JPS63135952A - Electrophotographic sensitive body - Google Patents
Electrophotographic sensitive bodyInfo
- Publication number
- JPS63135952A JPS63135952A JP28338386A JP28338386A JPS63135952A JP S63135952 A JPS63135952 A JP S63135952A JP 28338386 A JP28338386 A JP 28338386A JP 28338386 A JP28338386 A JP 28338386A JP S63135952 A JPS63135952 A JP S63135952A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- amorphous silicon
- photoreceptor
- substrate
- sic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 31
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 230000000737 periodic effect Effects 0.000 claims abstract description 7
- 108091008695 photoreceptors Proteins 0.000 claims description 56
- 229910010271 silicon carbide Inorganic materials 0.000 abstract description 29
- 230000035945 sensitivity Effects 0.000 abstract description 17
- 238000002347 injection Methods 0.000 abstract description 16
- 239000007924 injection Substances 0.000 abstract description 16
- 230000003287 optical effect Effects 0.000 abstract description 4
- 238000010030 laminating Methods 0.000 abstract description 3
- 230000000979 retarding effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 119
- 239000007789 gas Substances 0.000 description 25
- 239000010408 film Substances 0.000 description 20
- 206010034972 Photosensitivity reaction Diseases 0.000 description 17
- 230000036211 photosensitivity Effects 0.000 description 17
- 230000000903 blocking effect Effects 0.000 description 13
- 239000000969 carrier Substances 0.000 description 13
- 239000004065 semiconductor Substances 0.000 description 13
- 230000003595 spectral effect Effects 0.000 description 12
- 238000005498 polishing Methods 0.000 description 11
- 238000000354 decomposition reaction Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000011241 protective layer Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 125000004429 atom Chemical group 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- CJPQIRJHIZUAQP-MRXNPFEDSA-N benalaxyl-M Chemical compound CC=1C=CC=C(C)C=1N([C@H](C)C(=O)OC)C(=O)CC1=CC=CC=C1 CJPQIRJHIZUAQP-MRXNPFEDSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08214—Silicon-based
- G03G5/08221—Silicon-based comprising one or two silicon based layers
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は長波長光に対する光感度を高め且つ帯電能を大
きくし、特にレーザービームプリンター搭載用感光体と
して好適な電子写真感光体に関するものである。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an electrophotographic photoreceptor that has increased photosensitivity to long-wavelength light and increased charging ability, and is particularly suitable as a photoreceptor for use in a laser beam printer. be.
(従来技術及びその問題点)
近年、電子写真感光体の進歩は目覚ましく、超高速複写
機やレーザービームプリンターなどの開発が活発に進め
られており、これらの機器に用いられる感光体は長期間
高速で使用されるため、動作の安定性及び耐久性が要求
されている。この要求に対して水素化アモルファスシリ
コンが耐熱性、耐摩耗性、無公害性並びに光感度特性等
に優れているという理由から注目されている。(Prior art and its problems) In recent years, electrophotographic photoreceptors have made remarkable progress, and the development of ultra-high-speed copying machines and laser beam printers is actively underway. Because they are used in In response to this demand, hydrogenated amorphous silicon is attracting attention because it has excellent heat resistance, wear resistance, non-pollution properties, and photosensitivity characteristics.
かかるアモルファスシリコン(以下、a−3iと略す)
から成る電子写真感光体には第2図に示す通りの積層型
感光体が提案されている。Such amorphous silicon (hereinafter abbreviated as a-3i)
As an electrophotographic photoreceptor, a laminated type photoreceptor as shown in FIG. 2 has been proposed.
即ち、第2図によれば、アルミニウム等の導電性基板(
1)上にa−Siキャリア注入阻止層(2) 、a−3
iキャリア発生層(3)及び表面保護@ (4)を順次
積層しており、このキャリア注入阻止層(2)は基板(
1)からのキャリアの注入を阻止して表面電位を高める
ために形成されており、また、表面保護層(4)には高
硬度な材料を用いて感光体の耐久性を高めている。That is, according to FIG. 2, a conductive substrate such as aluminum (
1) A-Si carrier injection blocking layer (2) on top, a-3
The i-carrier generation layer (3) and the surface protection layer (4) are sequentially laminated, and this carrier injection blocking layer (2) is layered on the substrate (
The surface protective layer (4) is formed to prevent injection of carriers from 1) to increase the surface potential, and a highly hard material is used for the surface protective layer (4) to increase the durability of the photoreceptor.
一方、そのキャリア発生層(3)にゲルマニウム元素(
Go)を含有させ、600乃至850nmの波長領域の
光感度を高め、これによって半導体レーザービームプリ
ンター用に適した感光体も提案されている。On the other hand, germanium element (
A photoreceptor has also been proposed that contains Go) to increase the photosensitivity in the wavelength range of 600 to 850 nm, thereby making it suitable for semiconductor laser beam printers.
しかしながら、後者の感光体によれば、光感度ピークが
長波長側ヘシフトするが、その反面、キャリア発生層(
3)の暗導電率が急激に増大し、これにより、表面電位
が低下し、その結果、濃度の高い画像を得るのが難しく
なるという問題がある。However, with the latter photoreceptor, the photosensitivity peak shifts to longer wavelengths, but on the other hand, the carrier generation layer (
The problem of 3) is that the dark conductivity increases rapidly, which lowers the surface potential, and as a result, it becomes difficult to obtain a high-density image.
この問題を解決するために基板上に第2のアモルファス
シリコンカーバイド層、アモルファスシリコンゲルマニ
ウム層及び第1のアモルファスシリコンカーバイド層(
以下、アモルファスシリコンカーバイドをa−5iCと
略す)を順次積層した感光体が特開昭58−19204
4号公報に提案されている。To solve this problem, a second amorphous silicon carbide layer, an amorphous silicon germanium layer, and a first amorphous silicon carbide layer (
A photoreceptor in which amorphous silicon carbide (hereinafter abbreviated as a-5iC) was sequentially laminated was published in Japanese Patent Application Laid-Open No. 58-19204.
This is proposed in Publication No. 4.
即ち、第1のa−SiC層は前述した表面保護層(4)
と同じ目的のために形成し、帯電と光減衰の繰り返し特
性を安定化させ且つ耐摩耗性及び耐熱性ヲ高めており、
アモルファスシリコンゲルマニウム層(以下、アモルフ
ァスシリコンゲルマニウムをa−5iGeと略す)は長
波長光に対して高い光導電性を示す光導電層であり、第
2のa−3iC層は電位保持及びキャリア輸送の両機能
を担っており、そして、a−5iGeFJで発生した光
キャリアを効率よく速やかに基板へ注入する働きがある
。That is, the first a-SiC layer is the above-mentioned surface protective layer (4).
It is formed for the same purpose as , stabilizes the repeated characteristics of charging and light attenuation, and increases wear resistance and heat resistance.
The amorphous silicon germanium layer (hereinafter amorphous silicon germanium is abbreviated as a-5iGe) is a photoconductive layer that exhibits high photoconductivity for long-wavelength light, and the second a-3iC layer is used for potential retention and carrier transport. It has both functions, and has the function of efficiently and quickly injecting optical carriers generated in a-5iGeFJ into the substrate.
しかしながら、この積層型感光体によれば、第2のa−
SiC層によって電位保持を向上させて表面電位を高め
、これによって濃度の高い画像を得ることができたが、
その反面、このa−3iC層にはカーボンが含有してい
ることに起因してキャリア移動度がa−Siに比べて低
下傾向にあり、これにより、キャリアが第2のa−Si
C層でトラップされ、その結果、貰光感度特性且つ残留
電位の低減化が困難となっている。However, according to this laminated photoreceptor, the second a-
The SiC layer improves potential retention and increases the surface potential, which makes it possible to obtain images with high density.
On the other hand, due to the carbon content in this a-3iC layer, the carrier mobility tends to be lower than that of a-Si.
It is trapped in the C layer, and as a result, it is difficult to reduce the light sensitivity characteristics and residual potential.
また半導体レーザービームプリンターにおいては、その
光源がコヒーレント光であるために画像に干渉縞模様が
発生し易いという問題がある。この干渉縞模様が発生す
る原因は、コヒーレント光が基板へ到達し、その基板で
の反射光と入射光が干渉するためであり、この問題を解
決するために基板表面を処理して所要の表面粗さに設定
し、これによって基板へ到達した光を乱反射させること
が提案されている。しかしながら、この粗面化処理によ
って製造コストが大きくなることが避けられず、その処
理を不要にした解決策が望まれる。Furthermore, in semiconductor laser beam printers, since the light source is coherent light, there is a problem in that interference fringes are likely to occur in images. The cause of this interference fringe pattern is that coherent light reaches the substrate, and the reflected light on the substrate interferes with the incident light. To solve this problem, the substrate surface is processed to create the desired surface. It has been proposed to set the roughness so that the light reaching the substrate is diffusely reflected. However, this surface roughening treatment inevitably increases manufacturing costs, and a solution that eliminates the need for this treatment is desired.
(発明の目的)
従って本発明は叙上に鑑みて完成されたものであり、そ
の目的は光励起キャリアが感光体の層領域でトラップさ
れるのを防止し、これによって高光感度特性及び残留電
位の低減化を達成し且つ表面電位を高くすることができ
た電子写真感光体を提供することにある。(Object of the Invention) Therefore, the present invention has been completed in view of the above, and its purpose is to prevent photoexcited carriers from being trapped in the layer region of a photoreceptor, thereby achieving high photosensitivity and reducing residual potential. It is an object of the present invention to provide an electrophotographic photoreceptor that can achieve a reduction in surface potential and a high surface potential.
本発明の他の目的は600乃至850n111の波長領
域で光感度を高めて半導体レーザービームプリンター用
に好適となった電子写真感光体を提供することにある。Another object of the present invention is to provide an electrophotographic photoreceptor that has increased photosensitivity in the wavelength range of 600 to 850n111 and is suitable for use in semiconductor laser beam printers.
本発明の更に他の目的は画像に干渉縞模様が全く生じな
いようにし且つ低コスト化を達成した電子写真感光体を
提供することにある。Still another object of the present invention is to provide an electrophotographic photoreceptor which is free from interference fringe patterns in images and which achieves cost reduction.
(問題点を解決するための手段)
本発明によれば、導電性基板上に少なくともa−3i層
と0.1乃至10. OOOppmの周期律表第Va族
元素を含有するa−SiC層が順次積層され且つa−3
iC層で実質上光キャリアを発生させることを特徴とす
る電子写真感光体が提供される。(Means for Solving the Problems) According to the present invention, at least an a-3i layer and a thickness of 0.1 to 10. A-SiC layers containing OOOppm Group Va elements of the periodic table are sequentially laminated and a-3
Provided is an electrophotographic photoreceptor characterized in that photocarriers are substantially generated in the iC layer.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明の電子写真感光体の基本的層構成は、第1図に示
す通りであり、光キヤリア発生層として0.1乃至10
.OOOppmの周期律表第Va族元素(以下、Va族
元素と略す)を含有するa−3iC層(5)を選択し、
この層(5)とa−Siii(6)を組合せると共に第
1図に示す通りの積層順序にしたことが重要である。The basic layer structure of the electrophotographic photoreceptor of the present invention is as shown in FIG.
.. Selecting an a-3iC layer (5) containing OOOppm Group Va element of the periodic table (hereinafter abbreviated as Group Va element),
It is important that this layer (5) and a-Siii (6) are combined and that the lamination order is as shown in FIG.
即ち、本発明者等の実験によれば、このa−SiC層(
5)の分光感度特性を測定したところ、特に650乃至
850nf@の波長領域で光感度を高くすることができ
、これにより、半導体レーザービームプリンター用感光
体に好適となることを見い出した。That is, according to the experiments of the present inventors, this a-SiC layer (
When the spectral sensitivity characteristics of 5) were measured, it was found that the photosensitivity could be particularly increased in the wavelength range of 650 to 850 nf@, making it suitable as a photoconductor for semiconductor laser beam printers.
上記の点について詳述するならば、a−Si層の分光感
度が700nm以上の長波長領域で急激に低下するのに
対して、このa−3i層にカーボンを主要構成元素とし
て添加し且つ0.1乃至10,000ppmのVa族元
素を含有させると、短波長領域ではa−5i層に比べて
光感度が劣るが、その反面、長波長領域では光感度の回
復が顕著となり、特に700nm以上の波長領域ではa
−3i層に比べて著しく光感度を高めることができるこ
とを見い出した。To explain the above point in detail, the spectral sensitivity of the a-Si layer decreases rapidly in the long wavelength region of 700 nm or more, whereas carbon is added as a main constituent element to the a-3i layer and When .1 to 10,000 ppm of Va group elements are contained, the photosensitivity is inferior to that of the a-5i layer in the short wavelength region, but on the other hand, the recovery of photosensitivity becomes remarkable in the long wavelength region, especially at 700 nm or more. In the wavelength range of a
It has been found that the photosensitivity can be significantly increased compared to the -3i layer.
この知見に基づ(a−SiC層(5)によれば、Va族
元素を含まないa−SiCjiiの分光感度ピークがa
−Si層に比べて短波長側ヘシフトすると共に光感度特
性が全般に低下するという従来周知の現象と全(相い反
している。この点について本発明者等が行った実験結果
に基づいて推論するならば、a−SiC層にVa族元素
を所定の範囲内で含有させるとその層全体に亘って膜質
が改善され、励起キャリアの移動度が高くなると共に光
導電性が同上し、更にN厚方向に膜中の深部にまで浸遇
し得る長波長光に対して顕著に光感度特性を高める効果
が得られると考える。Based on this knowledge (according to the a-SiC layer (5), the spectral sensitivity peak of a-SiCjii that does not contain Va group elements is a
- This contradicts the conventionally well-known phenomenon that the photosensitivity characteristics generally decrease as the wavelength shifts to the shorter wavelength side compared to the Si layer.This point is inferred based on the experimental results conducted by the inventors. Therefore, if the a-SiC layer contains Va group elements within a predetermined range, the film quality will be improved over the entire layer, the mobility of excited carriers will increase, the photoconductivity will increase as above, and further N It is believed that the effect of significantly increasing the photosensitivity to long-wavelength light that can penetrate deep into the film in the thickness direction is achieved.
前記Va族元素にはN+P+As、Sb等があり、就中
、Pが共有結合性に優れて半導体特性を敏感に変え得る
点で望ましい。また、このVa族元素の含有量は0.1
乃至10.OOOoom 、好適には1乃至1.000
ppm、最適には10乃至1 、000ppmの範囲内
で設定すればよ(,0,lppm未満の場合、分光感度
が長波長側で十分に回復せず且つ700nm以上の波長
でa−Si層よりも劣り、また、10.OOOppmを
超えた場合、暗抵率が小さくなると共に明抵抗率に対す
る暗抵抗率の比率が小さくなり、電子写真特性を劣化さ
せる。The Va group elements include N+P+As, Sb, etc. Among them, P is preferable because it has excellent covalent bonding properties and can sensitively change semiconductor characteristics. Moreover, the content of this Va group element is 0.1
to 10. OOOoom, preferably 1 to 1.000
ppm, optimally set within the range of 10 to 1,000 ppm (if it is less than 0,000 ppm, the spectral sensitivity will not recover sufficiently on the long wavelength side and the a-Si layer will not recover at wavelengths over 700 nm). Moreover, when it exceeds 10.OOppm, the dark resistivity becomes small and the ratio of dark resistivity to bright resistivity becomes small, degrading the electrophotographic characteristics.
また、このa−SiC層(5)とa−5i層(6)を第
1図に示す積層順序で組合せた場合、a−Si層(6)
はa−SiC層(5)で発生したキャリアを輸送すると
共に電位保持の働きがあり、そして、基板(1)がらa
−SiCjii(5)へキャリアが注入されるのを阻止
する働きを具備し得る。Furthermore, when the a-SiC layer (5) and the a-5i layer (6) are combined in the stacking order shown in FIG.
has the function of transporting the carriers generated in the a-SiC layer (5) and maintaining the potential, and the a-SiC layer (1)
- It can have a function of preventing carriers from being injected into SiCjii (5).
このようにキャリア発生層と基板の間にa−3i層(6
)を介在させた場合、a−5i自体キャリアの移動度が
比較的高く、これにより、キャリアがa−Si[の内部
でトラップされることが格段に小さくなり、その結果、
高光感度特性及び残留電位の低減化を達成することがで
きる。In this way, a-3i layer (6
), the carrier mobility of a-5i itself is relatively high, which greatly reduces the chance of carriers being trapped inside a-Si[, and as a result,
High photosensitivity and reduced residual potential can be achieved.
本発明によれば、上記の通りにa−Sili(6)を形
成した場合、a−5iC層に比べて帯電能を高めること
が困難となるが、その欠点をa−SiC層(5)で補完
している。According to the present invention, when a-Sili (6) is formed as described above, it is difficult to increase the charging ability compared to the a-5iC layer, but this drawback can be overcome by the a-SiC layer (5). It is complementary.
即ち、a−Si層(6)はカーボンを含有していないの
で暗導電率を十分に小さな値に設定することができない
が、それに代わってa−5iCFj(5)にはカーボン
を含有させており、これによって感光体の帯電能を大き
くすることができる。That is, since the a-Si layer (6) does not contain carbon, it is not possible to set the dark conductivity to a sufficiently small value, but instead, the a-5iCFj (5) contains carbon. This makes it possible to increase the charging ability of the photoreceptor.
更に本発明によれば、第1図に示した積層順序によって
a−SiC層(5)で実質上光キャリアを発生させてい
る点が重要であり、これにより、基板(1)まで入射光
が到達せず、その結果、画像の干渉縞発生の問題が解消
される。Furthermore, according to the present invention, it is important that optical carriers are substantially generated in the a-SiC layer (5) by the stacking order shown in FIG. As a result, the problem of interference fringes in the image is solved.
本発明の電子写真感光体は上述した通りの思想によって
組み立てられているが、下記の通りに種々の限定を行う
ことによって本発明の目的を優位に達成することができ
る。Although the electrophotographic photoreceptor of the present invention is assembled based on the idea as described above, the object of the present invention can be advantageously achieved by making various limitations as described below.
a−SiCJi(5)については、St元素とC元素の
含有比率は1:1乃至100:1の範囲内に、好適には
3:1乃至too:tの範囲内に設定するとよく、この
範囲内であれば暗導電率を十分に小さくして帯電能を向
上させることができる。For a-SiCJi (5), the content ratio of St element and C element is preferably set within the range of 1:1 to 100:1, preferably within the range of 3:1 to too:t; If it is within the range, the dark conductivity can be made sufficiently small and the charging ability can be improved.
更にa−5iC層(5)の厚みは、この層が実質上光キ
ャリアの発生層と成り得るように適宜法められるが、本
発明者等がその厚みを幾通りにも変えて実験を行った結
果、このa−5iC層(5)の入射光に対する透過率が
30%以下に、望ましくは20%以下になるようにその
厚みを設定すれば基板(1)へ光が全く到達しなくなる
。このii (5)はその厚みを大きくするのに伴って
透過率を小さくすることができるが、その反面、この感
光体の残留電位が増加傾向となる。従って、a−SiC
層(5)の厚みはその層の透過率及び残留電位によって
決められることになり、本発明者等が繰り返し行った実
験によれば、l乃至10011m、好適にはl乃至30
μn+、最適には1乃至10μmの範囲内に設定すれば
よいことを見い出した。Furthermore, the thickness of the a-5iC layer (5) is determined as appropriate so that this layer can essentially serve as a photocarrier generation layer, but the inventors conducted experiments with the thickness changed in many ways. As a result, if the thickness is set so that the transmittance of the a-5iC layer (5) to incident light is 30% or less, preferably 20% or less, no light will reach the substrate (1). In ii (5), the transmittance can be reduced as the thickness is increased, but on the other hand, the residual potential of this photoreceptor tends to increase. Therefore, a-SiC
The thickness of the layer (5) is determined by the transmittance and residual potential of the layer, and according to repeated experiments conducted by the inventors, the thickness is 1 to 10011 m, preferably 1 to 30 m.
It has been found that μn+, optimally, can be set within the range of 1 to 10 μm.
a−SiC層(5)が光導電性を有するように含有させ
るダングリングボンド終端用元素には水素元素(H)や
ハロゲン元素があり、これらの元素の含有量は5乃至5
0原子χ、好適には5乃至40原子χ、最適には10乃
至30原子χがよく、通常、H元素が用いられる。この
H元素は上記終端部に取り込まれ易いのでバンドギャッ
プ中の局在準位密度を低減化させ、これにより、優れた
半導体特性が得られる。The elements for dangling bond termination that are contained so that the a-SiC layer (5) has photoconductivity include hydrogen element (H) and halogen element, and the content of these elements is 5 to 5.
0 atoms χ, preferably 5 to 40 atoms χ, optimally 10 to 30 atoms χ, and H element is usually used. Since this H element is easily taken into the terminal portion, the localized level density in the band gap is reduced, thereby providing excellent semiconductor characteristics.
また、このH元素の一部をハロゲン元素に置換してもよ
く、これによって局在準位密度を下げて光導電性及び耐
熱性(温度特性)を高めることができ、その置換比率は
ダングリングボンド終端用全元素中0.01乃至50原
子χ、好適には1乃至30原子χがよい、また、このハ
ロゲン元素にはF、C1゜Br、I、At等があるが、
就中、Pを用いるとその大きな電気陰性度によって原子
間の結合が大きくなり、これによって熱的安定性に優れ
るという点で望ましい。In addition, a part of this H element may be replaced with a halogen element, which lowers the localized level density and increases photoconductivity and heat resistance (temperature characteristics), and the substitution ratio is dangling. Out of all the elements for bond termination, 0.01 to 50 atoms χ, preferably 1 to 30 atoms χ are preferable, and the halogen elements include F, C1°Br, I, At, etc.
Particularly, the use of P is desirable because its large electronegativity increases the bonding between atoms, thereby providing excellent thermal stability.
a−5i層(6)にもダングリングボンド終端用元素を
含有させる必要があり、その元素の種類及び含有量は上
述したa−SiC層(5)と同じ条件で適宜法められる
。It is necessary that the a-5i layer (6) also contain a dangling bond termination element, and the type and content of the element are determined as appropriate under the same conditions as the a-SiC layer (5) described above.
本発明によれば、上述した2層構造の積層型感光体を基
本とし、更に第3図乃至第5図に示すように他の層を積
層して電子写真特性を高めることができる。According to the present invention, based on the laminated type photoreceptor having the above-described two-layer structure, electrophotographic characteristics can be improved by laminating other layers as shown in FIGS. 3 to 5.
即ち、第3図によれば、基板(1)とa−Si層(6)
の間にキャリア注入阻止層(7)を介在させ、a−5i
層(6)からのキャリアを基板(1)に効率的に注入さ
せると共に基板(1)からのキャリアの注入を阻止し、
これによって表面電位を一段と高めることができる。こ
のキャリア注入阻止層(7)はポリイミド樹脂などの有
機材料、5iOz、SiO,AhOz、SiC。That is, according to FIG. 3, the substrate (1) and the a-Si layer (6)
A carrier injection blocking layer (7) is interposed between a-5i
efficiently injecting carriers from the layer (6) into the substrate (1) and blocking injection of carriers from the substrate (1);
This allows the surface potential to be further increased. This carrier injection blocking layer (7) is made of an organic material such as polyimide resin, 5iOz, SiO, AhOz, or SiC.
5iJ4+アモルファスカーボン、 a−Si層 a−
5iCなどの無機材料によって形成される。5iJ4+Amorphous carbon, a-Si layer a-
It is formed from an inorganic material such as 5iC.
また、このキャリア注入阻止層(7)を半導体材料によ
り形成するに当たって、感光体を正極性に帯電させる場
合にはその伝導型をP型に制御し、頁捲性に帯電させる
場合にはN型に制御するのがよく、これによってキャリ
アの注入阻止作用が一段と向上する。例えば、このP型
半導体材料にはB等の周期律表第1[1a族元素を、N
型半導体材料にはP等の周期率表筒Va族元素をそれぞ
れ50乃至110000ppの範囲内で含有させたa−
3i又はa−SiCがある。In forming this carrier injection blocking layer (7) from a semiconductor material, the conductivity type is controlled to be P type when the photoreceptor is charged to positive polarity, and N type when charged to have page turning properties. It is preferable to control the carrier injection to further improve the carrier injection blocking effect. For example, this P-type semiconductor material contains elements of group 1 [1a] of the periodic table such as B, and N
The a-type semiconductor material contains periodicity group Va elements such as P within a range of 50 to 110,000 pp.
3i or a-SiC.
更に、第1図及び第3図に示すように感光体の表面側に
カーボンを含有する光導電性アモルファス層を形成した
場合、それ自体で帯電能及び耐環境性に優れ且つ非光導
電性a−5iC表面保護層に比べて硬度が小さくなり、
これにより、その表面を研磨剤などで研磨再生を繰り返
し行ってもその研磨量において制限を受けずに感光体の
初期特性を維持することができる。例えば、コロナ放電
による被曝或いは現像剤の樹脂成分による感光体表面へ
のフィルミング等によって表面が劣化してもこの研磨再
生によって良好な画像を長期に亘り安定して供給するこ
とができる。Furthermore, when a photoconductive amorphous layer containing carbon is formed on the surface side of the photoreceptor as shown in FIGS. -Hardness is smaller than that of the 5iC surface protective layer,
Thereby, even if the surface is repeatedly polished and regenerated using an abrasive or the like, the initial characteristics of the photoreceptor can be maintained without being limited in the amount of polishing. For example, even if the surface deteriorates due to exposure to corona discharge or filming on the surface of the photoreceptor due to the resin component of the developer, good images can be stably supplied over a long period of time by this polishing regeneration.
また、第4図によれば、第1図の基本的な積層型感光体
の表面に表面保護N(8)を形成した場合を示しており
、このN(8)にはそれ自体高絶縁性、高耐蝕性及び高
硬度特性を有するものであれば、種々の材料を用いるこ
とができる。例えば前記のキャリア注入阻止層(7)に
用いたのと同じ無機材料又は有機材料を用いることがで
き、これにより、感光体の耐久性及び耐環境性を高める
ことができる。Moreover, according to FIG. 4, a case is shown in which a surface protection layer N(8) is formed on the surface of the basic laminated photoreceptor shown in FIG. Various materials can be used as long as they have high corrosion resistance and hardness properties. For example, the same inorganic or organic material as used for the carrier injection blocking layer (7) can be used, thereby increasing the durability and environmental resistance of the photoreceptor.
更にまた、第5図に示すようなキャリア注入阻止層(7
)及び表面保護N(8)を形成した積層型感光体であれ
ば電子写真特性を更に一段と高めることができる。Furthermore, a carrier injection blocking layer (7) as shown in FIG.
) and surface protection N(8), the electrophotographic characteristics can be further improved.
また、a−3i層(6)とa−5iC層(5)の界面に
両者の層を接合して電子写真特性を向上させる接合層(
この層の厚みは3μm以下が望ましい)を介在させても
よい。この接合層には、例えばa−3i層(6て漸次増
大させ、その接合層の形成終了時にそれぞれの含有量を
a−3iCF(5)の所要なC量及びVa族元素量と一
致させるように設定した層厚がある。Additionally, a bonding layer (
The thickness of this layer is preferably 3 μm or less). This bonding layer includes, for example, an a-3i layer (6), which is gradually increased so that its content matches the required C content and Va group element content of a-3iCF (5) at the end of the bonding layer formation. There is a layer thickness set to .
かくして本発明の電子写真感光体によれば、a−3i層
(6)及びa−SiC層(5)を組み合わせた積層型感
光体によってキャリアが感光体の層内部でトラップされ
ず、これによって高光感度特性及び残留電位の低減化を
達成し且つ表面電位を高くすることができ、更に入射光
が基板へ到達しないために基板の粗面化処理を不要とし
た半導体レーザービームプリンター用に好適な感光体と
なった。Thus, according to the electrophotographic photoreceptor of the present invention, carriers are not trapped inside the layers of the photoreceptor due to the laminated photoreceptor combining the a-3i layer (6) and the a-SiC layer (5). A photosensitive material suitable for semiconductor laser beam printers that achieves reductions in sensitivity characteristics and residual potential, as well as a high surface potential, and eliminates the need for surface roughening treatment of the substrate because the incident light does not reach the substrate. It became a body.
次に本発明者等は上記の結果を踏まえて、更に鋭意研究
に努めた結果、前記a−SiC層(5)のカーボン(C
)含有量及びVa族元素含有量を層厚方向に亘って変化
させ、これによって種々の態様の感光体が得られること
を見い出した。Next, based on the above results, the present inventors made further efforts in research, and found that the carbon (C) of the a-SiC layer (5)
) content and Va group element content were changed over the layer thickness direction, and it was discovered that photoreceptors of various aspects could be obtained by this.
即ち、第6図乃至第13図によれば、横軸はa−SiC
層(5)のa−Si層との界面(a)からその反対側の
表面(b)までの層厚を表しており、縦軸はC含有量及
びVa族元素含有量を表しており、いずれの含有量もそ
れぞれ相対量である。尚、これらの図において実線及び
破線はそれぞれC含有量及びVa族元素含有量を示す。That is, according to FIGS. 6 to 13, the horizontal axis represents a-SiC
It represents the layer thickness from the interface (a) with the a-Si layer of layer (5) to the surface (b) on the opposite side, and the vertical axis represents the C content and Va group element content, Each content is a relative amount. In addition, in these figures, the solid line and the broken line indicate the C content and the Va group element content, respectively.
これらの図から明らかな通り、a−5iC層(5)の内
部の入射光側のb面側に近い層領域においては■族元素
含有量を比較的少なくするか或いはC含有量を比較的多
くしており、これにより、入射光側の層領域でバンドギ
ャップが大きくなり、更に貰い光導電性があり、その結
果、入射光が高効率に光電変換されて光感度を高めるこ
とができる。As is clear from these figures, in the layer region close to the b-plane side on the incident light side inside the a-5iC layer (5), the content of group Ⅰ elements is relatively low, or the C content is relatively high. As a result, the bandgap becomes larger in the layer region on the incident light side, and there is further photoconductivity, and as a result, the incident light is photoelectrically converted with high efficiency, and the photosensitivity can be increased.
これに対して、a面に近いN領域においてはVa族元素
含有量を比較的多くするか或いはC含有量を比較的少な
くしており、これにより、この層領域での吸収係数が大
きくなり、入射光がこの層領域内で完全に吸収される。On the other hand, in the N region close to the a-plane, the Va group element content is relatively high or the C content is relatively low, which increases the absorption coefficient in this layer region. The incident light is completely absorbed within this layer region.
従って、上述したような両者のN領域を形成することに
よって高光感度特性を有し且つ干渉縞の発生を一段と抑
えた電子写真感光体と成り得る。Therefore, by forming both N regions as described above, it is possible to obtain an electrophotographic photoreceptor having high photosensitivity characteristics and further suppressing the generation of interference fringes.
また、第7図、第9図、第10図及び第13図によれば
、a−3iC層(5)の内部の入射光側の5面に近い層
領域においてVa族元素含有量を比較的少なくすると共
にa面に近いIn!域においてVa族元素含有量を比較
的多くしており、そのためにa−3iC1(5)内部で
フェルミ準位に傾斜ができ、これにより、低電界領域下
の励起キャリアのトラ、プが少なくなり、その結果、残
留電位を低減化することができる。Moreover, according to FIGS. 7, 9, 10, and 13, the Va group element content is relatively low in the layer region close to the 5th surface on the incident light side inside the a-3iC layer (5). In! The content of Va group elements is relatively high in the region, which creates a tilt in the Fermi level inside a-3iC1(5), which reduces traps and pulls of excited carriers in the low electric field region. As a result, the residual potential can be reduced.
次に本発明の電子写真感光体の製法を述べる。Next, a method for manufacturing the electrophotographic photoreceptor of the present invention will be described.
a−Si層(6)及びa−5iC層(5)はグロー放電
分解法、イオンブレーティング法、反応性スパッタリン
グ法、真空蒸着法、熱CVD法等の薄膜形成手段を用い
ることができ、また、これに用いられる原料には固体、
液体、気体のいずれでもよい。The a-Si layer (6) and the a-5iC layer (5) can be formed by thin film forming means such as glow discharge decomposition method, ion blating method, reactive sputtering method, vacuum evaporation method, thermal CVD method, etc. , the raw materials used for this are solid,
It can be either liquid or gas.
また、a−Si層(6)及びa−5iC層(5)以外の
層を形成するに当たって、これらの層をa−Si又はa
−StCにより形成するのであれば、同様な薄膜形成手
段を用いることができるという点で望ましく、更に同一
の成膜装置を用いた場合、共通した薄膜形成手段によっ
て連続的に積層することができるという利点がある。In addition, when forming layers other than the a-Si layer (6) and the a-5iC layer (5), these layers may be
- If it is formed using StC, it is preferable in that a similar thin film forming means can be used, and furthermore, when the same film forming apparatus is used, it is possible to continuously stack layers by a common thin film forming means. There are advantages.
例えばグロー放電分解装置を用いてa−5i層又はa−
SiC層から成る感光体を製作する場合、その気体原料
として5iHa、5iJi+5iJsなどのSi系ガス
、CH4,CJt、CzH4,CJ6.C3Heなどの
c系ガスがあり、そして、Heガス+Hzガスなどをキ
ャリアガスとして用いればよい。For example, using a glow discharge decomposition device, a-5i layer or a-
When manufacturing a photoreceptor made of a SiC layer, Si-based gases such as 5iHa, 5iJi+5iJs, CH4, CJt, CzH4, CJ6. There are c-based gases such as C3He, and He gas+Hz gas may be used as the carrier gas.
このグロー放電分解法によれば、Si系ガスに対してア
セチレン(czlガスを添加した混合ガスよりa−Si
CJiを形成した場合、著しく大きな高速成膜性が達成
できるという点で望ましい。According to this glow discharge decomposition method, a-Si is separated from a mixed gas in which acetylene (czl gas) is added to Si-based gas.
When CJi is formed, it is desirable in that a significantly high speed of film formation can be achieved.
次に本発明の実施例に述べられる電子写真感光体をグロ
ー放電分解法を用いてa−3i又はa−3iCにより形
成する場合、その製作法を第14図の容量結合型グロー
放電分解装置により説明する。Next, when the electrophotographic photoreceptor described in the embodiments of the present invention is formed from a-3i or a-3iC using the glow discharge decomposition method, the manufacturing method is performed using the capacitively coupled glow discharge decomposition apparatus shown in FIG. explain.
図中、タンク(9) (10) (11) (12)
(13)にはそれぞれSiH4,CJz、Pt(s (
H!ガス希釈で0.2χ含有)、H!、NOガスが密封
されており、H2はキャリアガスとしても用いられる。In the figure, tanks (9) (10) (11) (12)
(13) have SiH4, CJz, and Pt(s (
H! (contains 0.2χ with gas dilution), H! , NO gas is sealed, and H2 is also used as a carrier gas.
これらのガスは対応する調整弁(14) (15) (
16) (17) (18)を開放することによって放
出され、その流量がマスフローコントローラ(19)(
20) (21) (22) (23)により制御され
、タンク(9)(10)(11)(12)からのガスは
主管(24)へ、タンク(13)からのNOガスは主管
(25)へ送られる。尚、(26) (27)は止め弁
である。主管(24) (25)を通じて流れるガスは
反応管(28)へと送り込まれるが、この反応管(28
)の内部には容量結合型放電用電極(29)が設置され
ており、それに印加される高周波電力は5〇−乃至3に
−が、また周波数はIMHz乃至50MHzが適当であ
る0反応管(28)の内部にはアルミニウムから成る筒
状の成膜用基板(30)が試料保持台(31)の上に載
置されており、この保持台(31)はモーター(32)
により回転駆動されるようになっており、そして、基板
(30)は適当な加熱手段により約200乃至400℃
、好ましくは約200乃至350℃の温度に均一に加熱
される。更に反応管(28)の内部にはa−SiC膜形
成時に高度の真空状態(放電時のガス圧0.1乃至2.
0Torr)を必要とすることにより回転ポンプ(33
)と拡散ポンプ(34)に連結されている。These gases are controlled by the corresponding regulating valves (14) (15) (
16) (17) It is released by opening (18), and its flow rate is controlled by the mass flow controller (19) (
20) (21) (22) (23), gas from tanks (9), (10), (11), and (12) is sent to the main pipe (24), and NO gas from the tank (13) is sent to the main pipe (25). ). Note that (26) and (27) are stop valves. The gas flowing through the main pipes (24) and (25) is fed into the reaction tube (28);
) A capacitively coupled discharge electrode (29) is installed inside the reaction tube ( 28), a cylindrical film-forming substrate (30) made of aluminum is placed on a sample holder (31), and this holder (31) is connected to a motor (32).
The substrate (30) is heated to about 200 to 400°C by suitable heating means.
, preferably to a temperature of about 200 to 350°C. Furthermore, the interior of the reaction tube (28) is kept in a high vacuum state (gas pressure during discharge of 0.1 to 2.0 mm) during the formation of the a-SiC film.
Rotary pump (33 Torr)
) and a diffusion pump (34).
以上のように構成されたグロー放電分解装置において、
例えば、Pを含有するa−3iC膜を基板(32)に形
成する場合には、調整弁(14> (15) (16)
(17)を開いてそれぞれSiH4+CtHz+Pt
b+Hzガスを放出する。放出lはマスフローコントロ
ーラ(19) (20) (21) (22)により制
御され、これらの混合ガスは主管(24)を介して反応
管(28)へと流し込まれる。そして、反応管(28)
の内部が0.1乃至2.0Torr程度の真空状態、基
板温度が200乃至400℃、容量結合型放電用電極(
29)の高周波電力が50病乃至3KW、周波数が1乃
至50MHzに設定されていることに相俟ってグロー放
電がおこり、ガスが分解してPを含有するa−3iC膜
が基板上に高速で形成される。In the glow discharge decomposition device configured as above,
For example, when forming an a-3iC film containing P on the substrate (32), the adjustment valve (14> (15) (16)
(17) and each SiH4+CtHz+Pt
b+Hz gas is released. The discharge l is controlled by mass flow controllers (19), (20), (21), and (22), and these mixed gases are flowed into the reaction tube (28) via the main pipe (24). And the reaction tube (28)
The interior of the device is in a vacuum state of approximately 0.1 to 2.0 Torr, the substrate temperature is 200 to 400°C, and the capacitively coupled discharge electrode (
29), the high frequency power is set at 50KW to 3KW and the frequency is set at 1 to 50MHz, and a glow discharge occurs, the gas decomposes, and the a-3iC film containing P is deposited on the substrate at high speed. is formed.
(実施例) 次に本発明の実施例を述べる。(Example) Next, examples of the present invention will be described.
(例1)
:↓こ例においては層厚方向に亘って単一組成のa−S
i膜又はa−3iC膜を形成して分光感度特性を測定し
た。 即ち、3 X3cmの角形のアルミニウム製平板
を用意し、第14図に示したアルミニウム製筒状基板(
30)の周面を一部切り欠いてこの切り欠き部にこの平
板を設置し、この平板上にa−3i膜又はa−5iC膜
を生成する。(Example 1): ↓In this example, a-S of a single composition is used throughout the layer thickness direction.
An i film or an a-3iC film was formed and the spectral sensitivity characteristics were measured. That is, a 3 x 3 cm square aluminum flat plate was prepared, and an aluminum cylindrical substrate (
A part of the peripheral surface of 30) is cut out, and this flat plate is installed in this notch, and an a-3i film or an a-5iC film is produced on this flat plate.
先ず、タンク(9)よりSiH4ガスを101005e
の流量で、タンク(12)よりHtガスを300sec
mの流量で放出し、そして、基板温度を300℃に、ガ
ス圧を0.45Torrに、高周波電力を150−に設
定し、グロー放電分解法により上記平板上に5μmの厚
みの1Si膜を形成した。First, add SiH4 gas to 101005e from the tank (9).
Ht gas is supplied from the tank (12) for 300 seconds at a flow rate of
Then, the substrate temperature was set to 300° C., the gas pressure was set to 0.45 Torr, and the high frequency power was set to 150 −, and a 5 μm thick 1Si film was formed on the above flat plate by glow discharge decomposition method. did.
また、上記の製法のなかで、更にタンク(10)よりC
2H!ガスを10105eの流量で放出し、且つタンク
(11)よりPlhガスを30secmの流量で放出し
、他は同一の製作条件によって同様に平板上に5μmの
厚みのa−5iC膜を形成した。In addition, in the above manufacturing method, C from the tank (10) is further added.
2H! A 5 μm thick a-5iC film was similarly formed on a flat plate under the same manufacturing conditions except that gas was released at a flow rate of 10105e and Plh gas was released from the tank (11) at a flow rate of 30 seconds.
か(して得られたa−3t膜及びa−SiC膜について
それぞれ分光感度特性を測定した結果、第15図に示す
通りとなった1図中、O印及び・印はそれぞれa−5i
膜及びa−5iC膜の分光感度のプロットであり、a、
bはそれぞれの分光感度曲線である。尚、この分光感度
の測定値は各波長において等エネルギー光を照射した時
の光導電率を示す。As a result of measuring the spectral sensitivity characteristics of the a-3t film and the a-SiC film obtained in this way, the results were as shown in Figure 15.
A plot of the spectral sensitivity of the film and the a-5iC film, a,
b is each spectral sensitivity curve. Note that this measured value of spectral sensitivity indicates the photoconductivity when irradiated with equal energy light at each wavelength.
この結果より明らかな通り、Pを含むa−SiC膜によ
れば、700nm以下の波長領域においてa−3t膜よ
り分光感度が低いが、700nm以上の波長領域におい
てはa−Si膜よりも高い光感度となっている。As is clear from this result, the a-SiC film containing P has lower spectral sensitivity than the a-3T film in the wavelength region of 700 nm or less, but has higher spectral sensitivity than the a-Si film in the wavelength region of 700 nm or more. Sensitivity.
(例2)
本例においては第14図に示したグロー放電分解装置を
用いて第1表に示した製作条件によって基板(30)上
にキャリア注入阻止層(7) 、a−3iキャリア輸送
層(6)、a−5iCキャリア発生層(5)、表面保護
層(8)を順次形成し、電子写真感光体ドラムを製作し
た。尚、キャリア注入阻止層(7)の形成にNOガスを
用いて酸素と窒素をドープし、基板に対する密着性を高
めている。(Example 2) In this example, a carrier injection blocking layer (7) and an a-3i carrier transport layer were formed on the substrate (30) under the manufacturing conditions shown in Table 1 using the glow discharge decomposition apparatus shown in FIG. (6), an a-5iC carrier generation layer (5), and a surface protective layer (8) were sequentially formed to produce an electrophotographic photosensitive drum. Note that the carrier injection blocking layer (7) is doped with oxygen and nitrogen using NO gas to improve its adhesion to the substrate.
このドラムを半導体レーザービームプリンター(波長?
70nm、印字速度20枚/分)に実装して印字したと
ころ、画像濃度が高く、高コントラストでゴースト現象
が全く生じなく、更に画像に干渉縞やカプリが全く生じ
ない良質な画像が得られた。This drum is a semiconductor laser beam printer (wavelength?
70nm, printing speed 20 sheets/min), high-quality images were obtained with high image density, high contrast, and no ghost phenomenon, and no interference fringes or capri. .
本′f944こよれば、a−5iC層(5)をガラス基
板上に同一条件によって形成し、その透過率(波長?7
0nm)を測定したところ、25χであった。また、こ
のa−5iC層(5)のP含有量は 約IQQppmで
あった。According to this 'f944, an a-5iC layer (5) is formed on a glass substrate under the same conditions, and its transmittance (wavelength ?7) is formed on a glass substrate under the same conditions.
0 nm) was measured and found to be 25χ. Moreover, the P content of this a-5iC layer (5) was about IQQppm.
(例3)
(例2)において、a−Siキャリア輸送層の形成に当
たって更にCtHzガスを10105eの流量で放出し
、他は(例2)と全く同一の製造条件によって感光体ド
ラムを製作し、このドラムのキャリア輸送層としてa−
SiC層を形成した場合、この感光体ドラムを(例2)
と同じレーザービームプリンターに実装して印字したと
ころ、画像濃度が高く、ゴースト現象が全く生じなく、
更に画像に干渉縞が生じなかったが、その反面、画像に
カプリが生じた。(Example 3) In (Example 2), a CtHz gas was further released at a flow rate of 10105e during the formation of the a-Si carrier transport layer, and a photoreceptor drum was manufactured under the same manufacturing conditions as in (Example 2) except for the following: As the carrier transport layer of this drum, a-
When a SiC layer is formed, this photoreceptor drum (Example 2)
When printed using the same laser beam printer, the image density was high and there was no ghosting phenomenon.
Furthermore, no interference fringes were produced in the image, but on the other hand, capri was produced in the image.
(例4)
(例2)において、キャリア発生層の形成に当たってC
,lItガスの放出を止め、他は(例2)と全く同一の
製造条件によって感光体ドラムを製作し、このドラムの
キャリア発生層としてa−5t層を形成した場合、この
感光体ドラムを(例2)と同じレーザービームプリンタ
ーに実装して印字したところ、画像に干渉縞が生じなか
った反面、画像濃度が低くてコントラストも悪く、ゴー
スト現象が生じた。(Example 4) In (Example 2), C
If a photoreceptor drum is manufactured under the same manufacturing conditions as in (Example 2) except that the emission of the . When mounted on the same laser beam printer as in Example 2) and printed, no interference fringes were produced in the image, but the image density was low, the contrast was poor, and a ghost phenomenon occurred.
(例5)
本例においては、(例2)と全く同一の製法条件によっ
てキャリア注入阻止層、a−Siキャリア輸送層及びa
−5iCキャリア発生層を順次形成し、そして、表面保
護層を形成せず、これによって第3図に示したような電
子写真感光体を製作した。(Example 5) In this example, the carrier injection blocking layer, the a-Si carrier transport layer and the
An electrophotographic photoreceptor as shown in FIG. 3 was manufactured by sequentially forming -5iC carrier generation layers and without forming a surface protective layer.
この感光対ドラムを半導体レーザービームプリンター(
波長7700111、印字速度20枚7分)に実装して
印字したところ、画像濃度が高く、高コントラストでゴ
ースト現象が全く生じなく、更に画像に干渉縞やカプリ
が全く生じない良質な画像が得られた。This photosensitive drum is connected to a semiconductor laser beam printer (
When installed and printed at a wavelength of 7700111 and a printing speed of 20 sheets, 7 minutes, a high-quality image with high image density, high contrast, and no ghost phenomenon was obtained, with no interference fringes or capri. Ta.
次にこの感光対に対して、研摩再生の評価試験を行った
。Next, this photosensitive pair was subjected to a polishing and regeneration evaluation test.
即ち、この感光体ドラムの表面をダイヤモンドパウダー
で強制的に研摩し、その表面より約0.3μm、約0.
7 μm、約1.2μm及び約2.0 μmの厚みに亘
って研摩除去し、然る後、その感光体を−5,6KVの
コロナ放電で負帯電し、次いで単色光(770nm)を
照射し、これによって飽和表面電位と光感度を測定し、
更にその感光体を用いて一成分系現象剤にて現像を行い
、画像濃度及びカプリ濃度を画像濃度計を用いて測定し
たところ、第2表に示す通りの結果が得られた。That is, the surface of this photoreceptor drum is forcibly polished with diamond powder to a depth of about 0.3 μm and about 0.0 μm from the surface.
7 μm, approximately 1.2 μm, and approximately 2.0 μm in thickness, the photoreceptor was then negatively charged with -5.6 KV corona discharge, and then irradiated with monochromatic light (770 nm). This measures the saturated surface potential and photosensitivity,
Further, the photoreceptor was developed with a one-component developing agent, and the image density and capri density were measured using an image densitometer, and the results shown in Table 2 were obtained.
更に比較例として第3表に示す条件で第2図に示すよう
なa−St感光体を製作し、次いでこの感光体に対して
研摩再生の評価試験を行ったところ、第2表に示す通り
の結果が得られた。Further, as a comparative example, an a-St photoconductor as shown in FIG. 2 was manufactured under the conditions shown in Table 3, and then an evaluation test of polishing and regeneration was conducted on this photoconductor. As shown in Table 2, The results were obtained.
第2表から明らかなように、本発明の感光体は表面から
約2.0μm研摩後も表面電位、感度は初期特性と大き
く変化せず、画像特性においても初期の良好な画像を維
持することができた。As is clear from Table 2, the surface potential and sensitivity of the photoreceptor of the present invention do not change significantly from the initial characteristics even after polishing approximately 2.0 μm from the surface, and the image characteristics also maintain the initial good image. was completed.
然るに、比較例によれば、表面保護層が存在するまでは
(0,3μm研摩)、初期特性を維持することができた
が、0.7μ■を超えた時点から掻端に画像が低下し、
2.0μl研摩後は表面電位が著しく低下した。However, according to the comparative example, the initial characteristics could be maintained until the presence of the surface protective layer (0.3 μm polishing), but the image deteriorated dramatically from the point where the surface thickness exceeded 0.7 μm. ,
After 2.0 μl polishing, the surface potential decreased significantly.
これらの実験から、本例の感光体ドラムによれば、前述
した所望の研摩手段を用いて研摩再生を行った場合、少
なくとも研摩量2.0μ鋼までは初期特性を維持するこ
とが確認できた。From these experiments, it was confirmed that according to the photoreceptor drum of this example, the initial characteristics were maintained at least up to a polishing amount of 2.0μ steel when re-polishing was performed using the desired polishing method described above. .
(発明の効果)
以上の通り、本発明の電子写真感光体によれば、■a族
元素を含有するa−3iC層を長波長光に対するキャリ
ア発生層とすることができ、これにより、半導体レーザ
ービームプリンターに好適な感光体と成り得た。更にこ
の感光体によれば、入射光が基板へ到達しないために画
像に干渉縞模様が発生しなくなり、尚且つ基板表面を粗
面化してその表面粗さを大きくすることが不要となり、
これによって低コストな電子写真感光体が提供される。(Effects of the Invention) As described above, according to the electrophotographic photoreceptor of the present invention, the a-3iC layer containing group a elements can be used as a carrier generation layer for long wavelength light, and thereby, semiconductor laser This resulted in a photoconductor suitable for beam printers. Furthermore, according to this photoreceptor, since the incident light does not reach the substrate, interference fringes do not occur in the image, and there is no need to roughen the surface of the substrate to increase its surface roughness.
This provides a low-cost electrophotographic photoreceptor.
また、本発明の電子写真感光体によれば、光励起キャリ
アが感光体の層領域でトラップされるのを防止でき、こ
れにより、高光感度特性及び残留電位の低減化を達成し
且つ表面電位を高くすることができた。Further, according to the electrophotographic photoreceptor of the present invention, it is possible to prevent photoexcited carriers from being trapped in the layer region of the photoreceptor, thereby achieving high photosensitivity characteristics and a reduction in residual potential, and increasing the surface potential. We were able to.
更に本発明によれば、表面保護層を形成しないで感光体
の表面層をa−3iCNとし、これによって得られた感
光体を用いた場合でも黒地濃度が高くてカブリのない鮮
明な画像が得られ、更にこのa−SiC層が光導電層で
あるためにその表面を研摩剤などで研摩再生を繰り返し
行ってもその研摩量において制限を受けず、これによっ
て感光体の初期特性を維持することができる。Furthermore, according to the present invention, the surface layer of the photoreceptor is made of a-3iCN without forming a surface protective layer, and even when using the photoreceptor obtained thereby, a clear image with a high black background density and no fog can be obtained. Furthermore, since this a-SiC layer is a photoconductive layer, there is no limit to the amount of polishing even if the surface is repeatedly polished and regenerated with an abrasive, thereby maintaining the initial characteristics of the photoreceptor. I can do it.
第1図は本発明の電子写真感光体の基本的層構成を示す
断面図、第2図は従来の一般的なアモルファスシリコン
感光体の層構成を示す断面図、第3図、第4図及び第5
図はそれぞれ本発明の電子写真感光体の他の層構成を示
す断面図、第6図、第7図、第8図、第9図、第10図
、第11図、第12図及び第13図は本発明に係る電子
写真感光体のアモルファスシリコンカーバイド層の層厚
方向に亘るカーボン含有量及び周期律表第Va族元素含
有量を表わす線図、第14図は本発明の実施例に用いら
れる容量結合型グロー放電分解装置の!11図、i15
図はアモルファスシリコンカーバイド層の分光感度曲線
を表わす線図である。
1・・・導電性基板
4.8 ・・表面保護層
5・・・アモルファスシリコンカーバイド層6・・・ア
モルファスシリコン屡
7・・・キャリア注入阻止層
特許出願人 (663)京セラ株式会社同 汚材
孝夫
代 理 人 弁理士(8898)田原 勝彦第6図
第7図
第8図 第9図
第10図 第11図
第12図 第18図
αしαレ
ジl−長 (n、m)FIG. 1 is a sectional view showing the basic layer structure of the electrophotographic photoreceptor of the present invention, FIG. 2 is a sectional view showing the layer structure of a conventional general amorphous silicon photoreceptor, and FIGS. Fifth
6, 7, 8, 9, 10, 11, 12, and 13 are cross-sectional views showing other layer structures of the electrophotographic photoreceptor of the present invention, respectively. The figure is a diagram showing the carbon content and the Group Va element content of the periodic table in the layer thickness direction of the amorphous silicon carbide layer of the electrophotographic photoreceptor according to the present invention. Capacitively coupled glow discharge decomposition device! Figure 11, i15
The figure is a diagram showing a spectral sensitivity curve of an amorphous silicon carbide layer. 1... Conductive substrate 4.8... Surface protective layer 5... Amorphous silicon carbide layer 6... Amorphous silicon layer 7... Carrier injection blocking layer Patent applicant (663) Kyocera Corporation Contaminant Takaoyo Rihito Patent Attorney (8898) Katsuhiko Tahara Figure 6
Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 18 Fig. α and α register l-length (n, m)
Claims (1)
.1乃至10,000ppmの周期律表第Va族元素を
含有するアモルファスシリコンカーバイド層が順次積層
され且つアモルファスシリコンカーバイド層で実質上光
キャリアを発生させることを特徴とする電子写真感光体
。At least an amorphous silicon layer on a conductive substrate and 0
.. An electrophotographic photoreceptor characterized in that amorphous silicon carbide layers containing 1 to 10,000 ppm of Group Va elements of the periodic table are sequentially laminated, and photocarriers are substantially generated in the amorphous silicon carbide layers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28338386A JPS63135952A (en) | 1986-11-27 | 1986-11-27 | Electrophotographic sensitive body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28338386A JPS63135952A (en) | 1986-11-27 | 1986-11-27 | Electrophotographic sensitive body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63135952A true JPS63135952A (en) | 1988-06-08 |
Family
ID=17664800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28338386A Pending JPS63135952A (en) | 1986-11-27 | 1986-11-27 | Electrophotographic sensitive body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63135952A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4977050A (en) * | 1987-12-28 | 1990-12-11 | Kyocera Corporation | Electrophotographic sensitive member |
US9364632B2 (en) | 2010-08-19 | 2016-06-14 | Koninklijke Philips N.V. | Manually actuated talk valve for a respiratory device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5662255A (en) * | 1979-10-26 | 1981-05-28 | Fuji Photo Film Co Ltd | Electrophotographic receptor |
JPS5664346A (en) * | 1979-10-30 | 1981-06-01 | Fuji Photo Film Co Ltd | Electrophotographic receptor and its preparation |
JPS57105745A (en) * | 1980-12-23 | 1982-07-01 | Canon Inc | Photoconductive member |
JPS57105744A (en) * | 1980-12-23 | 1982-07-01 | Canon Inc | Photoconductive member |
-
1986
- 1986-11-27 JP JP28338386A patent/JPS63135952A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5662255A (en) * | 1979-10-26 | 1981-05-28 | Fuji Photo Film Co Ltd | Electrophotographic receptor |
JPS5664346A (en) * | 1979-10-30 | 1981-06-01 | Fuji Photo Film Co Ltd | Electrophotographic receptor and its preparation |
JPS57105745A (en) * | 1980-12-23 | 1982-07-01 | Canon Inc | Photoconductive member |
JPS57105744A (en) * | 1980-12-23 | 1982-07-01 | Canon Inc | Photoconductive member |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4977050A (en) * | 1987-12-28 | 1990-12-11 | Kyocera Corporation | Electrophotographic sensitive member |
US9364632B2 (en) | 2010-08-19 | 2016-06-14 | Koninklijke Philips N.V. | Manually actuated talk valve for a respiratory device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3124841B2 (en) | Electrophotographic photoreceptor | |
JPS63135952A (en) | Electrophotographic sensitive body | |
JPS63135949A (en) | Electrophotographic sensitive body | |
JPS63135953A (en) | Electrophotographic sensitive body | |
JP2608401B2 (en) | Electrophotographic photoreceptor | |
JPS63125943A (en) | Electrophotographic sensitive body | |
JPS63165857A (en) | Electrophotographic sensitive body | |
JPS59204048A (en) | Electrophotographic sensitive body | |
JPH0234020B2 (en) | DENSHISHASHIN KANKOTAI | |
JPS63151960A (en) | Electrophotographic sensitive body | |
JPS63121057A (en) | Electrophotographic sensitive body | |
JPS63135950A (en) | Electrophotographic sensitive body | |
JPS63108350A (en) | Electrophotographic sensitive body | |
JPS63133157A (en) | Electrophotographic sensitive body | |
JPS63271356A (en) | Electrophotographic sensitive body | |
JPS63135951A (en) | Electrophotographic sensitive body | |
JPS63127248A (en) | Electrophotographic sensitive body | |
JPS63135954A (en) | Electrophotographic sensitive body | |
JPS63132252A (en) | Electrophotographic sensitive body | |
JPS62115458A (en) | Electrophotographic sensitive body | |
JPS6381431A (en) | Electrophotographic sensitive body | |
JPS62198865A (en) | Electrophotographic sensitive body | |
JPS63133159A (en) | Electrophotographic sensitive body | |
JPS6258265A (en) | Electrophotographic sensitive body | |
JPS62115459A (en) | Electrophotographic sensitive body |