS63131882A JP S63131882 A JPS63131882 A JP S63131882A JP 61276689 A JP61276689 A JP 61276689A JP 27668986 A JP27668986 A JP 27668986A JP S63131882 A JPS63131882 A JP S63131882A
- Authority
- JP
- Japan
- Prior art keywords
- vane
- retainer
- housing
- rotor
- vanes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 claims description 9
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 238000007599 discharging Methods 0.000 claims 1
- 230000007423 decrease Effects 0.000 description 5
- 230000020169 heat generation Effects 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 241000252203 Clupea harengus Species 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000019514 herring Nutrition 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Landscapes
- Rotary Pumps (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、スーパーチャージャやコンプレッサ等に使用
される回転型ポンプのひとつであるベーンポンプに関す
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vane pump, which is one type of rotary pump used in superchargers, compressors, and the like.
従来から、第11図に概略構成を示すようなベーンポン
プが広く知られている。Conventionally, a vane pump whose schematic configuration is shown in FIG. 11 has been widely known.
同図において、(51)はハウジング、(52)は該ハ
ウジング(5りの内周空間に偏心した状態で内挿され1
回転軸(53)によって回転自在に支持されたロータ、
(55a)(55b)(55c)はロータ(52)の
外周側を周方向に3分割するごとく等配凹設されたベー
ン溝(54a)(54b) (54c)に径方向突没自
在に配設された板状のベーンである0回転軸(53)に
よってロータ(52)が図中矢印(X)方向へ回転する
と。In the same figure, (51) is a housing, and (52) is a housing (52) which is inserted eccentrically into the inner peripheral space of the housing (5).
a rotor rotatably supported by a rotating shaft (53);
(55a), (55b), and (55c) are disposed in vane grooves (54a), (54b, and 54c), which are equally spaced so as to divide the outer circumferential side of the rotor (52) into three in the circumferential direction, so as to be able to protrude and retract in the radial direction. When the rotor (52) rotates in the direction of the arrow (X) in the figure by the 0-rotation shaft (53), which is a plate-shaped vane provided.
べ−7(55a)(55b) (55c)は遠心力によ
って外径方向に飛び出し、その先端縁がハウジング(5
1)の内周面に摺接しながら回転する。既述したように
。The bases 7 (55a) (55b) (55c) protrude in the outer radial direction due to centrifugal force, and their tip edges touch the housing (55c).
1) Rotates while slidingly contacting the inner peripheral surface. As already mentioned.
ロータ(52)がハウジング(51)に対して偏心して
いるため、この回転に伴ない、ハウジング(51)、ロ
ータ(52)およびベーン(55a) (55b)(5
5c)で区画された作動空間(56a)(56b)(5
ec) (7)容積が繰返し拡縮変化して、吸入口(5
7)から吸い込んだ流体を吐出口(58)から吐出させ
る。Since the rotor (52) is eccentric with respect to the housing (51), the housing (51), rotor (52) and vanes (55a) (55b) (5
5c) Working spaces (56a) (56b) (5
ec) (7) The volume expands and contracts repeatedly, and the inlet (5
The fluid sucked in from 7) is discharged from the discharge port (58).
しかし、上記従来のベーンポンプは、ベーンがハウジン
グの内周面を高速で摺動するため、ベーン先端縁とハウ
ジング内周面との摺動抵抗による回転効率の低下を避け
ることができず、また、摺動発熱により搬送流体の大幅
な体積効率の低下を避は得ないとともにベーンが膨張し
てハウジングの軸方向円内側面とのかじりを生じること
があり、摩耗も著しいといった問題があった。However, in the conventional vane pump described above, since the vanes slide at high speed on the inner circumferential surface of the housing, a decrease in rotational efficiency due to sliding resistance between the vane tip edge and the inner circumferential surface of the housing cannot be avoided. The sliding heat generation inevitably causes a significant drop in the volumetric efficiency of the conveyed fluid, and the vanes may expand, causing galling with the axially circular inner surface of the housing, resulting in significant wear.
本発明は、このような問題に鑑み、摺動による抵抗の発
生や発熱を防止して上記回転や体積についての効率を向
上する目的をもってなされたものである。In view of these problems, the present invention was made with the objective of preventing the generation of resistance and heat generation due to sliding and improving the efficiency with respect to rotation and volume.
この目的を達成するため、本発明のベーンポンプは、ハ
ウジングの内周空間に偏心した状態で回転自在に軸支さ
れたロータと、該ロータに凹設された複数のベーン溝に
突没自在に配設された板状のベーンとを有し、ロータお
よびベーンの回転に伴なう各ベーン間の作動空間の繰返
し容積変化を利用して流体を一方から吸入し、他方へ吐
出する構造において、前記ハウジングの端壁の内側に前
記内周空間と同軸になるリテーナを回転自在に嵌挿し、
該リテーナと前記各ベーンを係合して前記ベーン溝から
のベーンの飛び出しを規制するとともに、前記リテーナ
の端面または周面に動圧軸受機構を設ける構成とした。In order to achieve this object, the vane pump of the present invention includes a rotor that is eccentrically and rotatably supported in the inner circumferential space of a housing, and a rotor that is arranged to be able to protrude and sink into a plurality of vane grooves that are recessed in the rotor. The structure has plate-shaped vanes provided, and sucks fluid from one side and discharges it to the other by utilizing repeated volume changes of the working space between the vanes as the rotor and the vanes rotate. A retainer coaxial with the inner peripheral space is rotatably fitted inside the end wall of the housing,
The retainer is engaged with each of the vanes to restrict protrusion of the vanes from the vane groove, and a hydrodynamic bearing mechanism is provided on the end surface or circumferential surface of the retainer.
本発明によれば、ベーン溝からのベーンの飛び出しがハ
ウジング内周面との当接によって規制されるものではな
く、ハウジング内に嵌挿したリテーナと各ベーンの係合
によってベーンの先端縁が一定の軌跡を描くよう規制さ
れるため、ベーンをハウジングの内面に対して非接触の
状態として回転させることができ、さらに前記リテーナ
に動圧軸受機構を設けてリテーナがハウジングに対して
円滑に回転するように構成したため該リテーナの回転に
よる摺動抵抗を極小に抑えることができる。According to the present invention, the protrusion of the vane from the vane groove is not restricted by contact with the inner circumferential surface of the housing, but the tip edge of the vane remains constant due to the engagement of each vane with the retainer inserted into the housing. Since the vane is regulated to draw a trajectory of With this structure, the sliding resistance due to rotation of the retainer can be minimized.
以下1本発明に係るベーンポンプの実施例を図面にした
がって説明する。An embodiment of the vane pump according to the present invention will be described below with reference to the drawings.
第1実施例に係る第1図および第2図において、(1)
はフロントハウジング、(2)はりア/\ウジングで、
ともに軽量で熱膨張率の小さいアルミニウム等の非鉄金
属で製せられ、ボルト(3)によって互いに一体的に固
着されている。(4)はハウジング内周空間(5)に偏
心した状態で内挿された鉄製のロータで、フロントハウ
ジング(りの軸孔段部内にあって固定リング(8)によ
って抜は止めされたポールベアリング(7a)およびリ
アハウジング(2)の軸孔段部内にあってベアリングカ
バー(8)によって抜は止めされたボールベアリング(
7b)を介してこれら両ハウジング(1)(2)に貫挿
されプーリ(3)から駆動力が伝達される回転軸(10
)に軸着されている。 (lla)(1,1b)(li
e)は摺動性に優れたカーボン材を主材とする板状のベ
ーンで、ロータ(0に該ロータ(4)の外周側を周方向
3分割するごとく等配凹設されたベーン溝(12a)(
+2b)(12c)にそれぞれ径方向突没(摺動)自在
に配設されている。ロータ(4)の軸方向両側に対応す
る各ベーン(Ila)(llb)(llc) (1)両
端部にはそれぞれスチール製のビン(13)(13)が
突設されており、該各ピン(13)には必要に応じて摺
動性および耐摩耗性に優れた樹脂材製のスリーブベアリ
ング(図示せず)が外挿されている。フロントハウジン
グ(1)およびリアハウジング(2)の互いに対向する
端壁の内側面にそれぞれハウジング内周空間(5)と同
M的(フロントハウジング(1)の内周面(lo)と同
軸的)に形成された環状凹部(14a)(14b)には
、アルミニウム等の非鉄金属よりなり環状軌道(IB)
を有するリテーナプレート(15a)(15b)がそれ
ぞれ回転自在に嵌挿されている。このリテーナプレート
(15a)(15b)のハウジング(1)内側面に対接
する外端面には第3図に示すようなスパイラル溝(17
)が形成され、また外周面には第4図や第5図に示すよ
うなレイレーステップ溝(18)やヘリングボーン溝(
19)が形成され、該リテーナプレート(15a)(1
5b)ヲハウジング(1)に対して円滑に回転させる動
圧軸受機構が設けられている。各ベーン(lla)(l
lb)(llc)に突設されたビン(13)(13)は
、このリテーナプレー) (15a)(15b)の環状
軌道(10)(1B)に周方向摺動自在に係合するもの
で、該保合により、回転時におけるベーン(lla)(
llb)(llc)の径方向への動きが規制され、その
先端縁とフロントハウジング(1)の内周面(lo)と
の間に僅かなりリアランスを介在させた状態を維持する
ようになっている。In FIG. 1 and FIG. 2 according to the first embodiment, (1)
is the front housing, (2) beam a/\Using,
Both are made of nonferrous metal such as aluminum, which is lightweight and has a small coefficient of thermal expansion, and are integrally fixed to each other by bolts (3). (4) is an iron rotor that is eccentrically inserted into the inner circumferential space (5) of the housing, and a pole bearing that is located inside the stepped part of the shaft hole of the front housing and is prevented from being removed by a fixing ring (8). (7a) and a ball bearing (located in the stepped part of the shaft hole of the rear housing (2) and prevented from being removed by the bearing cover (8)).
A rotating shaft (10
) is attached to the shaft. (lla) (1, 1b) (li
e) is a plate-shaped vane mainly made of carbon material with excellent sliding properties, and vane grooves (0) are provided on the rotor (0) at equal intervals so as to divide the outer circumferential side of the rotor (4) into three parts in the circumferential direction. 12a)(
+2b) and (12c) so as to be able to protrude and retract (slide) in the radial direction, respectively. Each vane (Ila) (llb) (llc) corresponding to both sides of the rotor (4) in the axial direction (1) Steel bottles (13) (13) are protruded from both ends, respectively, and each pin A sleeve bearing (not shown) made of a resin material with excellent sliding properties and wear resistance is inserted into (13) as necessary. On the inner surfaces of the mutually opposing end walls of the front housing (1) and rear housing (2), there is provided a space that is coaxial with the inner circumferential space (5) of the housing (coaxial with the inner circumferential surface (lo) of the front housing (1)). The annular recesses (14a) and (14b) formed in the annular raceway (IB) are made of non-ferrous metal such as aluminum.
Retainer plates (15a) and (15b) each having a retainer plate are rotatably fitted therein. A spiral groove (17) as shown in FIG.
) are formed on the outer peripheral surface, and the Rayleigh step groove (18) and herringbone groove (18) as shown in Figs. 4 and 5 are formed.
19) is formed, and the retainer plate (15a) (1
5b) A hydrodynamic bearing mechanism is provided for smooth rotation relative to the housing (1). Each vane (lla) (l
The pins (13) (13) protruding from the retainer plate (15a) (15b) are slidably engaged in the circumferential direction. , due to this connection, the vane (lla) (
llb) (llc) is regulated in the radial direction, and a slight clearance is maintained between its tip edge and the inner circumferential surface (lo) of the front housing (1). There is.
つぎに、当該ベーンポンプの作動について説明する。プ
ーリ(3)からの駆動力によって回転軸(lO)および
ロータ(4)が回転すると、ベーン(lla) (ll
b)(tic)も回転し、該ベーン(lla)(Ilb
)(llc)のそれぞれに突設されたビン(13)(1
3)が環状軌道(1B)(16)に沿って回転する。第
2図に示すように、ハウジング内周面(lo)と環状軌
道(IB)は同軸的関係、環状軌道(1B)とロータ(
0は偏心的関係にあるため、前記回転に伴なって、ベー
ン(lla) (llb)(tic)はロータ(0のベ
ーン溝(12a)(12b)(12C)を径方向に摺動
して繰返し突没し、両ハウジング(102)、ロータ(
4)およびベーン(lla) (llb)(lie)で
区画された作動空間(sa)(5b)(5c)の容積は
繰返し増減する。すなわち、第2図において作動空間(
5a)は回転とともにその容積が拡大して該部分に開口
する吸入口(図示せず)から流体を吸込み、作動空間(
5c)は回転とともにその容積が縮小して該部分に開口
する吐出口(図示せず)へ流体を吐出し、作動空間(5
b)は、吸い込んだ流体を吐出口へ向けて移送している
過程を示している。上記作動において、ベーン(lla
)(llb)(lie)の先端縁は既述したように、フ
ロントハウジング内周面(lo)と摺接しないため、摩
耗や高熱の発生は起こり得ない、また、各ピン(13)
はリテーナプレート(15a)(15b)の環状軌道(
1B)内を遠心力によって外径側へ圧接した状態で摺回
動を行なうが、リテーナプレート(15a) (15b
)はそれぞれ動圧軸受機構によって円滑に回転自在な状
態にあるため、ピン(13)に追随して回転し、ビン(
13)と環状軌道(16)との相対的な摺動速度はきわ
めて小さく、よってこれら環状軌道(1B) (リテー
ナプレー ト(15a)(15b)) 、 ピン(1
3)等ノli耗は極小に抑えられる。上記動圧軸受機構
は、既述したスパイラル溝(17)、レイレーステップ
溝(18)、ヘリングボーン溝(19)の他にこれらと
同じように動圧を発生させる各種の溝や凹みさらにこれ
らの組み合わせに置替することができる。Next, the operation of the vane pump will be explained. When the rotating shaft (lO) and rotor (4) rotate due to the driving force from the pulley (3), the vanes (lla) (ll
b) (tic) also rotates and the vane (lla) (Ilb
) (llc) protruding from each of the bottles (13) (1
3) rotates along the annular orbit (1B) (16). As shown in Fig. 2, the inner peripheral surface of the housing (lo) and the annular orbit (IB) are in a coaxial relationship, and the annular orbit (1B) and the rotor (
Since 0 is in an eccentric relationship, the vanes (lla) (llb) (tic) slide in the rotor (vane grooves (12a) (12b) (12C) of 0 in the radial direction with the rotation). Repeatedly protruding and submerging, both housings (102) and rotor (
4) and the volume of the working space (sa) (5b) (5c) divided by the vanes (lla) (llb) (lie) increases and decreases repeatedly. That is, in Fig. 2, the working space (
5a) expands in volume as it rotates, sucks in fluid from a suction port (not shown) that opens in the part, and fills the working space (
5c) decreases in volume as it rotates, and discharges fluid to a discharge port (not shown) that opens in the portion, thereby creating a working space (5c).
b) shows a process in which the sucked fluid is transferred toward the discharge port. In the above operation, the vane (lla
) (llb) (lie), as mentioned above, does not come into sliding contact with the inner circumferential surface (lo) of the front housing, so wear and high heat cannot occur, and each pin (13)
are the annular orbits of the retainer plates (15a) (15b) (
1B) Sliding and rotation is performed with the inside pressed against the outer diameter side by centrifugal force, but retainer plate (15a) (15b)
) are in a state where they can rotate smoothly due to the hydrodynamic bearing mechanism, so they rotate following the pin (13), and the bottle (
13) and the annular raceway (16) is extremely small, so these annular raceways (1B) (retainer plates (15a) (15b)), pins (1
3) Equivalent wear and tear is kept to a minimum. In addition to the spiral grooves (17), Rayleigh step grooves (18), and herringbone grooves (19) described above, the hydrodynamic bearing mechanism has various grooves and recesses that generate dynamic pressure in the same way as these. can be replaced with a combination of
つぎに本発明の第2実施例を上記第1実施例と相違する
部分についてのみ説明すると、第6図および第7図に示
すように当該ポンプは第1実施例における環状軌道(1
6)を有するリテーナプレート(15a)(15b)に
代えて単純な矩形断面になるリテーナリング(20a)
(2ob)を環状凹部(14a)(14b)に嵌挿し、
該リテーナリング(20a)(20b)の端面や周面に
既述したスパイラルW(17)等の動圧軸受機構を設け
て該リテーナリング(20a) (20b)の製作にか
かる手数やコストの削減を図っている。ベーン(lla
)(llb)(lie)の側面に突設したビン(13)
はこのリテーナリング(20a)(20b)の内周面に
係合し、ベーン溝(12a)(12b)(12c)から
の飛び出し量を規制されてハウジング(1)の内周面(
1′)に対して非接触に保たれる。この構成によると各
ベーン(11a)(llb)(lie)かへ−ン溝(1
2a)(12b)(12c)内に引込む方向にフリーと
なって当該ポンプの停止時や低速回転時にベーン(Il
a)(Ilb)(lie)が勝手に引込んでしまい、こ
の動きによって衝撃荷重を受けて早期に破損するおそれ
があるため、ベーン(lla)(llb)(Ilc)の
内径側にストッパとしてボス(21a)(21b)を突
設して各ぺ−7(ila)(llb)(llc)の勝手
な動きを規制している。環状を呈するこのボス(21a
)(21b)はハウジング(1)ノ内周空間(5)と同
軸的に設定され、フロントハウジング(1)およびリア
ハウジング(2)の端壁に一体成形されている。Next, the second embodiment of the present invention will be explained only with respect to the parts that are different from the first embodiment. As shown in FIGS. 6 and 7, the pump has an annular orbit (1
6) A retainer ring (20a) having a simple rectangular cross section in place of the retainer plates (15a) and (15b)
(2ob) into the annular recesses (14a) and (14b),
By providing a dynamic pressure bearing mechanism such as the spiral W (17) described above on the end face or circumferential surface of the retainer ring (20a) (20b), the number of steps and cost required for manufacturing the retainer ring (20a) (20b) can be reduced. We are trying to Vane (lla
) (llb) (lie) bottle protruding from the side (13)
are engaged with the inner circumferential surfaces of the retainer rings (20a) (20b), and the amount of protrusion from the vane grooves (12a) (12b) (12c) is regulated, so that the inner circumferential surface (
1'). According to this configuration, each vane (11a) (llb) (lie) or vane groove (1
2a) (12b) (12c) becomes free in the direction of retraction, and when the pump is stopped or rotates at low speed, the vane
a) (Ilb) (lie) may retract on its own and this movement may receive an impact load and cause early damage, so a boss () is installed as a stopper on the inner diameter side of the vane (lla) (llb) (Ilc). 21a) (21b) are provided in a protruding manner to restrict arbitrary movement of each page 7 (ila), (llb), and (llc). This ring-shaped boss (21a
) (21b) is set coaxially with the inner peripheral space (5) of the housing (1), and is integrally molded on the end walls of the front housing (1) and the rear housing (2).
第8図および第9図は本発明の第3実施例として各ベー
ン(lla)(llb)(lie)とリテーナプレート
(15a)(15b)をカム(22a) (22b)
(22c)(23a) (23b)(23c)を介して
係合したものを示している。リテーナプレート(15a
)(15b)の内側面に3等配状に形成した凹部(28
a) (28b) (28c) (29a) (29b
) (29c)に嵌挿されるカム(22a)(22b)
IIIl・(23c)は、円形の回転盤の一面(外側面
)の中心に該リテーナプレート(15a)(15b)に
係合する第1のビン(24a)(24b) (24c)
(25a) (25b) (25c)を突設し、ボー
ルベアリング(ia)(30b)(30c)(31a)
(31b)(31c)を介して該リテーナプレー) (
15a)(15b)に対して回転自在(自転)に軸着さ
れるとともに、前記回転盤の他面(内側面)の周縁近傍
にベーン(lla)(llb)(llc)に係合する第
2のピン(28a) (28b)(28c)(27a)
(27b)(27c)を突設し、該第2のピン(28a
)(2θb)・・・(27C)をベーン(lla)(l
lb)(llc) (7)側端に形成した係合凹部(3
2a)(32b)(32c) (33a)(33b)(
33c)に回転自在に係合してなる。この係合凹部(3
2a)(32b) 命・・(33c)は各ベーン(ll
a)(llb)(lie)側端の外端(先端)寄りに設
けられており、第9図に示すように、ベーン(lla)
がベーン溝(t2a)内に最も引込んだ状態のトップ位
置において、カム(22a)(23a)の両ピン(24
a) (25a) (26a)(27a)がべ−7(l
la)に重なり、かつ第2のピン(28a)(27a)
が第1のピン(24a)(25a)の外端寄りに位置す
るようになる。Figures 8 and 9 show a third embodiment of the present invention in which each vane (lla) (llb) (lie) and retainer plate (15a) (15b) are connected to a cam (22a) (22b).
(22c) (23a) (23b) (23c) are shown. Retainer plate (15a
) (15b) are formed in three equally spaced recesses (28
a) (28b) (28c) (29a) (29b
) (29c) are fitted into the cams (22a) and (22b)
IIIl (23c) is a first pin (24a) (24b) (24c) that engages with the retainer plate (15a) (15b) at the center of one surface (outer surface) of the circular rotary disk.
(25a) (25b) (25c) protruding, ball bearings (ia) (30b) (30c) (31a)
(31b) (via the retainer play) (31c)
15a) A second shaft is rotatably (rotation) pivoted to (15b) and engaged with vanes (lla) (llb) (llc) near the periphery of the other surface (inner surface) of the rotary disk. Pins (28a) (28b) (28c) (27a)
(27b) and (27c) are provided protrudingly, and the second pin (28a
)(2θb)...(27C) as Vane(lla)(l
lb) (llc) (7) Engagement recess (3) formed on the side end
2a) (32b) (32c) (33a) (33b) (
33c) in a rotatably engaged manner. This engagement recess (3
2a) (32b) Life... (33c) is each vane (ll
a) (llb) (lie) It is provided near the outer end (tip) of the side end, and as shown in Figure 9, the vane (lla)
Both pins (24 of the cams (22a) and (23a)
a) (25a) (26a) (27a) Gabe-7(l
la) and the second pins (28a) (27a)
are located closer to the outer ends of the first pins (24a) (25a).
つぎに、当該ベーンポンプの作動について説明する。プ
ーリ(9)からの駆動力によって回転軸(10)および
ロータ(4)が回転すると、ベーン(lla)(llb
)(llc)も回転し、該ベーy (lla)(llb
)(llc)からカム(22a)(22b)・・・(2
3c)を介してリテーナプレート(15a)(15b)
にトルクが伝達される。リテーナプレート(15a)(
15b)はハウジング内周面(lo)に対して同軸的に
回転し、これに伴ないリテーナプレート(15a)(1
5b)の凹部(28a)(28b) ・・・(29c)
に嵌挿されたカム(22a)(22b) −−−(23
c)もハウジング内周面(lo)に対して同軸的に回転
(公転)する、既述したようにロータ(0はハウジング
内周面に対して偏心して軸着されているため、トップ位
置で重なっていたベーン(Ila)とカム(22a)
(23a)は回転に伴なってずれるようになり(但し、
ベーン(lla)がベーン溝(12a)から最も飛び出
すボトム位置(トップ位置と180度対称)においては
再び重なる)、この変位によってカム(22a)(22
b)−・・(23c)を介してリテーナプレート(15
a)(15b)に連結されたベーン(lla)(llb
)(llc)はロータ(4)ノべ一ン溝(12a)(1
2b)(12c)を径方向に摺動して繰り返し突没し、
両ハウジング(1)(2)、ロータ(4)およびベーン
(lla)(Ilb)(Ilc)で区画された作動空間
(5)の容積を繰り返し増減して図示しない吸入口から
吐出口へ流体を移送する。上記作動において、ベーン(
Ila)(llb)(Ilc)はベーン溝(12a)(
12b)(12c)からの飛び出しが規制され、その先
端縁をハウジング内周面と接触せずに回転するため、ト
ルクの損失をなくし摩耗や発熱を未然に防止することが
できる。上記リテーナプレート(15a)(15b)に
は既述したスパイラル溝(17)等の動圧軸受機構が設
けられ、その回転の円滑化が図られている。Next, the operation of the vane pump will be explained. When the rotating shaft (10) and rotor (4) rotate due to the driving force from the pulley (9), the vanes (lla) (llb
)(llc) also rotates, and the bay y (lla)(llb
) (llc) to cams (22a) (22b)...(2
3c) via retainer plate (15a) (15b)
Torque is transmitted to. Retainer plate (15a) (
15b) rotates coaxially with respect to the inner peripheral surface (lo) of the housing, and as a result, the retainer plate (15a) (1
5b) recesses (28a) (28b) ... (29c)
Cams (22a) (22b) fitted into --- (23
c) also rotates (revolutions) coaxially with respect to the inner circumferential surface of the housing (lo), as mentioned above, the rotor (0) is mounted eccentrically with respect to the inner circumferential surface of the housing, so it is Vane (Ila) and cam (22a) that overlapped
(23a) begins to shift as it rotates (however,
At the bottom position (180 degree symmetry with the top position) where the vane (lla) protrudes the most from the vane groove (12a), the cam (22a) (22
b) --- (23c) via the retainer plate (15
a) Vane (lla) (llb) connected to (15b)
) (llc) is the rotor (4) knob groove (12a) (1
2b) (12c) is slid in the radial direction and repeatedly protruded and retracted,
The volume of the working space (5) defined by both housings (1) (2), rotor (4), and vanes (lla) (Ilb) (Ilc) is repeatedly increased and decreased to allow fluid to flow from an inlet (not shown) to a discharge port. Transport. In the above operation, the vane (
Ila) (llb) (Ilc) is the vane groove (12a) (
12b) (12c) is regulated, and the leading edge thereof rotates without contacting the inner circumferential surface of the housing, thereby eliminating torque loss and preventing wear and heat generation. The retainer plates (15a) and (15b) are provided with a dynamic pressure bearing mechanism such as the spiral groove (17) described above to ensure smooth rotation thereof.
第1O図は本発明の第4実施例を示しており、リテーナ
プレー) (15a)(15b)の外周端部に軸線と平
行な方向に突出するストッパ(34a) (34b)を
形成し、ベーy (lla)(llb)(llc)の飛
び出しを規制している。 (35)と(3B)はロータ
(4)とりテーナプレー) (15a)(15b)をそ
の対向端面間で回動連結するカムで、ピータ(4)の片
面に等配状に3個ずつ設けられている。ロータ(0の端
面に等配状に形成した凹部(41)(42)に嵌挿され
るこのカム(35)(38)は、円形の回転盤の一面(
内側面)の中心に該ロータ(4)に係合する第1のピン
(37)(3B)を突設し、ポールベアリング(43)
(44)を介して該ロータ(4)に対して回転自在(
自転)に軸着されるとともに、前記回転盤の他面(外側
面)の周縁近傍にリテーナプレート(15a)(15b
)に係合する第2のピン(39) (40)を突設し、
該第2のピン(39)(40)をリテーナプレー) (
15a)(15b)に形成した凹部(45)(4B)に
ポールベアリング(4?) (48)を介して回転自在
に係合してなる。第1のピン(37)(38)と第2の
ピン(39) (40)はロータ(4)の偏心量だけ互
いに偏心した同径の円周上にあり、リテーナプレート(
15a)(15h)はこのカム(35) (36)によ
ってロータ(4)と同期回転する。リテーナプレート(
15a)(15b)には上記スパイラル溝(!7)等の
動圧軸受機構が設けられ、その回転が円滑化されている
。当該ポンプもストッパ(34a)(34b)の働きに
よりベーン(lla)(11b011c) (7)飛び
出しを規制してベーン(lla)(llb)(llc)
とハウジング(1)を非接触に保つように構成してなり
さらにカム(35) (3B)をつかってロータ(4)
とリテーナプレート(15a)(15b)を同期回転さ
せるとともに該リテーナプレー) (15a)(15b
)に動圧軸受機構を設けたため回転に伴なうトルクの損
失を抑えて摩耗や発熱等の不具合を防止することができ
る。なお当該ポンプについてはカム(35)(3B)を
取り去って構造を簡略化することができ、さらに上記第
2実施例に述べたボスを付加してベーン(11a011
b011c)の動きを規制する手段を用いることができ
る。FIG. 1O shows a fourth embodiment of the present invention, in which stoppers (34a) (34b) protruding in a direction parallel to the axis are formed at the outer peripheral ends of the retainer plates (15a) (15b), and It controls the protrusion of y (lla) (llb) (llc). (35) and (3B) are cams that rotatably connect the rotor (4) and antenna plate (15a) and (15b) between their opposing end faces, and three cams are provided equally spaced on one side of the rotor (4). ing. These cams (35) and (38) are fitted into recesses (41 and 42) equally spaced on the end surface of the rotor (0), and are inserted into one side (
A first pin (37) (3B) that engages with the rotor (4) is provided protruding from the center of the inner surface), and a pole bearing (43)
(44) is rotatable (
The retainer plate (15a) (15b) is mounted near the periphery of the other surface (outer surface) of the rotary disk.
) protruding second pins (39) and (40) that engage with the second pins (39) and (40);
The second pins (39) and (40) are retained (
It is rotatably engaged with the recesses (45) (4B) formed in 15a) (15b) via pole bearings (4?) (48). The first pins (37) (38) and the second pins (39) (40) are located on a circumference of the same diameter and are eccentric from each other by the amount of eccentricity of the rotor (4), and the retainer plate (
15a) (15h) are rotated synchronously with the rotor (4) by these cams (35) and (36). Retainer plate (
15a) and (15b) are provided with a dynamic pressure bearing mechanism such as the spiral groove (!7) described above to smooth the rotation thereof. The pump also prevents the vanes (lla) (llb) (llc) from popping out by the action of the stoppers (34a) and (34b).
The rotor (4) is constructed so as to maintain non-contact with the housing (1) and the rotor (4) using the cam (35) (3B).
and the retainer plates (15a) (15b) are rotated synchronously and the retainer plates (15a) (15b) are rotated synchronously.
) is equipped with a hydrodynamic bearing mechanism, which suppresses torque loss associated with rotation and prevents problems such as wear and heat generation. The structure of the pump can be simplified by removing the cams (35) (3B), and the boss described in the second embodiment can be added to form the vane (11a011
b011c) can be used.
以上説明したとおり1本発明のベーンポンプは、ハウジ
ングの内周空間に偏心した状態で回転自在に軸支された
ロータと、該ロータに凹設された複数のベーン溝に突没
自在に配設された板状のベーンとを有し、ロータおよび
ベーンの回転に伴なう各ベーン間の作動空間の繰返し容
積変化を利用して流体を一方から吸入し、他方へ吐出す
る構造において、前記ハウジングの端壁の内側に前記内
周空間と同軸になるリテーナを回転自在に嵌挿し、該リ
テーナと前記各ベーンを係合して前記ベーン溝からのベ
ーンの飛び出しを規制し、ハウジング内周面に対してベ
ーンが非接触状態で回転するように構成するとともにリ
テーナに動圧軸受機構を設けて該リテーナを円滑に回転
させる構成としたため、摺動抵抗による回転効率の低下
やベーンの□摩耗を防止し、かつ摺動発熱の増大による
体積効率の低下等の不具合の発生を防止することができ
る。As explained above, the vane pump of the present invention includes a rotor eccentrically and rotatably supported in the inner circumferential space of a housing, and a plurality of vane grooves recessed in the rotor. The housing has a structure in which fluid is sucked from one side and discharged to the other by utilizing repeated volume changes of the working space between the vanes as the rotor and the vanes rotate. A retainer that is coaxial with the inner circumferential space is rotatably fitted inside the end wall, and the retainer and each of the vanes are engaged to restrict protrusion of the vanes from the vane grooves, and to prevent the vanes from protruding from the inner circumferential surface of the housing. The structure is such that the vanes rotate in a non-contact state, and the retainer is equipped with a dynamic pressure bearing mechanism to rotate the retainer smoothly. This prevents a decrease in rotational efficiency due to sliding resistance and wear of the vanes. Moreover, it is possible to prevent problems such as a decrease in volumetric efficiency due to an increase in heat generation due to sliding.
第1図は本発明の第1実施例に係るベーンポンプの断面
図、第2図は開作動説明図、第3図はリテーナプレート
の正面図、第4図と第5図はリテーナプレートの斜視図
、第6図は本発明の第2実施例に係るベーンポンプの断
面図、第7図は同作動説明図、第8図は本発明の第3実
施例に係るベーンポンプの断面図、第9図は同作動説明
図、第10図は本発明の第4実施例に係るベーンポンプ
の断面図、第11図は従来のベーンポンプの概略構成を
示す説明図である。
(1)フロントハウジング (2)リアハウジング(
4)ロータ (5)内周空間
(10)回転軸 (lla)(llb)(llc)ベ
ーン(12a)(12b)(12c)ベーン溝 (1
3)ビン(15a015b)リテーナプレート
(18)環状軌道 (17)スパイラル溝(18)レ
イレーステップ溝
(19)へリングポーン溝
(20a)(20b)リテーナリング
(22a)(22b)寺・・(23c)(35)(3B
)カム(34a)(34b)ストッパ
第1図
4−一ロータ 13−−
ピン5−内周空間 15a、15b
−リテーナプレート第2図
第3図 第4図 第5図
17−−スパイラル溝
第6図
第10図
56bFig. 1 is a sectional view of a vane pump according to the first embodiment of the present invention, Fig. 2 is an explanatory diagram of opening operation, Fig. 3 is a front view of the retainer plate, and Figs. 4 and 5 are perspective views of the retainer plate. , FIG. 6 is a sectional view of a vane pump according to a second embodiment of the present invention, FIG. 7 is an explanatory diagram of the same operation, FIG. 8 is a sectional view of a vane pump according to a third embodiment of the present invention, and FIG. 9 is a sectional view of a vane pump according to a third embodiment of the present invention. FIG. 10 is a sectional view of a vane pump according to a fourth embodiment of the present invention, and FIG. 11 is an explanatory diagram showing a schematic configuration of a conventional vane pump. (1) Front housing (2) Rear housing (
4) Rotor (5) Inner space (10) Rotating shaft (lla) (llb) (llc) Vane (12a) (12b) (12c) Vane groove (1
3) Bin (15a015b) Retainer plate (18) Annular orbit (17) Spiral groove (18) Rayleigh step groove (19) Herring pawn groove (20a) (20b) Retainer ring (22a) (22b) Temple... 23c) (35) (3B
) Cam (34a) (34b) Stopper Fig. 1 4-1 Rotor 13--
Pin 5-inner space 15a, 15b
- Retainer plate Fig. 2 Fig. 3 Fig. 4 Fig. 5 17 - - Spiral groove Fig. 6 Fig. 10 Fig. 56b
Claims (2)
に軸支されたロータと、該ロータに凹設された複数のベ
ーン溝に突没自在に配設された板状のベーンとを有し、
ロータおよびベーンの回転に伴なう各ベーン間の作動空
間の繰返し容積変化を利用して流体を一方から吸入し、
他方へ吐出する構造において、前記ハウジングの端壁の
内側に前記内周空間と同軸になるリテーナを回転自在に
嵌挿し、該リテーナと前記各ベーンを係合して前記ベー
ン溝からのベーンの飛び出しを規制するとともに、前記
リテーナの端面または周面に動圧軸受機構を設けてなる
ことを特徴とするベーンポンプ。(1) It has a rotor that is eccentrically and rotatably supported in the inner circumferential space of the housing, and plate-shaped vanes that are disposed so as to be able to protrude and retract into a plurality of vane grooves that are recessed in the rotor. death,
Fluid is sucked in from one side by utilizing repeated volume changes in the working space between each vane as the rotor and vanes rotate,
In the structure for discharging to the other side, a retainer that is coaxial with the inner circumferential space is rotatably fitted inside the end wall of the housing, and the retainer and each of the vanes are engaged to cause the vanes to protrude from the vane groove. 1. A vane pump characterized in that a hydrodynamic bearing mechanism is provided on an end surface or a circumferential surface of the retainer.
形成したスパイラル溝、レイレーステップ溝もしくはヘ
リングボーン溝等の動圧発生可能な溝もしくは凹みまた
は上記溝や凹みの組み合わせよりなることを特徴とする
特許請求の範囲第1項記載のベーンポンプ。(2) The hydrodynamic bearing mechanism is formed of a groove or recess capable of generating dynamic pressure, such as a spiral groove, Rayleigh step groove, or herringbone groove, formed on the end surface or peripheral surface of the retainer, or a combination of the above-mentioned grooves and recesses. A vane pump as claimed in claim 1.
Priority Applications (29)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61276689A JPH0768950B2 (en) | 1986-11-21 | 1986-11-21 | Vane pump |
IT8767627A IT1211222B (en) | 1986-07-22 | 1987-07-21 | Rotary vane pump e.g. for compressor in freezing system |
GB8717229A GB2192939B (en) | 1986-07-22 | 1987-07-21 | Vane pump |
DE19873724128 DE3724128A1 (en) | 1986-07-22 | 1987-07-21 | WING CELL PUMP |
KR8707877A KR920007283B1 (en) | 1986-07-22 | 1987-07-21 | E pump |
FR8710382A FR2602011A1 (en) | 1986-07-22 | 1987-07-22 | Vane pump |
KR870012309A KR880006461A (en) | 1986-11-14 | 1987-11-03 | Vane Pump |
KR870012393A KR880006462A (en) | 1986-11-17 | 1987-11-04 | Vane pump |
GB8725903A GB2197388B (en) | 1986-11-14 | 1987-11-05 | Pumps |
GB8725914A GB2197389B (en) | 1986-11-17 | 1987-11-05 | Pumps |
DE19873738257 DE3738257A1 (en) | 1986-11-14 | 1987-11-11 | WING CELL PUMP |
IT8767960A IT1211515B (en) | 1986-11-14 | 1987-11-12 | Rotary vane pump e.g. for compressor in freezing system |
IT8767961A IT1211516B (en) | 1986-11-17 | 1987-11-12 | VANE PUMP |
DE19873738484 DE3738484A1 (en) | 1986-11-17 | 1987-11-12 | WING CELL PUMP |
FR8715694A FR2606838A1 (en) | 1986-11-17 | 1987-11-13 | VANE PUMP |
FR8715693A FR2606839A1 (en) | 1986-11-14 | 1987-11-13 | VANE PUMP |
US07/197,548 US4958995A (en) | 1986-07-22 | 1988-05-23 | Vane pump with annular recesses to control vane extension |
US07/394,772 US5002473A (en) | 1986-07-22 | 1989-08-16 | Vane pump with annular ring and cylindrical slide as vane guide |
US07/394,774 US4997351A (en) | 1986-07-22 | 1989-08-16 | Rotary machine having vanes with embedded reinforcement |
US07/394,776 US4998868A (en) | 1986-07-22 | 1989-08-16 | Vane pump with sliding members on axial vane projections |
US07/394,778 US5030074A (en) | 1986-07-22 | 1989-08-16 | Rotary machine with dynamic pressure bearing grooves on vane guide ring |
US07/394,777 US5011390A (en) | 1986-07-22 | 1989-08-16 | Rotary vane machine having stopper engaging recess in vane means |
US07/394,780 US4997353A (en) | 1986-07-22 | 1989-08-16 | Vane pump with dynamic pressure bearing grooves on vane guide ring |
US07/394,773 US5033946A (en) | 1986-07-22 | 1989-08-16 | Rotary vane machine with back pressure regulation on vanes |
US07/394,779 US4998867A (en) | 1986-07-22 | 1989-08-16 | Rotary machine having axial projections on vanes closer to outer edge |
US07/394,771 US4955985A (en) | 1986-07-22 | 1989-08-16 | Vane pump with annular ring for engaging vanes and drive means in which the rotor drives the annular ring |
US07/394,785 US5032070A (en) | 1986-07-22 | 1989-08-16 | Rotary machine having axially biased ring for limiting radial vane movement |
US07/508,743 US5022842A (en) | 1986-07-22 | 1990-04-12 | Vane pump with rotatable annular ring means to control vane extension |
US07/590,568 US5044910A (en) | 1986-07-22 | 1990-09-28 | Vane pump with rotatable drive means for vanes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61276689A JPH0768950B2 (en) | 1986-11-21 | 1986-11-21 | Vane pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63131882A true JPS63131882A (en) | 1988-06-03 |
JPH0768950B2 JPH0768950B2 (en) | 1995-07-26 |
Family
ID=17572950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61276689A Expired - Lifetime JPH0768950B2 (en) | 1986-07-22 | 1986-11-21 | Vane pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0768950B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009156044A (en) * | 2007-12-25 | 2009-07-16 | Panasonic Electric Works Co Ltd | Vane pump |
JP2010249047A (en) * | 2009-04-16 | 2010-11-04 | Mitsubishi Electric Corp | Screw compressor |
JP2010249045A (en) * | 2009-04-16 | 2010-11-04 | Mitsubishi Electric Corp | Screw compressor |
JP2011169199A (en) * | 2010-02-17 | 2011-09-01 | Mitsubishi Electric Corp | Vane rotary type fluid device and compressor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5867988A (en) * | 1981-10-16 | 1983-04-22 | Amadera Kuatsu Kogyo Kk | Rotary vane compressor |
JPS59157595U (en) * | 1983-03-31 | 1984-10-23 | マツダ株式会社 | Rotary compressor with rotating sleeve |
-
1986
- 1986-11-21 JP JP61276689A patent/JPH0768950B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5867988A (en) * | 1981-10-16 | 1983-04-22 | Amadera Kuatsu Kogyo Kk | Rotary vane compressor |
JPS59157595U (en) * | 1983-03-31 | 1984-10-23 | マツダ株式会社 | Rotary compressor with rotating sleeve |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009156044A (en) * | 2007-12-25 | 2009-07-16 | Panasonic Electric Works Co Ltd | Vane pump |
JP2010249047A (en) * | 2009-04-16 | 2010-11-04 | Mitsubishi Electric Corp | Screw compressor |
JP2010249045A (en) * | 2009-04-16 | 2010-11-04 | Mitsubishi Electric Corp | Screw compressor |
JP2011169199A (en) * | 2010-02-17 | 2011-09-01 | Mitsubishi Electric Corp | Vane rotary type fluid device and compressor |
Also Published As
Publication number | Publication date |
---|---|
JPH0768950B2 (en) | 1995-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5044910A (en) | Vane pump with rotatable drive means for vanes | |
US4917584A (en) | Vane pump with annular aetainer limiting outward radial vane movement | |
KR100269086B1 (en) | Scroll compressordrive having a brake | |
JPH0244075Y2 (en) | ||
JPH0367082A (en) | Rotating scroll type supercharger for compressible medium | |
US7566211B2 (en) | Vane pump having vanes with a cutout portion | |
US4898526A (en) | Vane pump with axial inlet and peripheral tangential outlet | |
JPS63131883A (en) | Vane pump | |
JPS63131882A (en) | Vane pump | |
US6135742A (en) | Eccentric-type vane pump | |
JP3014656B2 (en) | Rotary compressor | |
JPS63124885A (en) | Vane pump | |
US4561835A (en) | Floating rotary sleeve of a rotary compressor | |
JPH0768949B2 (en) | Vane pump | |
JP2601991Y2 (en) | Vane pump | |
JPH0318716Y2 (en) | ||
JPH02130282A (en) | Vane hydraulic pump having cam ring floating structure and vane hydraulic motor | |
JPS6329084A (en) | Vane pump | |
US4435140A (en) | Compressor having rotor rotating without contracting side plates | |
WO2023125809A1 (en) | Flange and scroll compressor comprising same | |
JPS6314200B2 (en) | ||
JP2003214361A (en) | Vane pump | |
CN116412216A (en) | Flange and scroll compressor including the same | |
JPH03249391A (en) | Turning rotor device | |
JPS59213976A (en) | Rotary compressor |