[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63136673A - Manufacture of thin film semiconductor device - Google Patents

Manufacture of thin film semiconductor device

Info

Publication number
JPS63136673A
JPS63136673A JP28379086A JP28379086A JPS63136673A JP S63136673 A JPS63136673 A JP S63136673A JP 28379086 A JP28379086 A JP 28379086A JP 28379086 A JP28379086 A JP 28379086A JP S63136673 A JPS63136673 A JP S63136673A
Authority
JP
Japan
Prior art keywords
film
semiconductor film
deposited
source
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28379086A
Other languages
Japanese (ja)
Inventor
Nobuhiro Shimizu
信宏 清水
Masafumi Shinpo
新保 雅文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP28379086A priority Critical patent/JPS63136673A/en
Publication of JPS63136673A publication Critical patent/JPS63136673A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To control a threshold voltage of a TFT and to prevent a decrease of breakdown strength of a gate voltage by making a gate insulating film thin so that it may not exceed 500Angstrom , thereby providing the third semiconductor film on the gate insulating film. CONSTITUTION:A glass substrate where, for example, a process at a temperature of 550 deg.C is available is used an insulating substrate 1. At the first semiconductor film 2, a-Si is deposited through a CVD process and is annealed by a beam energy 10. As a result, the first semiconductor film 2 is crystallized and turns into a recrystallized semiconductor film 21. After patterning its film 21 by a photolithographic technology, the second semiconductor film 3 as well as an insulating film 4 are deposited and source and drain regions are manufactured by the photolithographic technology. At the second semiconductor film 3, for example, a-Si added with impurities is deposited through a plasma CVD process. At the insulating film 4, SiOX is deposited through the plasma CVD process. At the second insulating film 5 in the source and drain regions, for example, SiNX is deposited through the plasma CVD process and at the third semiconductor film 6, a-Si added with the impurities is deposited in the form of thick film and then gate, source, and drain electrodes 7, 8 and 9 are formed after manufacturing contact holes of the source and drain regions by the photolithographic technology.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、絶縁基板上にTFTを製作する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of fabricating a TFT on an insulating substrate.

〔発明の概要〕[Summary of the invention]

本発明は、絶縁基板上にTFTをビームアニールして製
作する方法において、ゲート絶縁膜を500Å以下と薄
くすることによりTFTの闇値電圧(VTll)を制御
するとともに、ゲート電圧の耐圧が低下することを防止
するためにゲート絶縁股上に第3半導体膜を設けたとこ
を特徴としている。
The present invention is a method of manufacturing a TFT on an insulating substrate by beam annealing, and by making the gate insulating film as thin as 500 Å or less, the dark voltage (VTll) of the TFT is controlled and the withstand voltage of the gate voltage is reduced. In order to prevent this, a third semiconductor film is provided on the gate insulating layer.

〔従来の技術〕[Conventional technology]

従来、第2図に示すようにゲート絶縁膜5の耐圧を約1
0V以上に保つために、ゲート絶縁膜5は2000Å以
上必要であった。そのためゲート絶縁膜5中の固定電荷
などの影響でVTMが負にシフトして、TFTはデプレ
ション動作になってしまった。
Conventionally, as shown in FIG.
In order to maintain the voltage above 0V, the gate insulating film 5 was required to have a thickness of 2000 Å or more. Therefore, VTM shifted negatively due to the influence of fixed charges in the gate insulating film 5, and the TFT entered depletion operation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

550℃以下の低温プロセスを使用する場合に、第2図
に示すように、ゲート絶縁膜5が厚く、膜中に固定電荷
などが存在するとTFTのVTMがOvから大きくシフ
トして問題となっていた。
When using a low-temperature process at 550°C or lower, as shown in Figure 2, if the gate insulating film 5 is thick and fixed charges are present in the film, the VTM of the TFT will shift significantly from Ov, causing a problem. Ta.

〔問題点を解決するための手段〕[Means for solving problems]

第1図(clに示すように、ゲート絶縁膜であるゲート
絶縁膜5を500 Å以下と薄くすることでTFTのV
T+4をOv付近に制御する。さらにゲート電極の耐圧
低下を防止するためにゲート絶縁膜5上に第3半導体膜
6を設けた。
As shown in Figure 1 (cl), by making the gate insulating film 5 thinner than 500 Å, the V
Control T+4 near Ov. Further, a third semiconductor film 6 was provided on the gate insulating film 5 in order to prevent a decrease in breakdown voltage of the gate electrode.

〔作用〕[Effect]

ゲート絶縁膜5を薄くすることで、膜中の固定電荷など
は減少し、VTHのシフトも小さくなる。
By making the gate insulating film 5 thinner, fixed charges in the film are reduced, and the shift in VTH is also reduced.

またゲート絶縁膜上に第3半導体膜6を設けることで、
ゲートの耐圧が低下することもない。
Furthermore, by providing the third semiconductor film 6 on the gate insulating film,
The withstand voltage of the gate does not decrease.

〔実施例〕 以下図面によって本発明を説明する。第1図+al〜(
C1は本発明の実施例の工程を説明するための断面図で
ある。第1図(alは絶縁基板l上に第1半導体膜2を
堆積し、エネルギービーム10でアニールする工程であ
る。絶縁基板1の例としては、石英や無アルカリガラス
やアルカリなどの不純物を含んだガラスの表面に絶縁物
をコートしてガラスからの不純物の拡散を防止したもの
などがある。
[Example] The present invention will be explained below with reference to the drawings. Figure 1 +al~(
C1 is a sectional view for explaining the steps of the embodiment of the present invention. FIG. 1 (al) is a step in which a first semiconductor film 2 is deposited on an insulating substrate l and annealed with an energy beam 10. Examples of the insulating substrate 1 include a film containing impurities such as quartz, non-alkali glass, and alkali. There are also types of glass whose surface is coated with an insulating material to prevent impurities from diffusing from the glass.

ここでは、550℃のプロセスが使用可能なガラス基板
を使った。
Here, a glass substrate that can be used in a 550° C. process was used.

次に第1半導体膜2の例は、各種の膜と堆積方法がある
が、ここではa−3tをプラズマCVD法で堆積する方
法について説明する。堆積温度は、室温から約400℃
の間に設定し、原料ガスは主にシラン(SiHa)やジ
シラン(SiiHa)を使用する。また膜厚は500人
から3000人の間に設定する。
Next, as an example of the first semiconductor film 2, there are various films and deposition methods, but here, a method of depositing a-3t by plasma CVD method will be explained. Deposition temperature ranges from room temperature to approximately 400℃
The source gas is mainly silane (SiHa) or disilane (SiiHa). Also, the film thickness is set between 500 and 3000 people.

次に第1半導体膜2をビームエネルギー10でアニール
する例について説明する。アニール方法にはレーザや電
子ビームまたはランプやヒータなどを用いた多数のエネ
ルギー源があるが、ここではArレーザを使用してアニ
ールする方法を述べる。
Next, an example in which the first semiconductor film 2 is annealed with a beam energy of 10 will be described. There are many energy sources for annealing, such as lasers, electron beams, lamps, heaters, etc., but here we will describe an annealing method using an Ar laser.

一般にプラズマCVD法により堆積したa−3tには膜
中に水素ガスが含まれているため、このガスを除去する
プレアニールを行うことで後述の再結晶アニール後の結
晶性が良くなる。プレアニール方法ではa−Si中の水
素ガスが約500℃以上で除去できることが知られてお
り、この温度以上まで上昇できるアニール方法であれば
どの方法でも可能である。例として真空または窒素や不
活性ガス雰囲気中で、a−5iが溶融しない程度のエネ
ルギー密度で^rレーザのエネルギービームlOを走査
させて行うことができる。また、窒素雰囲気で550℃
、1時間行なっても十分である。続いて再結晶アニール
を行う。前記プレアニールと同様に真空または窒素や不
活性ガス雰囲気でArレーザを使って、水素を除去した
a−5iが溶融するエネルギー密度でエネルギービーム
10を走査させる。この結果第1半導体膜2は結晶化し
て再結晶半導体膜21になる。
In general, a-3T deposited by plasma CVD contains hydrogen gas, so performing pre-annealing to remove this gas improves the crystallinity after recrystallization annealing, which will be described later. It is known that the pre-annealing method can remove hydrogen gas in a-Si at a temperature of about 500° C. or higher, and any annealing method that can raise the temperature to above this temperature can be used. For example, it can be carried out in a vacuum or in a nitrogen or inert gas atmosphere by scanning an energy beam lO of a laser at an energy density that does not melt a-5i. Also, 550℃ in nitrogen atmosphere
, it is sufficient to do it for one hour. Subsequently, recrystallization annealing is performed. As in the pre-annealing process, an Ar laser is used in a vacuum or in a nitrogen or inert gas atmosphere to scan the energy beam 10 at an energy density that melts a-5i from which hydrogen has been removed. As a result, the first semiconductor film 2 is crystallized and becomes a recrystallized semiconductor film 21.

第1図(blは再結晶半導体膜21をフォトリソ技術で
パターニング後、第2半専体[3と絶縁膜4を堆積し、
ソースとドレイン領域をフォトリソ技術で製作する工程
である。第2半導体膜3の例は、不純物を添加したa−
Siがある。前記のプラズマCVD法によりS i I
t aに0.1χからlχのPH3またはB 2 II
 、ガスを添加して100人から1000人の間で堆積
する。
FIG. 1 (bl) shows that after patterning the recrystallized semiconductor film 21 by photolithography, a second semi-dedicated film [3] and an insulating film 4 are deposited;
This is a process in which the source and drain regions are manufactured using photolithography technology. An example of the second semiconductor film 3 is a-
There is Si. By the plasma CVD method described above, S i I
PH3 or B 2 II of 0.1χ to lχ in ta
, deposit between 100 and 1000 with addition of gas.

次に絶縁膜4の堆積例について説明する。プラズマCV
DによりSiOxを0.1μmから0.5 p mまで
の間で堆積する。原料ガスは5iHnとN、Oを使用す
る。
Next, an example of depositing the insulating film 4 will be described. plasma CV
SiOx is deposited to a thickness of 0.1 μm to 0.5 μm using D. 5iHn, N, and O are used as raw material gases.

パターニング後エネルギービームlOで第2半導体膜3
の低抵抗化アニールを行う。アニール条件は、前述した
プレアニールの条件で行う。第1図(C)はゲートvP
i縁膜5と第3半導体膜6を堆積した後、ソースとドレ
インのコンタクトホールを形成し、ゲート電極7.ソー
ス電極8.ドレイン電極9を製作する工程である。第2
絶縁膜5の例は、プラズマCVDでSiNxを堆積する
。原料ガスは主に5iHaとNHffを使い堆積温度は
室温から550℃の間で膜厚は100人から500人の
間にする。できるだけ薄くすることで膜中の固定電荷が
減少して特性がよくなる。第3半導体膜6は、第2半導
体3と同様に不純物を添加したa−5SをプラズマCV
Dで500人から2000人の膜厚で堆積する。ソース
、ドレイン領域のコンタクトホールをフォトリソ技術で
製作した後、各電極を堆積する。堆積例は各種スパツク
や蒸着方法があるが、ここではマグネトロンスパッタで
Crを0.02μm堆積後、Ar−3iを0.8 p 
m堆積する。この金属をフォトリソ技術でパターニング
すると第1図(C1のようにゲート電極7.ソース電極
8.ドレイン電極9が形成できる。
After patterning, the second semiconductor film 3 is
Annealing is performed to reduce the resistance. The annealing conditions are the pre-annealing conditions described above. Figure 1 (C) shows the gate vP
After depositing the i-edge film 5 and the third semiconductor film 6, source and drain contact holes are formed, and gate electrodes 7. Source electrode8. This is the process of manufacturing the drain electrode 9. Second
As an example of the insulating film 5, SiNx is deposited by plasma CVD. The raw material gases are mainly 5iHa and NHff, the deposition temperature is between room temperature and 550°C, and the film thickness is between 100 and 500 degrees centigrade. Making the film as thin as possible reduces fixed charges in the film and improves its characteristics. The third semiconductor film 6 is formed by plasma CVD of a-5S doped with impurities in the same manner as the second semiconductor 3.
D is deposited at a film thickness of 500 to 2000. After forming contact holes for the source and drain regions using photolithography, each electrode is deposited. Examples of deposition include various spatter and vapor deposition methods.
Deposit m. When this metal is patterned by photolithography, gate electrode 7, source electrode 8, and drain electrode 9 can be formed as shown in FIG. 1 (C1).

〔発明の効果〕〔Effect of the invention〕

この発明は、前述の実施例で説明したように、半導体膜
をビームアニールしてTFTを製作する際に、ゲート絶
縁膜の膜厚を500Å以下と薄くすることにより膜中の
固定電荷を減少させることができ、闇値電圧の制御がで
きる。
As explained in the above embodiment, this invention reduces the fixed charges in the film by reducing the thickness of the gate insulating film to 500 Å or less when manufacturing a TFT by beam annealing a semiconductor film. It is possible to control the dark value voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al〜tc+は本発明のTFTの実施例の工程
順を説明するための断面図である。第2図は従来構造を
説明するための断面図である。 1・・・絶縁基板 2・・・第1半導体膜 3・・・第2半導体膜 4・・・絶縁膜 5・・・ゲート絶縁膜 21・・・再結晶半導体膜 6・・・第3半導体膜 10・・・エネルギービーム 以上 本発明の寅)艷拶りの工科?−示T区乍面B第1図 1χ末のエネ7て゛1四イγし丁:TFT  のa’m
。 第2図
FIG. 1 (al to tc+ are cross-sectional views for explaining the process order of the embodiment of the TFT of the present invention. FIG. 2 is a cross-sectional view for explaining the conventional structure. 1... Insulating substrate 2... First semiconductor film 3... Second semiconductor film 4... Insulating film 5... Gate insulating film 21... Recrystallized semiconductor film 6... Third semiconductor film 10... Energy Beam or more of the present invention) Technique of a greeting? -Display T Section B Figure 1 1 χ final energy 7
. Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁基板上に第1半導体膜を堆積した後、エネル
ギービームで前記第1半導体膜をアニールして再結晶半
導体膜にする工程と、ソースとドレイン領域に比抵抗0
.1Ωcm以下の低抵抗な第2半導体膜と絶縁膜を堆積
した後、前記第2半導体膜をエネルギービームにより活
性化して、さらに低抵抗化し、TFT素子を分離するた
めに前記再結晶半導体をエッチングする工程と、ゲート
絶縁膜を500Å以下の膜厚で堆積し、さらに比抵抗0
.1Ωcm以下の低抵抗の第3半導体膜を堆積した後、
ソースとドレイン部分にフォトリソ技術でコンタクトホ
ールを形成して、ゲート電極、ソース電極とドレイン電
極を製作する工程とからなる薄膜半導体装置の製造方法
(1) After depositing a first semiconductor film on an insulating substrate, the first semiconductor film is annealed with an energy beam to form a recrystallized semiconductor film, and the source and drain regions have a resistivity of 0.
.. After depositing a second semiconductor film and an insulating film with a low resistance of 1 Ωcm or less, the second semiconductor film is activated by an energy beam to further lower the resistance, and the recrystallized semiconductor is etched in order to separate the TFT elements. The gate insulating film is deposited to a thickness of 500 Å or less, and the resistivity is 0.
.. After depositing a third semiconductor film with a low resistance of 1 Ωcm or less,
A method for manufacturing a thin film semiconductor device, which includes the steps of forming contact holes in the source and drain portions using photolithography to fabricate gate electrodes, source electrodes, and drain electrodes.
(2)前記全工程から550℃以下で行われる特許請求
の範囲第1項記載の薄膜半導体装置の製造方法。
(2) The method for manufacturing a thin film semiconductor device according to claim 1, wherein all of the steps are performed at 550° C. or lower.
JP28379086A 1986-11-28 1986-11-28 Manufacture of thin film semiconductor device Pending JPS63136673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28379086A JPS63136673A (en) 1986-11-28 1986-11-28 Manufacture of thin film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28379086A JPS63136673A (en) 1986-11-28 1986-11-28 Manufacture of thin film semiconductor device

Publications (1)

Publication Number Publication Date
JPS63136673A true JPS63136673A (en) 1988-06-08

Family

ID=17670172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28379086A Pending JPS63136673A (en) 1986-11-28 1986-11-28 Manufacture of thin film semiconductor device

Country Status (1)

Country Link
JP (1) JPS63136673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5933205A (en) * 1991-03-26 1999-08-03 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for driving the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5933205A (en) * 1991-03-26 1999-08-03 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for driving the same
US5963278A (en) * 1991-03-26 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for driving the same

Similar Documents

Publication Publication Date Title
US6458636B1 (en) Method for forming polycrystalline silicon layer and method for fabricating thin film transistor
US6558986B1 (en) Method of crystallizing amorphous silicon thin film and method of fabricating polysilicon thin film transistor using the crystallization method
JPH06275807A (en) Semiconductor circuit and its manufacture
JPS63200572A (en) Manufacture of thin film semiconductor device
GB2087147A (en) Methods of manufacturing semiconductor devices
JPH0422127A (en) Manufacture of insulating film and manufacture of thin film transistor
JP3901460B2 (en) Thin film transistor manufacturing method
JPS6113670A (en) Method of producing thin film field effect transistor and transistor obtained by same method
JPS63136673A (en) Manufacture of thin film semiconductor device
JPS63250178A (en) Manufacture of thin film semiconductor device
JPS63292682A (en) Manufacture of thin film semiconductor device
JPS62254466A (en) Manufacture of thin film semiconductor device
JP2709376B2 (en) Method for manufacturing non-single-crystal semiconductor
JPS61131413A (en) Formation of semiconductor thin film
JPS61105870A (en) Manufacture of thin film transistor
JPH0572749B2 (en)
JPH0411226A (en) Manufacture of display device
JP3535465B2 (en) Method for manufacturing semiconductor device
KR960004902B1 (en) Preparation of polycrystalline silicon thin film
JPS6239067A (en) Manufacture of thin film semiconductor device
KR100270363B1 (en) Method of manufacturing thin-film transistor
JPS60224278A (en) N type transistor
JPS62219669A (en) Manufacture of thin-film semiconductor device
JP3466638B2 (en) Thin film transistor and method of manufacturing the same
JPH01162377A (en) Manufacture of thin film semiconductor device