JPS63136673A - Manufacture of thin film semiconductor device - Google Patents
Manufacture of thin film semiconductor deviceInfo
- Publication number
- JPS63136673A JPS63136673A JP28379086A JP28379086A JPS63136673A JP S63136673 A JPS63136673 A JP S63136673A JP 28379086 A JP28379086 A JP 28379086A JP 28379086 A JP28379086 A JP 28379086A JP S63136673 A JPS63136673 A JP S63136673A
- Authority
- JP
- Japan
- Prior art keywords
- film
- semiconductor film
- deposited
- source
- insulating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 239000010409 thin film Substances 0.000 title claims 3
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 238000000151 deposition Methods 0.000 claims description 10
- 238000000206 photolithography Methods 0.000 claims description 5
- 239000010408 film Substances 0.000 claims 8
- 238000005268 plasma chemical vapour deposition Methods 0.000 abstract description 8
- 239000011521 glass Substances 0.000 abstract description 5
- 239000012535 impurity Substances 0.000 abstract description 5
- 229910021417 amorphous silicon Inorganic materials 0.000 abstract description 4
- 238000000059 patterning Methods 0.000 abstract description 3
- 229910004205 SiNX Inorganic materials 0.000 abstract description 2
- 230000015556 catabolic process Effects 0.000 abstract description 2
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 2
- 238000000137 annealing Methods 0.000 description 13
- 239000007789 gas Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000003513 alkali Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Liquid Crystal (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、絶縁基板上にTFTを製作する方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of fabricating a TFT on an insulating substrate.
本発明は、絶縁基板上にTFTをビームアニールして製
作する方法において、ゲート絶縁膜を500Å以下と薄
くすることによりTFTの闇値電圧(VTll)を制御
するとともに、ゲート電圧の耐圧が低下することを防止
するためにゲート絶縁股上に第3半導体膜を設けたとこ
を特徴としている。The present invention is a method of manufacturing a TFT on an insulating substrate by beam annealing, and by making the gate insulating film as thin as 500 Å or less, the dark voltage (VTll) of the TFT is controlled and the withstand voltage of the gate voltage is reduced. In order to prevent this, a third semiconductor film is provided on the gate insulating layer.
従来、第2図に示すようにゲート絶縁膜5の耐圧を約1
0V以上に保つために、ゲート絶縁膜5は2000Å以
上必要であった。そのためゲート絶縁膜5中の固定電荷
などの影響でVTMが負にシフトして、TFTはデプレ
ション動作になってしまった。Conventionally, as shown in FIG.
In order to maintain the voltage above 0V, the gate insulating film 5 was required to have a thickness of 2000 Å or more. Therefore, VTM shifted negatively due to the influence of fixed charges in the gate insulating film 5, and the TFT entered depletion operation.
550℃以下の低温プロセスを使用する場合に、第2図
に示すように、ゲート絶縁膜5が厚く、膜中に固定電荷
などが存在するとTFTのVTMがOvから大きくシフ
トして問題となっていた。When using a low-temperature process at 550°C or lower, as shown in Figure 2, if the gate insulating film 5 is thick and fixed charges are present in the film, the VTM of the TFT will shift significantly from Ov, causing a problem. Ta.
第1図(clに示すように、ゲート絶縁膜であるゲート
絶縁膜5を500 Å以下と薄くすることでTFTのV
T+4をOv付近に制御する。さらにゲート電極の耐圧
低下を防止するためにゲート絶縁膜5上に第3半導体膜
6を設けた。As shown in Figure 1 (cl), by making the gate insulating film 5 thinner than 500 Å, the V
Control T+4 near Ov. Further, a third semiconductor film 6 was provided on the gate insulating film 5 in order to prevent a decrease in breakdown voltage of the gate electrode.
ゲート絶縁膜5を薄くすることで、膜中の固定電荷など
は減少し、VTHのシフトも小さくなる。By making the gate insulating film 5 thinner, fixed charges in the film are reduced, and the shift in VTH is also reduced.
またゲート絶縁膜上に第3半導体膜6を設けることで、
ゲートの耐圧が低下することもない。Furthermore, by providing the third semiconductor film 6 on the gate insulating film,
The withstand voltage of the gate does not decrease.
〔実施例〕
以下図面によって本発明を説明する。第1図+al〜(
C1は本発明の実施例の工程を説明するための断面図で
ある。第1図(alは絶縁基板l上に第1半導体膜2を
堆積し、エネルギービーム10でアニールする工程であ
る。絶縁基板1の例としては、石英や無アルカリガラス
やアルカリなどの不純物を含んだガラスの表面に絶縁物
をコートしてガラスからの不純物の拡散を防止したもの
などがある。[Example] The present invention will be explained below with reference to the drawings. Figure 1 +al~(
C1 is a sectional view for explaining the steps of the embodiment of the present invention. FIG. 1 (al) is a step in which a first semiconductor film 2 is deposited on an insulating substrate l and annealed with an energy beam 10. Examples of the insulating substrate 1 include a film containing impurities such as quartz, non-alkali glass, and alkali. There are also types of glass whose surface is coated with an insulating material to prevent impurities from diffusing from the glass.
ここでは、550℃のプロセスが使用可能なガラス基板
を使った。Here, a glass substrate that can be used in a 550° C. process was used.
次に第1半導体膜2の例は、各種の膜と堆積方法がある
が、ここではa−3tをプラズマCVD法で堆積する方
法について説明する。堆積温度は、室温から約400℃
の間に設定し、原料ガスは主にシラン(SiHa)やジ
シラン(SiiHa)を使用する。また膜厚は500人
から3000人の間に設定する。Next, as an example of the first semiconductor film 2, there are various films and deposition methods, but here, a method of depositing a-3t by plasma CVD method will be explained. Deposition temperature ranges from room temperature to approximately 400℃
The source gas is mainly silane (SiHa) or disilane (SiiHa). Also, the film thickness is set between 500 and 3000 people.
次に第1半導体膜2をビームエネルギー10でアニール
する例について説明する。アニール方法にはレーザや電
子ビームまたはランプやヒータなどを用いた多数のエネ
ルギー源があるが、ここではArレーザを使用してアニ
ールする方法を述べる。Next, an example in which the first semiconductor film 2 is annealed with a beam energy of 10 will be described. There are many energy sources for annealing, such as lasers, electron beams, lamps, heaters, etc., but here we will describe an annealing method using an Ar laser.
一般にプラズマCVD法により堆積したa−3tには膜
中に水素ガスが含まれているため、このガスを除去する
プレアニールを行うことで後述の再結晶アニール後の結
晶性が良くなる。プレアニール方法ではa−Si中の水
素ガスが約500℃以上で除去できることが知られてお
り、この温度以上まで上昇できるアニール方法であれば
どの方法でも可能である。例として真空または窒素や不
活性ガス雰囲気中で、a−5iが溶融しない程度のエネ
ルギー密度で^rレーザのエネルギービームlOを走査
させて行うことができる。また、窒素雰囲気で550℃
、1時間行なっても十分である。続いて再結晶アニール
を行う。前記プレアニールと同様に真空または窒素や不
活性ガス雰囲気でArレーザを使って、水素を除去した
a−5iが溶融するエネルギー密度でエネルギービーム
10を走査させる。この結果第1半導体膜2は結晶化し
て再結晶半導体膜21になる。In general, a-3T deposited by plasma CVD contains hydrogen gas, so performing pre-annealing to remove this gas improves the crystallinity after recrystallization annealing, which will be described later. It is known that the pre-annealing method can remove hydrogen gas in a-Si at a temperature of about 500° C. or higher, and any annealing method that can raise the temperature to above this temperature can be used. For example, it can be carried out in a vacuum or in a nitrogen or inert gas atmosphere by scanning an energy beam lO of a laser at an energy density that does not melt a-5i. Also, 550℃ in nitrogen atmosphere
, it is sufficient to do it for one hour. Subsequently, recrystallization annealing is performed. As in the pre-annealing process, an Ar laser is used in a vacuum or in a nitrogen or inert gas atmosphere to scan the energy beam 10 at an energy density that melts a-5i from which hydrogen has been removed. As a result, the first semiconductor film 2 is crystallized and becomes a recrystallized semiconductor film 21.
第1図(blは再結晶半導体膜21をフォトリソ技術で
パターニング後、第2半専体[3と絶縁膜4を堆積し、
ソースとドレイン領域をフォトリソ技術で製作する工程
である。第2半導体膜3の例は、不純物を添加したa−
Siがある。前記のプラズマCVD法によりS i I
t aに0.1χからlχのPH3またはB 2 II
、ガスを添加して100人から1000人の間で堆積
する。FIG. 1 (bl) shows that after patterning the recrystallized semiconductor film 21 by photolithography, a second semi-dedicated film [3] and an insulating film 4 are deposited;
This is a process in which the source and drain regions are manufactured using photolithography technology. An example of the second semiconductor film 3 is a-
There is Si. By the plasma CVD method described above, S i I
PH3 or B 2 II of 0.1χ to lχ in ta
, deposit between 100 and 1000 with addition of gas.
次に絶縁膜4の堆積例について説明する。プラズマCV
DによりSiOxを0.1μmから0.5 p mまで
の間で堆積する。原料ガスは5iHnとN、Oを使用す
る。Next, an example of depositing the insulating film 4 will be described. plasma CV
SiOx is deposited to a thickness of 0.1 μm to 0.5 μm using D. 5iHn, N, and O are used as raw material gases.
パターニング後エネルギービームlOで第2半導体膜3
の低抵抗化アニールを行う。アニール条件は、前述した
プレアニールの条件で行う。第1図(C)はゲートvP
i縁膜5と第3半導体膜6を堆積した後、ソースとドレ
インのコンタクトホールを形成し、ゲート電極7.ソー
ス電極8.ドレイン電極9を製作する工程である。第2
絶縁膜5の例は、プラズマCVDでSiNxを堆積する
。原料ガスは主に5iHaとNHffを使い堆積温度は
室温から550℃の間で膜厚は100人から500人の
間にする。できるだけ薄くすることで膜中の固定電荷が
減少して特性がよくなる。第3半導体膜6は、第2半導
体3と同様に不純物を添加したa−5SをプラズマCV
Dで500人から2000人の膜厚で堆積する。ソース
、ドレイン領域のコンタクトホールをフォトリソ技術で
製作した後、各電極を堆積する。堆積例は各種スパツク
や蒸着方法があるが、ここではマグネトロンスパッタで
Crを0.02μm堆積後、Ar−3iを0.8 p
m堆積する。この金属をフォトリソ技術でパターニング
すると第1図(C1のようにゲート電極7.ソース電極
8.ドレイン電極9が形成できる。After patterning, the second semiconductor film 3 is
Annealing is performed to reduce the resistance. The annealing conditions are the pre-annealing conditions described above. Figure 1 (C) shows the gate vP
After depositing the i-edge film 5 and the third semiconductor film 6, source and drain contact holes are formed, and gate electrodes 7. Source electrode8. This is the process of manufacturing the drain electrode 9. Second
As an example of the insulating film 5, SiNx is deposited by plasma CVD. The raw material gases are mainly 5iHa and NHff, the deposition temperature is between room temperature and 550°C, and the film thickness is between 100 and 500 degrees centigrade. Making the film as thin as possible reduces fixed charges in the film and improves its characteristics. The third semiconductor film 6 is formed by plasma CVD of a-5S doped with impurities in the same manner as the second semiconductor 3.
D is deposited at a film thickness of 500 to 2000. After forming contact holes for the source and drain regions using photolithography, each electrode is deposited. Examples of deposition include various spatter and vapor deposition methods.
Deposit m. When this metal is patterned by photolithography, gate electrode 7, source electrode 8, and drain electrode 9 can be formed as shown in FIG. 1 (C1).
この発明は、前述の実施例で説明したように、半導体膜
をビームアニールしてTFTを製作する際に、ゲート絶
縁膜の膜厚を500Å以下と薄くすることにより膜中の
固定電荷を減少させることができ、闇値電圧の制御がで
きる。As explained in the above embodiment, this invention reduces the fixed charges in the film by reducing the thickness of the gate insulating film to 500 Å or less when manufacturing a TFT by beam annealing a semiconductor film. It is possible to control the dark value voltage.
第1図(al〜tc+は本発明のTFTの実施例の工程
順を説明するための断面図である。第2図は従来構造を
説明するための断面図である。
1・・・絶縁基板
2・・・第1半導体膜
3・・・第2半導体膜
4・・・絶縁膜
5・・・ゲート絶縁膜
21・・・再結晶半導体膜
6・・・第3半導体膜
10・・・エネルギービーム
以上
本発明の寅)艷拶りの工科?−示T区乍面B第1図
1χ末のエネ7て゛1四イγし丁:TFT のa’m
。
第2図FIG. 1 (al to tc+ are cross-sectional views for explaining the process order of the embodiment of the TFT of the present invention. FIG. 2 is a cross-sectional view for explaining the conventional structure. 1... Insulating substrate 2... First semiconductor film 3... Second semiconductor film 4... Insulating film 5... Gate insulating film 21... Recrystallized semiconductor film 6... Third semiconductor film 10... Energy Beam or more of the present invention) Technique of a greeting? -Display T Section B Figure 1 1 χ final energy 7
. Figure 2
Claims (2)
ギービームで前記第1半導体膜をアニールして再結晶半
導体膜にする工程と、ソースとドレイン領域に比抵抗0
.1Ωcm以下の低抵抗な第2半導体膜と絶縁膜を堆積
した後、前記第2半導体膜をエネルギービームにより活
性化して、さらに低抵抗化し、TFT素子を分離するた
めに前記再結晶半導体をエッチングする工程と、ゲート
絶縁膜を500Å以下の膜厚で堆積し、さらに比抵抗0
.1Ωcm以下の低抵抗の第3半導体膜を堆積した後、
ソースとドレイン部分にフォトリソ技術でコンタクトホ
ールを形成して、ゲート電極、ソース電極とドレイン電
極を製作する工程とからなる薄膜半導体装置の製造方法
。(1) After depositing a first semiconductor film on an insulating substrate, the first semiconductor film is annealed with an energy beam to form a recrystallized semiconductor film, and the source and drain regions have a resistivity of 0.
.. After depositing a second semiconductor film and an insulating film with a low resistance of 1 Ωcm or less, the second semiconductor film is activated by an energy beam to further lower the resistance, and the recrystallized semiconductor is etched in order to separate the TFT elements. The gate insulating film is deposited to a thickness of 500 Å or less, and the resistivity is 0.
.. After depositing a third semiconductor film with a low resistance of 1 Ωcm or less,
A method for manufacturing a thin film semiconductor device, which includes the steps of forming contact holes in the source and drain portions using photolithography to fabricate gate electrodes, source electrodes, and drain electrodes.
の範囲第1項記載の薄膜半導体装置の製造方法。(2) The method for manufacturing a thin film semiconductor device according to claim 1, wherein all of the steps are performed at 550° C. or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28379086A JPS63136673A (en) | 1986-11-28 | 1986-11-28 | Manufacture of thin film semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28379086A JPS63136673A (en) | 1986-11-28 | 1986-11-28 | Manufacture of thin film semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63136673A true JPS63136673A (en) | 1988-06-08 |
Family
ID=17670172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28379086A Pending JPS63136673A (en) | 1986-11-28 | 1986-11-28 | Manufacture of thin film semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63136673A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5933205A (en) * | 1991-03-26 | 1999-08-03 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device and method for driving the same |
-
1986
- 1986-11-28 JP JP28379086A patent/JPS63136673A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5933205A (en) * | 1991-03-26 | 1999-08-03 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device and method for driving the same |
US5963278A (en) * | 1991-03-26 | 1999-10-05 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device and method for driving the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6458636B1 (en) | Method for forming polycrystalline silicon layer and method for fabricating thin film transistor | |
US6558986B1 (en) | Method of crystallizing amorphous silicon thin film and method of fabricating polysilicon thin film transistor using the crystallization method | |
JPH06275807A (en) | Semiconductor circuit and its manufacture | |
JPS63200572A (en) | Manufacture of thin film semiconductor device | |
GB2087147A (en) | Methods of manufacturing semiconductor devices | |
JPH0422127A (en) | Manufacture of insulating film and manufacture of thin film transistor | |
JP3901460B2 (en) | Thin film transistor manufacturing method | |
JPS6113670A (en) | Method of producing thin film field effect transistor and transistor obtained by same method | |
JPS63136673A (en) | Manufacture of thin film semiconductor device | |
JPS63250178A (en) | Manufacture of thin film semiconductor device | |
JPS63292682A (en) | Manufacture of thin film semiconductor device | |
JPS62254466A (en) | Manufacture of thin film semiconductor device | |
JP2709376B2 (en) | Method for manufacturing non-single-crystal semiconductor | |
JPS61131413A (en) | Formation of semiconductor thin film | |
JPS61105870A (en) | Manufacture of thin film transistor | |
JPH0572749B2 (en) | ||
JPH0411226A (en) | Manufacture of display device | |
JP3535465B2 (en) | Method for manufacturing semiconductor device | |
KR960004902B1 (en) | Preparation of polycrystalline silicon thin film | |
JPS6239067A (en) | Manufacture of thin film semiconductor device | |
KR100270363B1 (en) | Method of manufacturing thin-film transistor | |
JPS60224278A (en) | N type transistor | |
JPS62219669A (en) | Manufacture of thin-film semiconductor device | |
JP3466638B2 (en) | Thin film transistor and method of manufacturing the same | |
JPH01162377A (en) | Manufacture of thin film semiconductor device |