JPS6313105A - Polishing method for magnetic material - Google Patents
Polishing method for magnetic materialInfo
- Publication number
- JPS6313105A JPS6313105A JP61156035A JP15603586A JPS6313105A JP S6313105 A JPS6313105 A JP S6313105A JP 61156035 A JP61156035 A JP 61156035A JP 15603586 A JP15603586 A JP 15603586A JP S6313105 A JPS6313105 A JP S6313105A
- Authority
- JP
- Japan
- Prior art keywords
- surface plate
- magnetic material
- polishing
- conductive surface
- workpiece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000696 magnetic material Substances 0.000 title claims abstract description 37
- 238000005498 polishing Methods 0.000 title claims description 35
- 238000000034 method Methods 0.000 title claims description 23
- 239000003792 electrolyte Substances 0.000 claims abstract description 13
- 239000007788 liquid Substances 0.000 claims description 17
- 239000000463 material Substances 0.000 abstract description 8
- 239000012530 fluid Substances 0.000 abstract description 6
- 238000003754 machining Methods 0.000 description 24
- 239000006061 abrasive grain Substances 0.000 description 15
- 238000010586 diagram Methods 0.000 description 7
- 238000007517 polishing process Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical group [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910018605 Ni—Zn Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000002649 leather substitute Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Magnetic Heads (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、各種磁気ヘッドなどに使用される磁性材料の
研磨方法に係り、特に、加工変質層の低減と、加工能率
の向上とを志向した磁性材料の研磨方法に関するもので
ある。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of polishing magnetic materials used in various magnetic heads, etc., and is particularly aimed at reducing a process-affected layer and improving processing efficiency. The present invention relates to a method for polishing magnetic materials.
従来、各種磁気ヘッドの材料として使用されているフェ
ライト材などの磁性材料の研磨方法、いわゆる鏡面加工
法としては、ラッピング、ボリシング加工が適用されて
いる。これらの加工法は、微細な砥粒と、適当なラップ
液、ラップ定盤とを用いるものであり、被加工物(すな
わち、磁性材料)と前記ラップ定盤との間へ、前記砥粒
、ラップ液を介在させ、適当な圧力下で、前記被加工物
とラップ定盤とを相対摺動させることにより、その被加
工物を研磨するようにしたものである。BACKGROUND ART Conventionally, lapping and boring processes have been applied as methods for polishing magnetic materials such as ferrite materials used as materials for various magnetic heads, so-called mirror finishing methods. These processing methods use fine abrasive grains, an appropriate lapping liquid, and a lapping platen, and the abrasive particles, The workpiece is polished by sliding the workpiece and the lapping surface plate relative to each other under an appropriate pressure using a lapping liquid.
この加工法においては、加工条件を適正に選択すること
により、被加工物の表面粗さを0.02μmRmax程
度までに鏡面仕上げをすることができるものの、被加工
物表面に、砥粒による引っかき、もしくは転動作用によ
る痕跡が残存して、いわゆる加工変質層が残留する。こ
の加工変質層の太きさは、前記加工法において、0.1
μm〜数μmに達するものであり、磁性材料である被加
工物の磁気特性を劣化させ、ヘッド性能を低下させる原
因になるという問題点があった。In this processing method, by appropriately selecting processing conditions, it is possible to achieve a mirror finish with a surface roughness of approximately 0.02 μmRmax, but the surface of the workpiece may be scratched by abrasive grains. Alternatively, traces from rolling operations remain, resulting in a so-called process-affected layer. In the processing method, the thickness of this process-affected layer is 0.1
The diameter of the magnetic field is from .mu.m to several .mu.m, which poses a problem in that it deteriorates the magnetic properties of the workpiece, which is a magnetic material, and causes deterioration of the head performance.
加工変質層を少なくする研磨方法として、メカニカルケ
ミカルボリジング法〔たトエば、エレクトロニクス用結
晶材料の精密加工技術、p319〜p 324 (昭和
60年1月50日発行)、サイエンスフォーラム社〕が
知られている。As a polishing method to reduce the process-altered layer, the mechanical chemical boring method [Tatoba, Precision Processing Technology for Crystalline Materials for Electronics, p. 319-p. 324 (published January 50, 1985), Science Forum Publishing Co., Ltd.] is known. It is being
第6図は、従来の磁性材料の研磨方法の一例として、メ
カニカルケミカルボリジング法の実施に使用される研磨
装置を示す部分断面略示正面図である。FIG. 6 is a partially sectional schematic front view showing a polishing apparatus used in a mechanical chemical boring method as an example of a conventional polishing method for magnetic materials.
この研磨装置は、往後動型のものである。そして1は、
その上面をなめし皮9合成皮革などのポリシャ16によ
って被覆した定盤であって、この定盤1は、定盤固定具
6内に装着されており、この定盤固定具6が駆動装置(
図示せず)によってA方向へ往復運動できるようになっ
ている。3は、被加工物であって、この被加工物3は、
ホルダ9によって複数個保持されている。そして、この
ホルダ9に回動自在(こ取付けられた心棒10を介して
、おもり5によってポリシャ16上へ加圧されている。This polishing device is of a reciprocating type. And 1 is
It is a surface plate whose upper surface is covered with a polisher 16 such as tanned leather 9 and synthetic leather.
(not shown) allows reciprocating movement in the A direction. 3 is a workpiece, and this workpiece 3 is
A plurality of them are held by the holder 9. Pressure is applied onto the polisher 16 by a weight 5 via a shaft 10 which is rotatably attached to the holder 9.
2は、心棒10に貫通して取付けられたアームであって
、このアーム2が、駆動装置(図示せず)によって、前
記A方向と直交するB方向へ往復運動できるようになっ
ている。11は、その中に、微細な砥粒13と電解質加
工液14とからなる加工液を貯溜したタンクであり、そ
のコック12から前記加工液をポリシャ16上へ供給す
るこきができるようになっている。Reference numeral 2 denotes an arm that is attached to the shaft 10 so as to pass through the shaft 10, and this arm 2 can be reciprocated in the B direction perpendicular to the A direction by a drive device (not shown). Reference numeral 11 denotes a tank in which a machining fluid consisting of fine abrasive grains 13 and an electrolyte machining fluid 14 is stored, and the cock 12 can supply the machining fluid onto the polisher 16. There is.
このように構成した研磨装置を使用して、タンク11か
らポリシャ16上へ前記加工液を供給し、おもり5によ
って所定圧力を負荷し、前記各駆動装置により、定盤固
定具6をA方向へ、ホルダ9をB方向へ、それぞれ往復
運動させて、被加工物3とポリシャ16とを相対運動さ
せる。これにより、被加工物3は、砥粒13による機械
作用と、電解質加工液14による化学作用とを複合させ
た作用により加工されるので、前記ラッピングによる加
工法に比べて、加工変質層を低減することができるとい
う効果がある。しかし、加工能率については、充分な配
慮がなされていなかった。Using the polishing device configured in this manner, the processing fluid is supplied from the tank 11 onto the polisher 16, a predetermined pressure is applied by the weight 5, and the surface plate fixing device 6 is moved in the direction A by each of the driving devices. , the holder 9 is reciprocated in the direction B to cause the workpiece 3 and the polisher 16 to move relative to each other. As a result, the workpiece 3 is processed by a combined action of the mechanical action by the abrasive grains 13 and the chemical action by the electrolyte processing fluid 14, so that the process-affected layer is reduced compared to the above-mentioned processing method using lapping. The effect is that it can be done. However, sufficient consideration has not been given to processing efficiency.
加工能率が高く、且つ加工変質層が少ない、磁性材料の
研磨方法としては、特願昭47−111177号公報1
%願昭49−48789号公報記載のものがある。これ
は、フェライト系磁性材料(被加工物)に対して、微細
な砥粒を含むか、もしくは含まない電解質加工液を、導
電性定盤上へ所定の圧力下で介在させ、前記被加工物と
導電性定盤とを相対摺動させることにより、被加工物、
電解質加工液および導電性定盤の3者によって内W[池
を形成し、砥粒による機械的除去作用と電気化学作用と
を併用して、前記被加工物を研磨するようにしたもので
ある。A method for polishing magnetic materials that has high processing efficiency and reduces the number of processed damaged layers is disclosed in Japanese Patent Application No. 111177/1983.
There is one described in Japanese Patent Application No. 49-48789. In this method, an electrolyte processing liquid containing or not containing fine abrasive grains is placed on a conductive surface plate under a predetermined pressure to treat a ferrite-based magnetic material (workpiece). By sliding the and conductive surface plate relative to each other, the workpiece,
An inner W pond is formed by the electrolyte processing liquid and the conductive surface plate, and the workpiece is polished using a combination of mechanical removal action by abrasive grains and electrochemical action. .
上記したメカニカルケミカルボリジング法は、加工変質
層を低減することができるものの、加工能率が低いとい
う問題点があった。また。被加工物、を解質加工液およ
び導電性定盤の3者によって内部電池を形成し、砥粒に
よる機械的除去作用と電気化学作用とを併用した研磨方
法においては、被加工物が電解質加工液に溶解する速朕
を制御・することについては配慮されてないので、特ζ
こ、電気抵抗の大きい被加工物を研磨する場合、やはり
加工能率が充分でない、というさらに改善すべき問題点
があった。Although the mechanical chemical boring method described above can reduce the process-affected layer, it has the problem of low processing efficiency. Also. In a polishing method that uses a combination of mechanical removal action and electrochemical action using abrasive grains, the workpiece is subjected to electrolytic processing by forming an internal battery using a decomposition liquid and a conductive surface plate. Since no consideration has been given to controlling the rate of dissolution in the liquid, special
When polishing a workpiece with high electrical resistance, there is still a problem that the processing efficiency is not sufficient, which should be further improved.
本発明は、上記した従来技術の問題点を改善して、加工
変質層がきわめて少なく、高い加工能率で磁性材料を研
磨することができる、ah材料の研磨方法の提供を、そ
の目的とするものである。It is an object of the present invention to provide a method for polishing AH materials, which improves the problems of the prior art described above and can polish magnetic materials with extremely little process-affected layers and high processing efficiency. It is.
上記問題点を解決するための本発明に係る磁性材料の研
磨方法の構成は、導電性定盤と磁性材料との間へ醒M質
加工液を供給しながら、所定の圧力下で、前記導電性定
盤上
させることにより、前記磁性材料を研磨するようにした
磁性材料の研磨方法において、導電性定盤と磁性材料と
の間に、前記導電性定盤側が陽極に磁性材料側が陰極に
なるようlこして、外部電圧を印加するようにしたもの
である。In order to solve the above-mentioned problems, the method of polishing a magnetic material according to the present invention has a structure in which the conductive material is In a method of polishing a magnetic material, the magnetic material is polished by placing the magnetic material on a conductive surface plate, wherein the conductive surface plate side becomes an anode and the magnetic material side becomes a cathode between the conductive surface plate and the magnetic material. In this way, an external voltage is applied.
導電性定盤と、被加工物である磁性材料との間へ、外部
電圧を印加することにより、電気化学作用が促進され、
前記被加工物の加工能率を向上させることができる。Electrochemical action is promoted by applying an external voltage between the conductive surface plate and the magnetic material that is the workpiece.
The processing efficiency of the workpiece can be improved.
実施例の説明に入るまえに、本発明に係る基本的事項を
、第2.3図を用いて説明する。Before entering into the description of the embodiments, basic matters related to the present invention will be explained using FIG. 2.3.
第2.6図は、本発明に係る基本的事項を説明するため
のものであり、第2図は、被加工物、電解質加工液およ
び導電性定盤の3者によって形成される内部電池を示す
模式図、Wc5図は、前記導電性定盤と被加工物との間
に、外部電圧を印加した状態を示す模式図である。Figure 2.6 is for explaining the basic matters related to the present invention, and Figure 2 shows the internal battery formed by the workpiece, electrolyte processing liquid, and conductive surface plate. The schematic diagram shown in FIG. Wc5 is a schematic diagram showing a state in which an external voltage is applied between the conductive surface plate and the workpiece.
各図において、1Aは導電性定盤、3Aは、磁性材料に
係る被加工物、8は、外部電圧を印加する電源装置、1
4は電解質加工液、17は、導電性定盤1Aと被加工物
3Aとを接続する導線である。In each figure, 1A is a conductive surface plate, 3A is a workpiece made of magnetic material, 8 is a power supply device that applies an external voltage, 1
Reference numeral 4 indicates an electrolyte processing liquid, and reference numeral 17 indicates a conductive wire connecting the conductive surface plate 1A and the workpiece 3A.
被加工物3A、tm質加工液14および41!性定盤1
人の3者が内部電池を形成した場合の刀ロエ機構は、@
2図に示すようになる。すなわち、導電性定盤1Aが電
解質加工液14中で、
M −+ M” + 2 e−−(1)の反応を生ずる
。ただし、Mは導電性定盤1人の材質である。一方、被
加工物5Aの主成分であるFeze3に関しては、
F’6203+ lsH”+ 2e−+2Fe” +
3H20・= (2)の反応を生ずる。この反応により
、被加工物3Aの溶解が進んで、研治が行なわれる。こ
のとき、導電性定盤1Aが溶解して発生する電子は、導
線17によって被加工物5A側へ流れる。したがって、
この電子の流れを促進するために、第3因に示すように
、被加工物3Aと導電性定盤1Aとの間に、導電性定盤
1A側が陽極に、被加工物3A側が陰極になるようにし
て、外部電圧を印加するための電源波fIt8を接続す
ることにより、前記(2)式の反応が促進され、被加工
物3Aの加工能率を向上させることができるものである
。Workpiece 3A, TM quality processing liquid 14 and 41! sex table 1
The sword Loe mechanism when three people form an internal battery is @
The result will be as shown in Figure 2. That is, the conductive surface plate 1A causes the following reaction in the electrolyte processing liquid 14: M − + M” + 2 e−− (1). However, M is the material of the conductive surface plate 1. On the other hand, Regarding Feze3, which is the main component of workpiece 5A, F'6203+ lsH"+ 2e-+2Fe" +
3H20.=(2) reaction occurs. Due to this reaction, the workpiece 3A is dissolved and polished. At this time, electrons generated by melting the conductive surface plate 1A flow toward the workpiece 5A through the conductive wire 17. therefore,
In order to promote the flow of electrons, as shown in the third factor, between the workpiece 3A and the conductive surface plate 1A, the conductive surface plate 1A side becomes an anode and the workpiece 3A side becomes a cathode. In this way, by connecting the power wave fIt8 for applying an external voltage, the reaction of equation (2) is promoted, and the processing efficiency of the workpiece 3A can be improved.
本発明は、上記した基本的事項に基づいてなされたもの
であり、以下実施例によって説明する。The present invention has been made based on the above-mentioned basic matters, and will be explained below with reference to Examples.
第1図は、本発明の一実施例に係る磁性材料の研磨方法
の実施に使用される研磨装置を示す部分断面略示正面図
である。FIG. 1 is a partially sectional schematic front view showing a polishing apparatus used to carry out a method of polishing a magnetic material according to an embodiment of the present invention.
この第1図において、第6図と同一番号、同一記号を付
したものは同一部分である。そして、1Bは、その表面
に微細なV形の溝1B(たとえば、深さ002真翼、ピ
ンチ1 mytの溝)を形成した導電性定盤であり、こ
の導電性定盤1Bは、絶縁体4を介して、定盤固定具6
に装着されている。7は、導電性のホルダ9と被加工物
6との間の電気的導通を保つために、両者番こかけて取
付けられた4を材(たとえば、銀ペーヌト)である。8
は電源装置であり、その陽極が導電性定frrt1Bへ
、陰極がホルダ9へそれぞれ接続されている。In FIG. 1, the same parts are denoted by the same numbers and symbols as in FIG. 6. 1B is a conductive surface plate with a fine V-shaped groove 1B (for example, a groove with a depth of 002 true blades and a pinch of 1 myt) formed on its surface, and this conductive surface plate 1B is made of an insulator. 4, the surface plate fixture 6
is installed on. 7 is a material (for example, silver paint) attached between the conductive holder 9 and the workpiece 6 in order to maintain electrical continuity therebetween. 8
is a power supply device, the anode of which is connected to the conductive constant frrt1B, and the cathode of which is connected to the holder 9.
このように画成した研磨装置を使用して、本発明の一実
施例に係る磁性材料の研磨方法を説明する0
まず、被加工物3をホルダ9によって保持し、両者間に
導電材7をつける。タンク11から導電性定盤1B上へ
、砥粒13および電解質加工液14を少址流す。この導
電性定盤1B上へホルダ9を載置し、このホルダ9を心
棒10の下端により回転自在に保持する。そして、この
心棒1o上に所定Mikのおもり5を載せて加圧する。A method of polishing a magnetic material according to an embodiment of the present invention using the polishing apparatus defined as above will be described. First, the workpiece 3 is held by the holder 9, and the conductive material 7 is placed between them. Put on. A small amount of abrasive grains 13 and electrolyte processing liquid 14 are flowed from the tank 11 onto the conductive surface plate 1B. A holder 9 is placed on the conductive surface plate 1B, and the holder 9 is rotatably held by the lower end of the mandrel 10. Then, a weight 5 of a predetermined Mik is placed on this mandrel 1o and pressurized.
ここで研磨装置をONにすると、電源装置8によって、
導電性定盤1Bと被加工物6との間へ、所定の外部電圧
が印加される。定盤固定具6.アーム2が、それぞれの
駆動装置It、(図示せず)によって、A方向、B方向
へ所定のストローク、速度で往り運動を行ない、タンク
11のコック12から、砥粒已と電解質加工液1ルとか
らなる加工液が所定量ずつ所定時間毎に供給され、被加
工物3の加工が継続する。そして、設定時間経過後(も
しくは、加工量を検出する加工量検知センサ15の検出
値が設定値になったとき)、研磨装置がOFFになり、
被加工物5の研磨が終了する。、
具体例を示す。When the polishing device is turned on here, the power supply device 8
A predetermined external voltage is applied between the conductive surface plate 1B and the workpiece 6. Surface plate fixture 6. The arm 2 moves back and forth in the A direction and the B direction at a predetermined stroke and speed by each drive device It, (not shown), and the abrasive grain and electrolyte processing liquid 1 are supplied from the cock 12 of the tank 11. A predetermined amount of the machining liquid consisting of 1 and 2 is supplied at predetermined intervals, and machining of the workpiece 3 continues. After the set time has elapsed (or when the detection value of the machining amount detection sensor 15 that detects the machining amount reaches the set value), the polishing device is turned off.
Polishing of the workpiece 5 is completed. , a specific example is shown.
被加工物3がMn −Zn単結晶フェライトの(111
)面、導電性定盤1Bが錫定盤、砥粒13が砥粒径1μ
mのダイヤモンド砥粒、を解質加工液14が4vo1%
の塩酸水溶液であり、導電性定盤1Bをストローク80
n、速度2.4 epm +被加工物3をストローク1
00龍、速度36cpmで相対摺動させ、おもり5によ
る加圧力を0.7 kg (7,4とした場合の結果を
、第4.5図を用いて説明する。Workpiece 3 is Mn-Zn single crystal ferrite (111
) surface, the conductive surface plate 1B is a tin surface plate, and the abrasive grain 13 has an abrasive grain diameter of 1μ.
m diamond abrasive grains, decomposition processing liquid 14 is 4 vol 1%
is an aqueous solution of hydrochloric acid, and the conductive surface plate 1B is stroked 80 times.
n, speed 2.4 epm + stroke 1 for workpiece 3
The results when relative sliding is performed at a speed of 36 cpm and the pressing force by the weight 5 is 0.7 kg (7,4) will be explained using Fig. 4.5.
第4.5図は、第1図に係る研磨装置によって磁性材料
を研馳した結果の一例を示すものであり、W、4図は、
印加電圧と加工能率とのNi係を示す印加電圧−刀ロエ
龍率特性図、第5図は、従X法による研磨結果と比較し
て示す加工能率比較崗である。Figure 4.5 shows an example of the result of polishing a magnetic material with the polishing apparatus according to Figure 1, and Figure 4.
FIG. 5 is a graph showing the relationship between the applied voltage and the machining efficiency, and FIG. 5 is a machining efficiency comparison graph shown in comparison with the polishing results obtained by the conventional X method.
第4図から明らかなように、加工能率は、印加する外部
電圧、すなわち印加1ζ圧を大きくすると七もに増加し
、たとえば、印加電圧を2Vにすると、外部電圧を印加
しない場合の約5倍になる。As is clear from Fig. 4, the machining efficiency increases by seven times as the applied external voltage, that is, the applied 1ζ pressure, increases; for example, when the applied voltage is set to 2 V, it is approximately five times that when no external voltage is applied. become.
図示してないが、加工量IL Jfaの厚さも低減し、
従来のラッピングの場合の約0.1μmに対して、約0
.01μm以下であった。Although not shown, the thickness of the processing amount IL Jfa is also reduced,
Approximately 0.1μm for conventional wrapping
.. It was 0.01 μm or less.
x5図を参照すると、印加電圧を2■とした指令の加工
能率は、ラッピングによる加工の場合の約11倍であり
、また、被加工物、電解質加工液。Referring to the x5 diagram, the machining efficiency when the applied voltage is 2■ is approximately 11 times that of machining by lapping.
導電性定盤の3者で内部電池を形成した場合(外部電圧
を印加しない)、すなわち、外部電圧を印加しない電気
化学的研磨の場合の約5倍である。It is about 5 times the case when an internal battery is formed by three conductive surface plates (no external voltage is applied), that is, when electrochemical polishing is performed without applying an external voltage.
以上説明した実施例によれば、導電性定盤1Bと被加工
物6との間に、電源装置8によって外部電圧を印加する
ようにしたので、内部電池の電気化学作用が促進され、
加工変質層がきわめて少なく、且つ加工能率の高い、磁
性材料の研磨方法を提供することができるという効果が
ある。According to the embodiment described above, since an external voltage is applied between the conductive surface plate 1B and the workpiece 6 by the power supply device 8, the electrochemical action of the internal battery is promoted.
The present invention has the advantage that it is possible to provide a method of polishing a magnetic material with extremely few process-affected layers and high processing efficiency.
なお、前記具体例においては、電気抵抗の小さいMn−
Zn 単結晶フェライト(比抵抗が〜1Ω・tM)に
ついて説明したが、電気抵抗の大きい磁性材料、たとえ
ばNi −Zn 多結晶フェライト(比抵抗が〜106
Ω・tM)に適用しても、全く同様の効果がある。In the above specific example, Mn-
Zn single-crystal ferrite (specific resistance of ~1 Ω·tM) has been described, but magnetic materials with high electrical resistance, such as Ni-Zn polycrystalline ferrite (specific resistance of ~106
Exactly the same effect can be obtained even when applied to Ω·tM).
また、導電性定盤1Bは錫定盤に限るものではなく、た
とえば鉛定盤でもよい。砥粒13もダイヤモンド砥粒に
限らず、アルミナ、5iC(炭化けい素)の砥粒でもよ
く、また、電解質加工液14も、塩酸水溶液のほか、た
とえば、りん酸水溶液でもよい。Further, the conductive surface plate 1B is not limited to a tin surface plate, but may be a lead surface plate, for example. The abrasive grains 13 are not limited to diamond abrasive grains, but may also be alumina or 5iC (silicon carbide) abrasive grains, and the electrolyte processing liquid 14 may also be, for example, a phosphoric acid aqueous solution in addition to a hydrochloric acid aqueous solution.
さらに、前記第1図に係る研磨装置は往復動型のもので
あるが、本発明の研磨方法は回転型の研磨装置に適用し
ても、同様の効果を奏することは云うまでもない。また
、導電性定盤1Bの上面に形成したV形の溝18は、な
くてもよい。しかし、あれば加工屑の排除がさらに容易
になるという利点がある。Further, although the polishing apparatus shown in FIG. 1 is of a reciprocating type, it goes without saying that the polishing method of the present invention can produce similar effects even when applied to a rotary type polishing apparatus. Further, the V-shaped groove 18 formed on the upper surface of the conductive surface plate 1B may not be provided. However, it has the advantage of making it easier to remove processing waste.
次に、他の実施例を説明する。Next, another embodiment will be described.
前記実施例は、加工中、印加電圧の大きさを一定にした
が、加工の途中で、被加工物3の加工量に応じて印加電
圧の大きさを制御するようにしてもよい。そのような実
施例を、再び第1図を参照して説明すると、15は、ホ
ルダ9の上面近傍に配設され、被加工物5の加工量を非
接触で検知することができる加工量検知センサであり、
この加工量検知センサ15は、印加電圧制御装置(図示
せず)を介して、電源装置8へ接続されている。In the embodiment described above, the magnitude of the applied voltage is kept constant during machining, but the magnitude of the applied voltage may be controlled in accordance with the amount of machining of the workpiece 3 during machining. To explain such an embodiment with reference to FIG. 1 again, reference numeral 15 denotes a machining amount detector disposed near the top surface of the holder 9 and capable of detecting the machining amount of the workpiece 5 in a non-contact manner. It is a sensor,
This machining amount detection sensor 15 is connected to a power supply device 8 via an applied voltage control device (not shown).
このように構成したので、加工量検知センサ15からの
加工量に係る出力信号が前記印加電圧制御装置へ送られ
ると、この印加電圧制御装置からの指令により、電源装
置8を制御することができる。With this configuration, when an output signal related to the amount of machining from the machining amount detection sensor 15 is sent to the applied voltage control device, the power supply device 8 can be controlled by a command from the applied voltage control device. .
たとえば、総加工量を30μmとしたとき、このうちの
25μmまでを印加電圧2vで加工し、残りの5μmを
印加電圧をOvにし、すなわち、電気化学的加工の反応
を内部電池形成によるもののみとしてもよい。For example, when the total machining amount is 30μm, up to 25μm of this is processed with an applied voltage of 2V, and the remaining 5μm is processed with an applied voltage of Ov, that is, the reaction of electrochemical processing is assumed to be only due to internal battery formation. Good too.
この実施例によれば、被加工物6の表面粗さがさらに向
上するという利点がある。すなわち、印加電圧を2v一
定にした場合の表面粗さが0.02μmRmaxであっ
たものが、総加工fk30μmのうち5μmをOvにし
て加工したところ、表面粗さがα01μmRmaxに向
上した。According to this embodiment, there is an advantage that the surface roughness of the workpiece 6 is further improved. That is, when the applied voltage was kept constant at 2V, the surface roughness was 0.02 μmRmax, but when 5 μm of the total machining fk of 30 μm was processed to Ov, the surface roughness improved to α01 μmRmax.
〔発明の効果〕
以上詳細に説明したように本発明によれば、加工変質層
がきわめて少なく、高い加工能率で磁性材料を研磨する
ことができる、磁性材料の研磨方法を提供することがで
きる。[Effects of the Invention] As described in detail above, according to the present invention, it is possible to provide a method for polishing a magnetic material, which can polish a magnetic material with extremely few process-affected layers and high processing efficiency.
第1図は、本発明の一実施例に係る磁性材料の研磨方法
の実施に使用される研磨装置を示す部分断面略示正面図
、第2.3図は、本発明に係る基本的事項を説明するた
めのものであり、@2図は、被加工物、電解質加工液2
よぴ4環性定盤の6者によって形成される内部電池を示
す模式図、第3図は、前記導電性定盤と被加工物との間
に、外部電圧を印加した状態を示す模式図、第4.5ス
は、第1図に係る研磨装置によって磁性材料を研磨した
結果の一例を示すものであり、第4図は、印加電圧と加
工能率上の関係を示す印加電圧−加工能率特性図、第5
図は、従来法による研磨結果と比較して示す加工能率比
較図、第6因は、従来の磁性材料の研磨方法の一例とし
て、メカニカルケミカルボリジング法の実施に使用され
る研磨装置を示す部分断面略示正面図である。
1B・・・導電性定盤 3・・・被加工物5・・・お
もり 8・・・電源装置14・・・電解質加工
液 15・・・加工量検知センサ弼 1 図
=11=A
第2図
第3図
第4図FIG. 1 is a partial cross-sectional schematic front view showing a polishing apparatus used for carrying out a method for polishing magnetic materials according to an embodiment of the present invention, and FIG. 2.3 shows basic matters related to the present invention. This figure is for explanation purposes only.
FIG. 3 is a schematic diagram showing an internal battery formed by six members of a four-ring surface plate, and FIG. 3 is a schematic diagram showing a state in which an external voltage is applied between the conductive surface plate and the workpiece. , 4.5 shows an example of the result of polishing a magnetic material with the polishing apparatus according to FIG. 1, and FIG. 4 shows the relationship between applied voltage and machining efficiency. Characteristic diagram, 5th
The figure is a processing efficiency comparison diagram comparing the polishing results with the conventional method.The sixth factor is the part showing the polishing equipment used for the mechanical chemical boring method, which is an example of the conventional polishing method for magnetic materials. It is a cross-sectional schematic front view. 1B... Conductive surface plate 3... Workpiece 5... Weight 8... Power supply device 14... Electrolyte processing liquid 15... Machining amount detection sensor 2 1 Figure = 11 = A 2nd Figure 3 Figure 4
Claims (1)
しながら、所定の圧力下で、前記導電性定盤と磁性材料
とを相対摺動させることにより、前記磁性材料を研磨す
るようにした磁性材料の研磨方法において、導電性定盤
と磁性材料との間に、前記導電性定盤側が陽極に磁性材
料側が陰極になるようにして、外部電圧を印加するよう
にしたことを特徴とする磁性材料の研磨方法。 2、磁性材料の加工量を検知する手段を設け、この手段
によつて検知した出力信号によつて、印加する外部電圧
の大きさを制御するようにしたものである特許請求の範
囲第1項記載の磁性材料の研磨方法。[Claims] 1. By relatively sliding the conductive surface plate and the magnetic material under a predetermined pressure while supplying an electrolyte processing liquid between the conductive surface plate and the magnetic material, In the method for polishing the magnetic material, an external voltage is applied between the conductive surface plate and the magnetic material such that the conductive surface plate side becomes the anode and the magnetic material side becomes the cathode. A method for polishing a magnetic material, characterized in that: 2. Means for detecting the amount of processing of the magnetic material is provided, and the magnitude of the external voltage to be applied is controlled based on the output signal detected by this means. The described method for polishing magnetic materials.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61156035A JPS6313105A (en) | 1986-07-04 | 1986-07-04 | Polishing method for magnetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61156035A JPS6313105A (en) | 1986-07-04 | 1986-07-04 | Polishing method for magnetic material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6313105A true JPS6313105A (en) | 1988-01-20 |
JPH0587884B2 JPH0587884B2 (en) | 1993-12-20 |
Family
ID=15618893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61156035A Granted JPS6313105A (en) | 1986-07-04 | 1986-07-04 | Polishing method for magnetic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6313105A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6846227B2 (en) * | 2001-02-28 | 2005-01-25 | Sony Corporation | Electro-chemical machining appartus |
-
1986
- 1986-07-04 JP JP61156035A patent/JPS6313105A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6846227B2 (en) * | 2001-02-28 | 2005-01-25 | Sony Corporation | Electro-chemical machining appartus |
Also Published As
Publication number | Publication date |
---|---|
JPH0587884B2 (en) | 1993-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4839005A (en) | Electrolytic-abrasive polishing method of aluminum surface | |
US7247577B2 (en) | Insulated pad conditioner and method of using same | |
EP1877216B1 (en) | Method of electrolytically microfinishing a metallic workpiece | |
JP4258592B2 (en) | Ingot cutting apparatus and method | |
JPS6313105A (en) | Polishing method for magnetic material | |
CN209811949U (en) | Active control shearing action and temperature induced gradient thickening polishing processing device | |
US6242709B1 (en) | Method for manufacturing conductive wafers, method for manufacturing thin-plate sintered compacts, method for manufacturing ceramic substrates for thin-film magnetic head, and method for machining conductive wafers | |
KR100715097B1 (en) | Removable electrode | |
JPS6294224A (en) | Surface processing method for aluminium | |
TW201416159A (en) | An electrophoretic cutting system and a method of fabricating electrophoretic cutting carrier | |
JPH0411861B2 (en) | ||
JP3846052B2 (en) | Magnetic polishing apparatus and magnetic polishing method | |
JPH10180620A (en) | Polishing device and polishing method | |
US20070158207A1 (en) | Methods for electrochemical processing with pre-biased cells | |
JPS58137527A (en) | Surface finishing method by electrolytic compound processing | |
LU503967B1 (en) | Electrophoresis auxiliary self-feeding ultra-precision micro-polishing method and device therefor | |
JPS63123629A (en) | Method of grinding magnetic material | |
US20240234125A9 (en) | Method for producing discs from a cylindrical rod made of a semiconductor material | |
CN115383599A (en) | Electrophoresis-assisted self-feeding type ultra-precise micro polishing method and device | |
JPS58137526A (en) | Surface finishing method by electrolytic compound processing | |
JP2023103840A (en) | Surface processing method for semiconductor wafer | |
CN116442014A (en) | Electrolyte fixed electrochemical mechanical polishing method, device and equipment | |
JPH08197424A (en) | Machining method by the aid of wire tool and machining device by the aid of wire tool | |
KR100791907B1 (en) | Polishing apparatus | |
CN118525356A (en) | Surface processing method of semiconductor wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |