JPS63136407A - Lithium ion conducting polymer electrolyte - Google Patents
Lithium ion conducting polymer electrolyteInfo
- Publication number
- JPS63136407A JPS63136407A JP28393886A JP28393886A JPS63136407A JP S63136407 A JPS63136407 A JP S63136407A JP 28393886 A JP28393886 A JP 28393886A JP 28393886 A JP28393886 A JP 28393886A JP S63136407 A JPS63136407 A JP S63136407A
- Authority
- JP
- Japan
- Prior art keywords
- polymer electrolyte
- lithium ion
- lithium
- copolymer
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims description 31
- 229910001416 lithium ion Inorganic materials 0.000 title claims description 31
- 229920001940 conductive polymer Polymers 0.000 title claims description 12
- 239000003792 electrolyte Substances 0.000 title description 11
- 239000002322 conducting polymer Substances 0.000 title 1
- 239000005518 polymer electrolyte Substances 0.000 claims description 42
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims description 18
- 229920001577 copolymer Polymers 0.000 claims description 18
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 14
- 239000002131 composite material Substances 0.000 claims description 11
- 229910003002 lithium salt Inorganic materials 0.000 claims description 11
- 159000000002 lithium salts Chemical class 0.000 claims description 11
- 229920000620 organic polymer Polymers 0.000 claims description 9
- 230000000052 comparative effect Effects 0.000 description 18
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 17
- 229910052744 lithium Inorganic materials 0.000 description 17
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 239000002904 solvent Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 238000007334 copolymerization reaction Methods 0.000 description 5
- 239000007774 positive electrode material Substances 0.000 description 5
- 239000000945 filler Substances 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011244 liquid electrolyte Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910003092 TiS2 Inorganic materials 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000002550 fecal effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- BHZCMUVGYXEBMY-UHFFFAOYSA-N trilithium;azanide Chemical compound [Li+].[Li+].[Li+].[NH2-] BHZCMUVGYXEBMY-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- Y02E60/12—
Landscapes
- Polyethers (AREA)
- Primary Cells (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明はリチウム電池、エレクトロクロミックディス
プレイなどの電解質やリチウムイオン濃度センサー、リ
チウムイオン分離膜などの用に供されるリチウムイオン
伝導性ポリマー電解質に関する。[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a lithium ion conductive polymer electrolyte used for electrolytes such as lithium batteries and electrochromic displays, lithium ion concentration sensors, and lithium ion separation membranes. .
リチウム電池用などのリチウムイオン伝導性電解質とし
ては、L iC104−炭酸プロピレンに代表されるよ
うな液体電解質や、Li3N、Li1−Al ozに代
表されるような固体電解質が知られているが、最近では
柔軟性のあるフィルム状物に成形することが容易な有機
ポリマーをペースとしたポリマー電解質を用いる試みが
なされている。As lithium ion conductive electrolytes for lithium batteries, liquid electrolytes such as LiC104-propylene carbonate and solid electrolytes such as Li3N and Li1-Al oz are known, but recently Attempts have been made to use polymer electrolytes based on organic polymers that can be easily formed into flexible films.
この種のポリマー電解質は、液体電解質や固体電解質に
比し薄型化や大面積化が比較的容易で可撓性にすぐれる
という構造上の利点を有しており、またリチウム二次電
池の可逆性という面で問題となりやすいLi/電解質界
面におけるLiに対する化学的安定性にすぐれるという
利点も備えていることから、リチウム電池の電解質とし
て特に注目されている。また、エレクトロクロミックデ
ィスプレイなどの電解質としてもその応用が期待されて
いる。さらに、この種のポリマー電解質を、リチウムイ
オン濃度センサーやリチウムイオン分離膜などに応用す
る試みもある。This type of polymer electrolyte has the structural advantages of being relatively easy to make thinner and larger in area than liquid electrolytes and solid electrolytes, and has excellent flexibility. It is attracting particular attention as an electrolyte for lithium batteries because it also has the advantage of excellent chemical stability against Li at the Li/electrolyte interface, which tends to cause problems in terms of performance. It is also expected to be used as an electrolyte in electrochromic displays. Furthermore, there are attempts to apply this type of polymer electrolyte to lithium ion concentration sensors and lithium ion separation membranes.
従来、このようなポリマー電解質のひとつとして、有機
ポリマーとしてポリエチレンオキサイドを使用し、これ
とリチウム塩との複合体としたものが知られている(F
ast (on Transport in
Soj!id P131 (1979)〕。Conventionally, one known polymer electrolyte is a composite of polyethylene oxide as an organic polymer and lithium salt (F).
ast (on Transport in
Soj! id P131 (1979)].
しかるに、上記従来のポリマー電解質は、60℃以上の
高温では比較的良好なリチウムイオン伝導性を示すもの
の、25℃程度の室温下では上記特性にかなり劣り、室
温下で用いられることがほとんどのリチウム電池や前述
の如き各種用途に応用したとき、その性能上充分に満足
できないという問題があった。However, although the above-mentioned conventional polymer electrolyte exhibits relatively good lithium ion conductivity at high temperatures of 60°C or higher, it is considerably inferior to the above characteristics at room temperature of about 25°C, and most lithium ion conductivity is used at room temperature. When applied to batteries and various other uses such as those mentioned above, there was a problem in that the performance was not fully satisfactory.
したがって、この発明は、上記従来の有機ポリマーとは
異なる特定のポリマーを用いることにより、室温下にお
いても良好なリチウムイオン伝導性を示す、リチウム電
池や前記した如き各種用途に好適に使用しうるポリマー
電解質を提供することを目的としている。Therefore, the present invention provides a polymer that exhibits good lithium ion conductivity even at room temperature and can be suitably used for lithium batteries and various other applications as described above, by using a specific polymer different from the conventional organic polymers mentioned above. Its purpose is to provide electrolytes.
〔問題点を解決するための手段〕
この発明者らは、上記の目的を達成するために鋭意検討
した結果、ポリマー電解質を構成させる有段ポリマーと
して、エチレンオキサイドとプロピレンオキサイドとの
特定比率の共重合体を用いたときには、リチウムイオン
伝導性に非常にすぐれる、特に室温下でも各種用途に応
用可能な良好なイオン伝導性を示すポリマー電解質が得
られるものであることを知り、この発明を完成するに至
った。[Means for Solving the Problems] As a result of intensive studies to achieve the above object, the present inventors have developed a combination of ethylene oxide and propylene oxide in a specific ratio as a stepped polymer constituting the polymer electrolyte. He completed this invention after learning that when a polymer was used, it was possible to obtain a polymer electrolyte that had excellent lithium ion conductivity, and in particular, showed good ion conductivity even at room temperature and could be applied to a variety of applications. I ended up doing it.
すなわち、この発明は、リチウム塩と有機ポリマーの複
合体からなるリチウムイオン伝導性ポリマー電解質にお
いて、上記の有機ポリマーがエチレンオキサイド20〜
65重量%とプロピレンオキサイド80〜35重量%と
の共重合体からなることを特徴とするリチウムイオン伝
導性ポリマー電解質に係るものである。That is, the present invention provides a lithium ion conductive polymer electrolyte consisting of a composite of a lithium salt and an organic polymer, in which the organic polymer is ethylene oxide 20 to 20%.
The present invention relates to a lithium ion conductive polymer electrolyte characterized by comprising a copolymer of 65% by weight of propylene oxide and 80 to 35% by weight of propylene oxide.
この発明において使用する有機ポリマーとしては、エチ
レンオキサイドとプロピレンオキサイドとのブロックま
たはランダム共重合体であって、その共重合比率がエチ
レンオキサイド20〜65重量%、プロピレンオキサイ
ド80〜35重量%となるものが用いられる。特に、好
適な共重合比率は、エチレンオキサイド20〜45重量
%、プロピレンオキサイド80〜55重量%である。こ
の共重合体の分子量としては、数平均分子量が3゜00
0以上で、通常10.000〜soo、oooの範囲に
あるのが望ましい。The organic polymer used in this invention is a block or random copolymer of ethylene oxide and propylene oxide, with a copolymerization ratio of 20 to 65% by weight of ethylene oxide and 80 to 35% by weight of propylene oxide. is used. In particular, a suitable copolymerization ratio is 20 to 45% by weight of ethylene oxide and 80 to 55% by weight of propylene oxide. The number average molecular weight of this copolymer is 3°00.
It is preferably 0 or more, and usually in the range of 10.000 to soo, ooo.
このような共重合体を使用することにより、従来のポリ
エチレンオキサイドつまりエチレンオキサイドの単独重
合体(以下、PEOという)を用いたものに比し、室温
下でのリチウムイオン伝導性が著しく向上する理由につ
いては必ずしも明らかとはいえないが、以下の如く考え
られる。まず、上記の共重合体は、従来のPEOと同様
に、その主鎖中に誘電率の高いエーテル結合を有してい
るため、このエーテル結合を構成する酸素とリチウム塩
との複合体の形成によって、リチウムイオン伝導性が付
与される。The reason why the use of such a copolymer significantly improves lithium ion conductivity at room temperature compared to the use of conventional polyethylene oxide, or ethylene oxide homopolymer (hereinafter referred to as PEO). Although it is not necessarily clear, it can be considered as follows. First, like conventional PEO, the above copolymer has an ether bond with a high dielectric constant in its main chain, so a complex is formed between oxygen and lithium salt that constitute this ether bond. This imparts lithium ion conductivity.
ここで、従来のPEOは、60℃付近に融点を有する結
晶性のポリマーであるため、上記温度以上では非常に良
好なリチウムイオン伝導性を発揮するが、60℃付近を
境としてこれより低温側ではリチウムイオン伝導性が急
激に低下する傾向がある。これに対して、上記この発明
に係る共重合体は、その側鎖にプロピレンオキサイドに
基づくメチル基を有しているため、これの立体障害によ
りポリマーの結晶化度が低くなり、そのふんPEOに比
しより低い温度でも良好なリチウムイオン伝導性を発揮
するに至るものと思われる。Conventional PEO is a crystalline polymer with a melting point around 60°C, so it exhibits very good lithium ion conductivity above the above temperature, but at temperatures lower than 60°C. lithium ion conductivity tends to decrease rapidly. On the other hand, since the copolymer according to the present invention has a methyl group based on propylene oxide in its side chain, the crystallinity of the polymer decreases due to steric hindrance, and the fecal PEO It is thought that good lithium ion conductivity can be achieved even at lower temperatures.
そして、上記低温側でのリチウムイオン伝導性の改善効
果は、プロピレンオキサイドの共重合比率が高くなるに
つれて顕著となるが、あまりに高くなりすぎると、たと
えば極端な例としてプロピレンオキサイドの単独重合体
つまりポリプロピレンオキサイド(以下、PPOという
)となると、これ自体のリチウムイオン伝導性がそれほ
ど大きくないため、上記改善効果が低くなる。すなわち
前記したエチレンオキサイドとプロピレンオキサイドと
の共重合比率の設定は、上記理由に基づくものであり、
このような特定範囲に設定することにより、従来のPE
Oはもちろん上記PPOに較べても、室温下でのリチウ
ムイオン伝導性を非常に良好なものとすることができる
。The above-mentioned effect of improving lithium ion conductivity at low temperatures becomes more pronounced as the copolymerization ratio of propylene oxide increases, but if the copolymerization ratio of propylene oxide becomes too high, for example, in an extreme case, a homopolymer of propylene oxide, that is, polypropylene When it comes to oxide (hereinafter referred to as PPO), the lithium ion conductivity itself is not so high, so the above-mentioned improvement effect is reduced. That is, the setting of the copolymerization ratio of ethylene oxide and propylene oxide described above is based on the above reasons,
By setting such a specific range, conventional PE
The lithium ion conductivity at room temperature can be made very good compared to not only O but also the above-mentioned PPO.
この発明において上記の共重合体とともにポリマー電解
質を構成させるリチウム塩としては、従来のポリマー電
解質に用いられているものがいずれも使用可能であり、
その具体例としてはLiBr、LiI、L 1scN、
、L 1BF4、L 1AsF b 、L i C10
a 、L I CF s S Owl 、L x Ch
F+3SOs 、L icF:+ COz 、L f
Hg Isなどが挙げられる。このリチウム塩の使用量
は、共重合体を構成するエチレンオキサイドとプロピレ
ンオキサイドとからなる混合モノマー1モルに対して通
常0.02〜0.2モル、特に好適には0.05〜0.
1モルの範囲にあるのがよい。In this invention, any of the lithium salts used in conventional polymer electrolytes can be used as the lithium salt constituting the polymer electrolyte together with the above copolymer.
Specific examples include LiBr, LiI, L 1scN,
, L 1BF4, L 1AsF b , L i C10
a , L I CF s S Owl , L x Ch
F+3SOs, LicF:+COz, Lf
Examples include Hg Is. The amount of this lithium salt used is usually 0.02 to 0.2 mol, particularly preferably 0.05 to 0.2 mol, per mol of the mixed monomer of ethylene oxide and propylene oxide constituting the copolymer.
It is preferably in the range of 1 mole.
この発明のポリマー電解質は、上記の共重合体とリチウ
ム塩との複合体としたものであるが、この複合体を得る
ための一般的手段としては、上記の両成分を適宜の有機
溶媒に溶解した溶液を調製したのちに有機溶媒を揮散除
去する方法がある。The polymer electrolyte of the present invention is a composite of the above-mentioned copolymer and lithium salt, but the general method for obtaining this composite is to dissolve both of the above-mentioned components in an appropriate organic solvent. There is a method in which the organic solvent is removed by volatilization after preparing a solution.
この方法においては、上記溶液とした状態で共重合体の
分子鎖にリチウム塩が錯体的に結合し、溶媒除去後も上
記結合が保たれた複合体が得られるものである。In this method, the lithium salt is bonded to the molecular chains of the copolymer in a complex manner in the solution state, and a complex is obtained in which the bond is maintained even after the solvent is removed.
この複合体の形態は、用途目的や共重合体の性状などに
応じて適宜法められる。たとえば、リチウム電池用のポ
リマー電解質としてこの電解質で正負両極間のセパレー
タを兼備させる場合は、上記複合体単独からなるシート
状物とするか、これにアルミナなどの充填剤を含ませた
シート状物や上記複合体を不織布などの支持体に保持さ
せたシート状物とすればよい。これらのシート状物はい
ずれも柔軟性を有するものである。The form of this composite is determined as appropriate depending on the purpose of use and the properties of the copolymer. For example, when using a polymer electrolyte for lithium batteries to serve as a separator between the positive and negative electrodes, a sheet-like material consisting of the above composite alone or a sheet-like material containing a filler such as alumina may be used. Alternatively, the above-mentioned composite may be made into a sheet-like product held on a support such as a non-woven fabric. All of these sheet-like materials have flexibility.
上記のシート状物のうち複合体単独からなるものは、前
記溶液を適宜の厚みで流延したのち溶媒を揮散除去する
ことにより得られる。また、充填剤含有のシート状物は
前記溶液に充填剤を混入させる以外は上記同様にして得
られる。さらに、支持体付きのシート状物は前記溶液を
支持体に含浸させたのち溶媒を除去することにより得る
ことができる。後二者のシート状物は共重合体が半固体
状でその形状保持性に劣る場合の通常形態として採用さ
れるものである。Among the above-mentioned sheet-like products, those made of the composite alone can be obtained by casting the solution to an appropriate thickness and then removing the solvent by volatilization. Further, a sheet-like material containing a filler can be obtained in the same manner as described above except that the filler is mixed into the solution. Further, a sheet-like article with a support can be obtained by impregnating the support with the solution and then removing the solvent. The latter two sheet-like materials are generally employed when the copolymer is semi-solid and has poor shape retention.
また、リチウム電池における正極に適用する場合、前記
溶液に正極活物質などを所定割合で加え、これを成形し
たのち溶媒を揮散除去するかあるいは成形前に揮散除去
しその後成形することにより、前記複合体と正極活物質
などとが混在一体化した成形正極とすることができる。In addition, when applied to a positive electrode in a lithium battery, the composite material can be formed by adding a positive electrode active material or the like to the solution in a predetermined ratio, molding the solution, and then removing the solvent by volatilization, or by removing the solvent by volatilization before molding and then molding. It is possible to form a molded positive electrode in which the body, positive electrode active material, etc. are mixed and integrated.
同様に、リチウムイオン分離膜などの他の用途にあって
は、上記に準じて各用途に応じた種々の形態をとれるも
のである。Similarly, for other uses such as lithium ion separation membranes, various forms can be taken according to the respective uses in accordance with the above.
このような複合体を得るために用いられる有機溶媒は、
前記共重合体およびリチウム塩を溶解でき、・かつ最終
的に揮散除去できるものであれば特に限定されない。し
かし、微量成分の残存が電池性能などの劣化をきたさな
いように複合体の用途目的に応じて適宜の溶媒を選択す
るのが望ましい。The organic solvent used to obtain such a complex is
There is no particular limitation as long as the copolymer and lithium salt can be dissolved and finally removed by volatilization. However, it is desirable to select an appropriate solvent depending on the purpose of use of the composite so that residual trace components do not cause deterioration of battery performance.
たとえば、リチウム電池用のポリマー電解質にあっては
、上記溶媒としてジメトキシエタン、ジオキソラン、ア
セトニトリル、ジメチルフォルムアミドなどの溶媒が好
ましく用いられる。For example, in polymer electrolytes for lithium batteries, solvents such as dimethoxyethane, dioxolane, acetonitrile, and dimethylformamide are preferably used as the solvent.
第1図は上記したこの発明のポリマー電解質を用いたリ
チウム電池の例を示したもので、図中、1はステンレス
鋼からなる方形平板状の正極集電板、2は周辺を一面側
へ段状に折曲して主面と同じ向きの平坦状の周辺部2a
を設けたステンレス鋼からなる浅い方形皿状の負極集電
板、3は両極集電板1. 2の対向する周辺部1a、2
.a間を封止した接着剤層である。FIG. 1 shows an example of a lithium battery using the polymer electrolyte of the present invention described above. In the figure, 1 is a rectangular flat positive electrode current collector plate made of stainless steel; A flat peripheral portion 2a that is bent into a shape and facing the same direction as the main surface.
3 is a shallow rectangular dish-shaped negative electrode current collector plate made of stainless steel provided with a bipolar current collector plate 1. 2 facing peripheral parts 1a, 2
.. This is an adhesive layer that seals the space between a.
4は両極集電板1.2間に構成された空間5内において
正極集電板1側に配されたこの発明のポリマー電解質と
正極活物質などとを既述した方法にてシート状に成形し
てなる正極、6は空間5内において負極集電板2側に装
填されたリチウムまたはリチウム合金からなる負極、7
は両極4.6間に介在させた前記この発明のポリマー電
解質をこれ単独あるいは充填剤や不織布などとともにシ
ート状に成形してなるセパレータである。4 is a polymer electrolyte of the present invention, a positive electrode active material, etc. arranged on the side of the positive electrode current collector plate 1 in a space 5 formed between the two electrode current collector plates 1.2, and formed into a sheet shape by the method described above. 6 is a negative electrode made of lithium or lithium alloy loaded on the negative electrode current collector plate 2 side in the space 5; 7
This is a separator formed by forming the polymer electrolyte of the present invention, which is interposed between the two electrodes 4.6, alone or together with a filler, a nonwoven fabric, etc. into a sheet shape.
なお、上記正極4は、場合により正極活物質とテフロン
粉末などの結合剤や電子伝導助剤とを混合してシート状
に成形したものなどであってもよい。正極4に用いる正
極活物質としては、TiS2 、Mo Sz 、V60
+z、V 20 s 、V S e 5NiPs3など
の1種もしくは2種以上が用いられる。The positive electrode 4 may be formed into a sheet by mixing a positive electrode active material with a binder such as Teflon powder or an electron conduction aid, as the case may be. As the positive electrode active material used for the positive electrode 4, TiS2, Mo Sz, V60
One or more of +z, V 20 s , V S e 5NiPs3, etc. is used.
このように構成されるリチウム電池は、セパレータ7が
前記ポリマー電解質からなるシート状物であることによ
り、また正極4が上記電解質を含む同様のシート状物で
あることによって、電池の薄型化や電池作業のための作
業性、封止の信顛性などの向上に寄与させることができ
、また液体電解質のような漏液の心配が本質的にないと
いった種々の利点を有するうえに、上記電解質がそのイ
オン伝導性にすぐれていることにより、−次電池として
の放電特性や二次電池としての充放電サイクル特性に非
常にすぐれたものとなる。The lithium battery constructed in this manner has the advantage that the separator 7 is a sheet-like material made of the above polymer electrolyte, and the positive electrode 4 is a similar sheet-like material containing the above-mentioned electrolyte. In addition to having various advantages such as being able to contribute to improvements in workability and reliability of sealing, and essentially not having to worry about leakage unlike liquid electrolytes, the above-mentioned electrolytes Due to its excellent ionic conductivity, it has excellent discharge characteristics as a secondary battery and excellent charge/discharge cycle characteristics as a secondary battery.
以上のとおり、この発明によれば、リチウム塩との複合
体を構成させるための有機ポリマーとして、エチレンオ
キサイドとプロピレンオキサイドとの特定比率の共重合
体を用いたことにより、室温下でのリチウムイオン伝導
性にすぐれた、リチウム電池やその他各種の用途に有利
に応用できるリチウムイオン伝導性ポリマー電解質を提
供することができる。As described above, according to the present invention, by using a copolymer of ethylene oxide and propylene oxide in a specific ratio as an organic polymer for forming a complex with a lithium salt, lithium ions can be absorbed at room temperature. It is possible to provide a lithium ion conductive polymer electrolyte that has excellent conductivity and can be advantageously applied to lithium batteries and various other uses.
以下に、この発明の実施例を比較例と対比して記述する
。Examples of the present invention will be described below in comparison with comparative examples.
実施例1
エチレンオキサイド24.8重量%とプロピレンオキサ
イド75.2重量%との共重合体(数平均分子量30.
000)4gと、L i CFil S O:l 0.
778gとを、アセトニトリル5mlに溶解し、スター
クで均一に攪拌した。つぎに、この溶液をガラス基板上
に滴下し、常圧下アルゴンガス気流中で5時間放置した
のち、真空度I X 10”’To rr、温度130
℃で10時間熱処理してアセトニトリルを蒸発除去し、
厚みが20μmのポリマー電解質を得た。Example 1 Copolymer of 24.8% by weight of ethylene oxide and 75.2% by weight of propylene oxide (number average molecular weight 30.
000) 4g and L i CFil SO:l 0.
778 g was dissolved in 5 ml of acetonitrile and stirred uniformly with a Stark stirrer. Next, this solution was dropped onto a glass substrate, left for 5 hours in an argon gas stream under normal pressure, and then vacuumed at a vacuum level of I x 10''Torr and a temperature of 130mm.
Heat-treated at °C for 10 hours to remove acetonitrile by evaporation,
A polymer electrolyte with a thickness of 20 μm was obtained.
実施例2
エチレンオキサイド15重量%とプロピレンオキサイド
85重量%との共重合体(数平均分子量30.000)
4gとL i CF3 SO30,744gとを用いた
以外は、実施例1と同様にしてポリマー電解質を得た。Example 2 Copolymer of 15% by weight of ethylene oxide and 85% by weight of propylene oxide (number average molecular weight 30.000)
A polymer electrolyte was obtained in the same manner as in Example 1, except that 4 g of L i CF3 SO3 and 744 g of L i CF3 SO3 were used.
実施例3
エチレンオキサイド44.4重量%とプロピレンオキサ
イド55.6重量%との共重合体(数平均分子量30.
000)4gとL i CF2 SC)+ 0.808
gとを用いた以外は、実施例1と同様にしてポリマー電
解質を得た。Example 3 Copolymer of 44.4% by weight of ethylene oxide and 55.6% by weight of propylene oxide (number average molecular weight 30.
000) 4g and L i CF2 SC) + 0.808
A polymer electrolyte was obtained in the same manner as in Example 1 except that G was used.
比較例l
PE0 (数平均分子1600.000)IgとLi
CF3SO30,236gとを用いた以外は、実施例1
と同様にしてポリマー電解質を得た。Comparative example l PE0 (number average molecule 1600.000) Ig and Li
Example 1 except that CF3SO30,236g was used.
A polymer electrolyte was obtained in the same manner as above.
比較例2
PPO(数平均分子11500,000)IgとLi
CFz SOs O,7L 7 gとを用いた以外は、
実施例1と同様にしてポリマー電解質を得た。Comparative Example 2 PPO (number average molecule 11,500,000) Ig and Li
Except for using CFz SOs O,7L 7 g.
A polymer electrolyte was obtained in the same manner as in Example 1.
比較例3
エチレンオキサイド70重量%とプロピレンオキサイド
30重量%との共重合体(数平均分子量20、i)00
)4gとL i CF:l SO30,864gとを用
いた以外は、実施例1と同様にしてポリマー電解質を得
た。Comparative Example 3 Copolymer of 70% by weight of ethylene oxide and 30% by weight of propylene oxide (number average molecular weight 20, i) 00
A polymer electrolyte was obtained in the same manner as in Example 1 except that 4 g of ) and 864 g of Li CF:l SO3 were used.
以上の実施例1〜3および比較例1〜3に係るポリマー
電解質の性能を調べるために、以下のイオン伝導度試験
および放電特性試験を行った。In order to investigate the performance of the polymer electrolytes according to Examples 1 to 3 and Comparative Examples 1 to 3, the following ionic conductivity test and discharge characteristic test were conducted.
〈イオン伝導度試験〉
実施例1〜3および比較例1〜3に係る各ポリマー電解
質上にAuのくし形電極を蒸着法で形成し、電極間の交
流インピーダンスを測定し、複素インピーダンス解析(
Co 1 e−Co I eプロット)を行って、室温
(25℃)でのイオン伝導度を測定した。結果は、下記
の表に示されるとおりであった。<Ionic conductivity test> Au comb-shaped electrodes were formed by vapor deposition on each polymer electrolyte according to Examples 1 to 3 and Comparative Examples 1 to 3, AC impedance between the electrodes was measured, and complex impedance analysis (
Co 1 e-Co I e plot) was performed to measure the ionic conductivity at room temperature (25° C.). The results were as shown in the table below.
また、種々の温度条件下でのイオン伝導度を上記同様に
して測定した結果は、第2図に示されるとおりであった
。図中、縦軸はイオン伝導度(SzcI11)、横軸(
よ絶対温度の逆数(1/T)xl、000(K−’)で
あり、また直線−2aは実施例1の結果、同2bは実施
例2の結果、同2Cは実施例3の結果、同2dは比較例
1の結果、同2eは比較例2の結果、同2fは比較例3
の結果である。Further, the ionic conductivity was measured under various temperature conditions in the same manner as above, and the results were as shown in FIG. In the figure, the vertical axis is ionic conductivity (SzcI11), and the horizontal axis (
The reciprocal of the absolute temperature (1/T) xl, 000 (K-'), and the straight line -2a is the result of Example 1, the line 2b is the result of Example 2, the line 2C is the result of Example 3, 2d is the result of Comparative Example 1, 2e is the result of Comparative Example 2, and 2f is the result of Comparative Example 3.
This is the result.
〈放電特性試験〉
実施例1〜3および比較例1〜3に係る各ポリマー電解
質をセパレータとして用いた第1図に示す構成の総厚0
.5 m 、−辺の長さ15鶴ど方形薄型のリチウム電
池を作製した。なお、負極はリチウムとアルミニウムと
の合金を、正極は実施例1〜3および比較例1〜3のポ
リマー電解質と同様成分の電解質とT i Szとを含
むシート状成形物を、それぞれ用いた。これらのリチウ
ム電池につき、25℃で、270IIAの定電流放電を
行ったときの放電特性結果を第3図に示した。図中、曲
線−3aは実施例1の結果、同3bは実施例2の結果、
同3Cは実施例3の結果、同3dは比較例1の結果、同
3eは比較例2の結果、同3fは比較例3の結果である
。<Discharge characteristic test> The total thickness of the structure shown in FIG. 1 using each polymer electrolyte according to Examples 1 to 3 and Comparative Examples 1 to 3 as a separator was 0.
.. A thin rectangular lithium battery with a length of 5 m and a side length of 15 mm was fabricated. An alloy of lithium and aluminum was used as the negative electrode, and a sheet-shaped molded product containing T i Sz and an electrolyte having the same components as the polymer electrolytes of Examples 1 to 3 and Comparative Examples 1 to 3 was used as the positive electrode. The discharge characteristics of these lithium batteries when subjected to constant current discharge of 270 IIA at 25° C. are shown in FIG. In the figure, curve 3a is the result of Example 1, curve 3b is the result of Example 2,
3C is the result of Example 3, 3D is the result of Comparative Example 1, 3e is the result of Comparative Example 2, and 3F is the result of Comparative Example 3.
以上の試験結果から明らかなように、この発明に係る実
施例1〜3のポリマー電解質は、室温(25℃:第2図
の横軸の値で約3.35)付近においても約0.2〜4
X10−’S/cm程度の高いイオン伝導性が得られて
いるのに対し、比較例1〜3のポリマー電解質は室温付
近では上記特性に劣るものであることが判る。また、こ
のため、第3図の結果から明らかなように、この発明に
係る実施例1〜3のポリマー電解質を用いてなるリチウ
ム電池はすぐれた放電特性を示すが、比較例1〜3のポ
リマー電解質を用いたリチウム電池は上記特性にかなり
劣っている。As is clear from the above test results, the polymer electrolytes of Examples 1 to 3 according to the present invention have approximately 0.2 ~4
It can be seen that, while a high ionic conductivity of about X10-'S/cm is obtained, the polymer electrolytes of Comparative Examples 1 to 3 are inferior to the above characteristics at around room temperature. For this reason, as is clear from the results in FIG. 3, the lithium batteries using the polymer electrolytes of Examples 1 to 3 according to the present invention exhibit excellent discharge characteristics, but the polymer electrolytes of Comparative Examples 1 to 3 Lithium batteries using electrolytes are considerably inferior to the above characteristics.
第1図はこの発明のリチウムイオン伝導性ポリマー電解
質を用いたリチウム電池の一例を示す縦断図面、第2図
はこの発明および比較用のリチウムイオン伝導性ポリマ
ー電解質のイオン伝導度と温度との相関図、第3図はこ
の発明および比較用のリチウムイオン伝導性ポリマー電
解質を用いた第1図に示す構成のリチウム電池の放電特
性図である。
7・・・ポリマー電解質(セパレータ)特許出願人
日立マクセル株式会社
」
第1 図
1/T X100O(K’)Figure 1 is a longitudinal cross-sectional view showing an example of a lithium battery using the lithium ion conductive polymer electrolyte of the present invention, and Figure 2 is the correlation between ionic conductivity and temperature of the lithium ion conductive polymer electrolyte of the present invention and a comparative lithium ion conductive polymer electrolyte. 3 are discharge characteristic diagrams of lithium batteries having the configuration shown in FIG. 1 using the lithium ion conductive polymer electrolyte of the present invention and a comparative lithium ion conductive polymer electrolyte. 7...Polymer electrolyte (separator) patent applicant
Hitachi Maxell, Ltd.'' 1st Figure 1/T X100O(K')
Claims (1)
ウムイオン伝導性ポリマー電解質において、上記の有機
ポリマーがエチレンオキサイド20〜65重量%とプロ
ピレンオキサイド80〜35重量%との共重合体からな
ることを特徴とするリチウムイオン伝導性ポリマー電解
質。(1) In a lithium ion conductive polymer electrolyte made of a composite of a lithium salt and an organic polymer, the above organic polymer is made of a copolymer of 20 to 65% by weight of ethylene oxide and 80 to 35% by weight of propylene oxide. Features a lithium ion conductive polymer electrolyte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28393886A JPS63136407A (en) | 1986-11-27 | 1986-11-27 | Lithium ion conducting polymer electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28393886A JPS63136407A (en) | 1986-11-27 | 1986-11-27 | Lithium ion conducting polymer electrolyte |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63136407A true JPS63136407A (en) | 1988-06-08 |
Family
ID=17672160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28393886A Pending JPS63136407A (en) | 1986-11-27 | 1986-11-27 | Lithium ion conducting polymer electrolyte |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63136407A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0224976A (en) * | 1988-07-14 | 1990-01-26 | Hitachi Maxell Ltd | Lithium ion conducting polymer electrolyte |
JPH0224975A (en) * | 1988-07-14 | 1990-01-26 | Hitachi Maxell Ltd | Lithium ion conducting polymer electrolyte |
JPH0234661A (en) * | 1988-07-22 | 1990-02-05 | Yuasa Battery Co Ltd | Solid polyelectrolyte |
JP2004182774A (en) * | 2002-11-29 | 2004-07-02 | Nippon Zeon Co Ltd | Method for producing polyether polymer composition, polyether polymer composition and solid electrolyte film |
US6878491B1 (en) | 1998-10-13 | 2005-04-12 | Daiso Co., Ltd. | Solid polymer electrolyte and use thereof |
US7226549B2 (en) * | 2001-12-10 | 2007-06-05 | Uchicago Argonne, Llc | High cation transport polymer electrolyte |
EP1878759A1 (en) | 2002-04-26 | 2008-01-16 | Zeon Corporation | Polyether polymer and process for producing same |
US7585934B2 (en) | 2002-11-29 | 2009-09-08 | Zeon Corporation | Process for producing polyether polymer composition, polyether polymer composition, and solid electrolyte film |
-
1986
- 1986-11-27 JP JP28393886A patent/JPS63136407A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0224976A (en) * | 1988-07-14 | 1990-01-26 | Hitachi Maxell Ltd | Lithium ion conducting polymer electrolyte |
JPH0224975A (en) * | 1988-07-14 | 1990-01-26 | Hitachi Maxell Ltd | Lithium ion conducting polymer electrolyte |
JPH0234661A (en) * | 1988-07-22 | 1990-02-05 | Yuasa Battery Co Ltd | Solid polyelectrolyte |
US6878491B1 (en) | 1998-10-13 | 2005-04-12 | Daiso Co., Ltd. | Solid polymer electrolyte and use thereof |
US7226549B2 (en) * | 2001-12-10 | 2007-06-05 | Uchicago Argonne, Llc | High cation transport polymer electrolyte |
EP1878759A1 (en) | 2002-04-26 | 2008-01-16 | Zeon Corporation | Polyether polymer and process for producing same |
JP2004182774A (en) * | 2002-11-29 | 2004-07-02 | Nippon Zeon Co Ltd | Method for producing polyether polymer composition, polyether polymer composition and solid electrolyte film |
US7585934B2 (en) | 2002-11-29 | 2009-09-08 | Zeon Corporation | Process for producing polyether polymer composition, polyether polymer composition, and solid electrolyte film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5720780A (en) | Film forming method for lithium ion rechargeable batteries | |
US8357470B2 (en) | Organic solid electrolyte and secondary battery | |
TW530433B (en) | A method of assembling a cell | |
Aliahmad et al. | Poly (vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications | |
JPH03190959A (en) | Lithium ion-conductive polyelectrolyte | |
JP3109460B2 (en) | Ion conductive polymer composition, method for producing the same, and polymer battery | |
JPS63136407A (en) | Lithium ion conducting polymer electrolyte | |
JPH11135129A (en) | Polymer binder for organic electrolyte battery electrode | |
US6503284B1 (en) | Method of preparing electrochemical cells | |
KR101218288B1 (en) | Method for developing an electrochemical device | |
JP3348513B2 (en) | Polymer solid electrolyte battery | |
JPH02295004A (en) | Lithium ion conductive polymer electrolyte | |
JPS62254303A (en) | Lithium ion conducting polymer electrolyte | |
JP4985959B2 (en) | Organic solid electrolyte and secondary battery using the same | |
JPS63193954A (en) | Lithium ion conductive polymer electrolyte | |
JPH01107474A (en) | Lithium ion conductive polymer electrolyte | |
JP3734258B2 (en) | Ion conductive electrolyte and battery using the same | |
JPH0224976A (en) | Lithium ion conducting polymer electrolyte | |
JPS63136408A (en) | Lithium ion conducting polymer electrolyte | |
JP3359389B2 (en) | Polymer electrolyte | |
JPH0224975A (en) | Lithium ion conducting polymer electrolyte | |
JPS63136409A (en) | Lithium ion conducting polymer electrolyte | |
JPS62254302A (en) | Lithium ion conducting polymer electrolyte | |
JPS62219470A (en) | Lithium ion conductive polymer electrolyte | |
JPH01107470A (en) | Lithium ion conductive polymer electrolyte |