JPS63121628A - Manufacture of aluminum alloy powder - Google Patents
Manufacture of aluminum alloy powderInfo
- Publication number
- JPS63121628A JPS63121628A JP26561186A JP26561186A JPS63121628A JP S63121628 A JPS63121628 A JP S63121628A JP 26561186 A JP26561186 A JP 26561186A JP 26561186 A JP26561186 A JP 26561186A JP S63121628 A JPS63121628 A JP S63121628A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- aluminum
- alloy
- density
- degassing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 76
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract 6
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 20
- 239000000956 alloy Substances 0.000 claims abstract description 20
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- 238000007872 degassing Methods 0.000 claims abstract description 19
- 238000001125 extrusion Methods 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 12
- 239000011261 inert gas Substances 0.000 claims abstract description 4
- 238000005242 forging Methods 0.000 claims abstract description 3
- 238000005096 rolling process Methods 0.000 claims abstract description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 21
- 229910052782 aluminium Inorganic materials 0.000 claims description 16
- 239000007789 gas Substances 0.000 claims description 16
- 239000011812 mixed powder Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910052755 nonmetal Inorganic materials 0.000 claims description 2
- 230000007547 defect Effects 0.000 abstract description 4
- BPJYAXCTOHRFDQ-UHFFFAOYSA-L tetracopper;2,4,6-trioxido-1,3,5,2,4,6-trioxatriarsinane;diacetate Chemical compound [Cu+2].[Cu+2].[Cu+2].[Cu+2].CC([O-])=O.CC([O-])=O.[O-][As]1O[As]([O-])O[As]([O-])O1.[O-][As]1O[As]([O-])O[As]([O-])O1 BPJYAXCTOHRFDQ-UHFFFAOYSA-L 0.000 abstract 1
- 230000003245 working effect Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 5
- 229910001868 water Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明はアルミニウム(AI)系粉末よりAI系粉末合
金を得る方法に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for obtaining an AI-based powder alloy from an aluminum (AI)-based powder.
〈従来の技術〉
Aj系粉末を含む粉末からAj金合金わゆる焼結A1合
金を製造する方法は古くから研究されているが、AI粉
末の表面は硬いアルミナ(酸化被覆)で覆われているた
め、従来の如く、単に粉末を成形した後融点以下の温度
にて焼結する方法では十分な強度が得られなかった。<Prior art> The method of manufacturing Aj gold alloy, also known as sintered A1 alloy, from powder containing Aj-based powder has been studied for a long time, but the surface of AI powder is covered with hard alumina (oxide coating). Therefore, sufficient strength could not be obtained by the conventional method of simply molding the powder and then sintering it at a temperature below the melting point.
そこで、粉末を押出法にて固化する方法が考え出されて
いる。しかしながら、AI粉末の表面には、N20.0
2、N2等のガス(吸着ガス)が吸着しており、押出し
中の材料内において、又は固化した後のA1合金を熱処
理する段階において、又はA1合金を高温下で使用する
場合において、前記吸着ガス特にN2゜がN20ガス又
は馬ガス(3H20+2Aj−4A1203+3H2)
として高温下で膨張し、一般にブリスター(気泡)と呼
ばれる材料欠陥を生成させてしまう。Therefore, a method has been devised in which powder is solidified by extrusion. However, on the surface of AI powder, N20.0
2. Gases such as N2 (adsorbed gas) are adsorbed, and the adsorption occurs in the material during extrusion, in the heat treatment stage of the A1 alloy after solidification, or when the A1 alloy is used at high temperatures. Gas, especially N2°, is N20 gas or horse gas (3H20+2Aj-4A1203+3H2)
As a result, they expand under high temperatures, creating material defects commonly called blisters.
従って、粉末を押出成形する場合には、N20の脱ガス
が必要であり、従来は、真空中で加熱することによりH
,Oの脱ガスを行っていた。Therefore, when extruding powder, it is necessary to degas N20, and conventionally, H2O is degassed by heating in a vacuum.
, O was being degassed.
又、加熱真空中でないと、十分なHρの脱ガスができな
いと考えられていた(例えば、人dvaneesin
Powder Technology P、 194)
。In addition, it was thought that sufficient Hρ could not be degassed unless heated in a vacuum (for example, human dvaneesin
Powder Technology P, 194)
.
加熱真空中で脱ガスを行う従来の脱ガス方法は、成形し
た粉末又は粉末をそのままホットプレスに入れ、高温真
空下で脱ガス及び加圧成形し、押出用ビレットとするか
、又は、缶の中に粉末成形体又は粉末を直接投入し、缶
を加熱し、真空引きすることによって脱ガスを行い、終
了後真空封入して押出用ビレットとしていた。Conventional degassing methods involve degassing in a heated vacuum. The molded powder or powder is directly placed in a hot press, degassed and pressure-molded under high-temperature vacuum, and made into a billet for extrusion, or into a can. A powder compact or powder was directly put into the can, the can was heated, and degassed by vacuuming. After completion, the can was sealed under vacuum to form a billet for extrusion.
〈発明が解決しようとする問題点〉
上記のようにして、押出用ビレットなどのAI系粉末合
金を得る方法は、研究用としてはあまり問題とはならな
いが、生産に際しては、プロセスが複雑すぎる、経費が
かかるなど製造上、経済上の問題があった。<Problems to be solved by the invention> The method of obtaining AI-based powder alloys such as billets for extrusion as described above does not pose many problems for research purposes, but the process is too complicated for production. There were manufacturing and economic problems such as high costs.
本発明は以上のような従来の状況にかんがみてなされた
もので、ブリスターのないAI系粉末合金を容易かつ経
済的に得られるようにすることを目的とする。The present invention was made in view of the above-mentioned conventional situation, and an object of the present invention is to make it possible to easily and economically obtain a blister-free AI-based powder alloy.
〈問題点を解決するための手段及び作用〉上記目的を達
成するための本発明の構成は、アルミニウム系粉末を見
掛は密度が真密度比で65〜94%となるように成形し
、当該粉末成形体を300℃以上550℃以下の温度−
で大気中において加熱、脱ガスを行い、塑性加工を施す
ことを特徴とする。<Means and effects for solving the problems> The structure of the present invention to achieve the above object is to mold the aluminum powder so that the apparent density is 65 to 94% in terms of the true density ratio. The powder compact is heated to a temperature of 300°C or higher and 550°C or lower.
It is characterized by heating and degassing in the atmosphere and performing plastic working.
上記構成の各要件は以下のような考察から決定される。Each requirement of the above configuration is determined from the following considerations.
(1)粉末成形体の密度
Aj系粉末は吸着ガス特にN20を表面に吸着している
。このN20ガスが十分粉末粒子から分離されないと、
固化後ブリスター等の材料欠陥が発生する。(1) Density of powder compact Aj-based powder adsorbs adsorbed gas, especially N20, on its surface. If this N20 gas is not sufficiently separated from the powder particles,
After solidification, material defects such as blisters occur.
従って、ブリスター等の材料欠陥の発生を防ぐためにも
粉末成形体の状態での脱ガスが必要で、このためには、
粉末成形体の見掛は密度が真密度比で65%〜94%の
範囲に調整されることが必要である。密度が65%より
低い場合には、粉末成形体の強度が低く、持ち運び等の
取扱い時に割れ等が発生し、歩留りが悪く取扱いにくく
なる。密度が95%以上の場合には、粉末成形体中の空
隙が外部から閉鎖された状態となり、このまま押出時に
加熱を行うと、閉空間内のN20ガスが膨張し、粉末成
形体を破壊する。このような閉空間が生ずる限界が密度
95%以上であり、従って、粉末成形体の密度は94%
以下にする必要がある。Therefore, it is necessary to degas the powder compact in order to prevent material defects such as blisters.
The apparent density of the powder compact needs to be adjusted to a true density ratio in the range of 65% to 94%. When the density is lower than 65%, the strength of the powder compact is low and cracks occur during handling such as transportation, resulting in poor yield and difficulty in handling. When the density is 95% or more, the voids in the powder compact are closed from the outside, and if heating is continued during extrusion, the N20 gas in the closed space expands and destroys the powder compact. The limit at which such a closed space occurs is a density of 95% or more, so the density of the powder compact is 94%.
It is necessary to do the following.
尚、より好ましくは、成形体割れや脱ガスの不十分な状
況が生じないように、70%〜90%の密度とすること
が望ましい。More preferably, the density is preferably 70% to 90% to prevent cracking of the molded product or insufficient degassing.
(2)粉末成形体の脱ガス条件
従来、粉末に吸着したガスの脱ガスは、熱力学的な観点
から、真空度と温度に平衡した平行ガス圧力を求める方
法から脱ガスプロセスを予測するのが一般的であった(
LEYBOLDHER人EVSGMBH,Vacuum
Degassing of Metal Po
wders、by P、Fleehsrand R,
Ruthardt参照)。(2) Degassing conditions for powder compacts Conventionally, degassing of gases adsorbed in powder has been done by predicting the degassing process from a thermodynamic point of view by determining the parallel gas pressure that is in equilibrium with the degree of vacuum and temperature. was common (
LEYBOLDHER EVSGMBH, Vacuum
Degassing of Metal Po
wders, by P, Fleehsrand R,
(see Ruthardt).
又、一般には、大気中では酸化が進行するため、大気中
脱ガスは従来検討されたことがなかった。Furthermore, since oxidation generally progresses in the atmosphere, degassing in the atmosphere has not been considered in the past.
しかしながら、■現実の脱ガスプロセスは、時間の関係
した速度論的な過程であり、■しかも吸着ガスのように
は熱力学的に予測する−ことのできない水分を含んでお
り、■AZAl粉末固な酸化被膜は還元することが困難
である。しかしながら実際に大気中加熱を行って形成さ
れる酸化被膜の増加はわずかである。However, ■The actual degassing process is a time-related kinetic process; ■Moreover, it contains water, which cannot be predicted thermodynamically like adsorbed gas; and ■The AZAl powder solidifies. The oxidized film is difficult to reduce. However, the increase in the oxide film formed by actually heating in the atmosphere is slight.
以上の点から大気中で脱水分(ガス)が可能であると考
えられる。From the above points, it is thought that dehydration (gas) is possible in the atmosphere.
各種粉末の温度T (K)において、脱ガスが十分完了
されたと考えられる1 ppmの水蒸気量になるための
平衡分圧(mbnr)は、で与えられる。At the temperature T (K) of various powders, the equilibrium partial pressure (mbnr) for reaching a water vapor content of 1 ppm, which is considered to be sufficient degassing, is given by:
一方、大気中の飽和水蒸気圧は第1図に示す如くなって
いる。すなわち、この図より、日本において最も高温多
湿の梅雨時において、気温30℃で相対湿度100%な
ら、飽和水蒸気圧は42 mbarであり、この場合に
おいても(1)式より408℃以上なら粉末の水蒸気量
を1 ppm以下にできることがわかる。又、冬期ノ温
度5℃において、相対湿度が30%なら大気中の水蒸気
圧は約3mbarで、(1)式より約320℃以上で加
熱すれば粉末の水蒸気量をlppm以下とすることがで
きることがわかる。On the other hand, the saturated water vapor pressure in the atmosphere is as shown in FIG. In other words, from this figure, during the rainy season, the hottest and humid season in Japan, if the temperature is 30°C and the relative humidity is 100%, the saturated water vapor pressure is 42 mbar, and even in this case, according to equation (1), if the temperature is 408°C or higher, the powder It can be seen that the amount of water vapor can be reduced to 1 ppm or less. Furthermore, at a winter temperature of 5°C, if the relative humidity is 30%, the water vapor pressure in the atmosphere is about 3 mbar, and from equation (1) it is possible to reduce the amount of water vapor in the powder to 1 ppm or less by heating it at about 320°C or higher. I understand.
従って、脱ガスの温度としては、300℃以上にする必
要がある。550℃以上において、粉末に吸着している
水分又は他のガスはほぼ完全に粉末粒子から切り離され
るためこれ以上にする必要はない。Therefore, the degassing temperature needs to be 300° C. or higher. At temperatures above 550° C., water or other gases adsorbed on the powder are almost completely separated from the powder particles, so there is no need to increase the temperature above this temperature.
(3)加熱雰囲気
従来、Al粉末を大気中で加熱すると酸化被膜が成長す
るため、大気中での加熱は不可と考えられていたが、実
際に酸素量の測定をしてみろと、大気中加熱前のAl粉
末の酸素量は0.15〜0.25wt%程度であったが
、加熱後においても0.17〜0.25wt%とほと八
ど変わらないことがわかった。(3) Heating atmosphere Previously, it was thought that heating Al powder in the atmosphere would cause an oxide film to grow, so it was impossible to heat it in the atmosphere. Although the oxygen content of the Al powder before heating was about 0.15 to 0.25 wt%, it was found that even after heating, the oxygen content remained almost the same at 0.17 to 0.25 wt%.
従って、大気中にて加熱説ガスを行っても、何ら酸化の
影響は問題とはならない。しかし、大気中には水蒸気が
含まれているためH20分圧がいくらかあるが、N2や
Ar、He等の不活性ガス雰囲気中にて脱ガスを行うと
、この分圧が更に小さくな9、より脱ガスが容易となる
。Therefore, even if the heated gas is heated in the atmosphere, no oxidation effects will be a problem. However, since the atmosphere contains water vapor, there is some H20 partial pressure, but when degassing is performed in an inert gas atmosphere such as N2, Ar, He, etc., this partial pressure becomes even smaller9. Degassing becomes easier.
(4)塑性加工法
粉末の塑性加工は粉末を密度ioo%の合金塊とするた
めの方法であり、一般的には押出が最も多(用いられる
が、鍛造や圧延などの採用も可能である。(4) Plastic processing method Plastic processing of powder is a method for turning powder into an alloy lump with a density of IO%, and generally extrusion is the most commonly used (although it is also possible to use methods such as forging and rolling). .
(5)原料粉末
本発明で対象となるAI系粉末は、Al粉末を含むすべ
ての粉末、すなわち、Al粉末又は11合金粉末又はA
l粉末とA1合金粉末との混合粉末又はAl粉末もしく
は11合金粉末もしくはこれらの混合粉末と他の金属粉
末もしくは非金属粉末との混合粉末である。(5) Raw material powder The AI-based powder targeted by the present invention is any powder containing Al powder, that is, Al powder or 11 alloy powder or A
It is a mixed powder of 1 powder and A1 alloy powder, or a mixed powder of Al powder or 11 alloy powder, or a mixed powder of these powders and other metal powder or nonmetal powder.
く実 施 例〉
At’ −20wt%Si−5wt%Fe−4wt%C
u−1wt%Mgの11合金粉末(−100メツシユ)
を約70%、90%、96%の密度でそれぞれ成形し、
できた粉末成形体を300℃、400℃、500℃の各
温度にて大気中で7時間加熱した後、その温度にて押出
比10:1にて押出加工を行った。Implementation example>At' -20wt%Si-5wt%Fe-4wt%C
u-1wt%Mg 11 alloy powder (-100 mesh)
molded with a density of approximately 70%, 90%, and 96%, respectively,
The resulting powder compact was heated in the air at temperatures of 300°C, 400°C, and 500°C for 7 hours, and then extruded at the same temperature at an extrusion ratio of 10:1.
得られた押出材を500℃で加熱し、この時発生するブ
リスターの有無を調査した。その結果を表1に示す。The obtained extruded material was heated at 500° C., and the presence or absence of blisters generated at this time was investigated. The results are shown in Table 1.
0 ・・・ 5時間で発生せず
○ ・・・ 5時間以内で発生
Δ ・・・ 押出時ブ′リスター発生
× ・・・ 加熱時成形体割れ
表1に示すように、真密度比が96%の場合は押出前の
加熱中に粉末成形体が割れることがあった。0... No occurrence within 5 hours ○... Occurrence within 5 hours Δ... Blistering occurs during extrusion ×... Molded product cracks during heating As shown in Table 1, the true density ratio is 96 %, the powder compact sometimes cracked during heating before extrusion.
又、300℃加熱の場合にはどの密度のものも加熱中に
割れることはなかったが、押出時又はその後の短時間の
500℃加熱によってブリスターが発生した。Furthermore, in the case of heating at 300°C, none of the densities cracked during heating, but blisters occurred during extrusion or after heating at 500°C for a short time.
しかし、400℃以上の加熱の場合には500℃、5時
間の加熱においてもブリスターは見られなかった。However, in the case of heating at 400°C or higher, no blisters were observed even after heating at 500°C for 5 hours.
〈発明の効果〉
本発明に係るAI系粉末合金の製造方法によれば、AI
系粉末の脱ガスを大気圧で大気中又はN2、Ar、He
等の不活性ガス中において行うので、従来の真空中での
脱ガス処理等に比べて工程数が少なく、設備も簡素であ
り、高能率で実施できるようになる。<Effects of the Invention> According to the method for producing an AI-based powder alloy according to the present invention, AI
Degassing the powder in the atmosphere at atmospheric pressure or in N2, Ar, He
Since the process is carried out in an inert gas such as, the number of steps is smaller than conventional degassing treatment in a vacuum, the equipment is simple, and the process can be carried out with high efficiency.
更に、このようにして得られるAj系粉末合金は、従来
方法で得られるものとほぼ同等の品質であり、空気中の
加熱処理にもかかわらず酸化膜の増大もなく、粉末A1
合金の製造に極めて好適である。Furthermore, the Aj-based powder alloy obtained in this way has almost the same quality as that obtained by the conventional method, and there is no increase in oxide film despite heat treatment in air, and powder A1
Extremely suitable for manufacturing alloys.
第1図は温度と大気中の飽和水蒸気圧との関係を示すグ
ラフである。
特 許 出 願 人
住友電気工業株式会社
代 理 人FIG. 1 is a graph showing the relationship between temperature and saturated water vapor pressure in the atmosphere. Patent application agent Sumitomo Electric Industries Co., Ltd.
Claims (5)
5〜94%となるように成形し、当該粉末成形体を30
0℃以上550℃以下の温度で大気中において加熱、脱
ガスを行い、塑性加工を施すことを特徴とするアルミニ
ウム系粉末合金の製造方法。(1) Apparent density of aluminum powder is 6 as true density ratio
5 to 94%, and the powder compact is 30%
A method for producing an aluminum-based powder alloy, which comprises heating and degassing in the atmosphere at a temperature of 0°C or more and 550°C or less, and subjecting it to plastic working.
%である特許請求の範囲第1項に記載のアルミニウム系
粉末合金の製造方法。(2) The apparent density of the powder compact is 70 to 90 in terms of true density ratio.
% of the aluminum-based powder alloy according to claim 1.
e等の不活性ガスを用いる特許請求の範囲第1項又は第
2項に記載のアルミニウム系粉末合金の製造方法。(3) N_2 gas or Ar, H as degassing atmosphere gas
The method for producing an aluminum-based powder alloy according to claim 1 or 2, using an inert gas such as e.
はアルミニウム合金粉末又はアルミニウム粉末とアルミ
ニウム合金粉末との混合粉末又はアルミニウム粉末もし
くはアルミニウム合金粉末もしくはこれらの混合粉末と
他の金属粉末もしくは非金属粉末との混合粉末を用いる
特許請求の範囲第1項ないし第3項のいずれかに記載の
アルミニウム系粉末合金の製造方法。(4) As aluminum-based powder, aluminum powder, aluminum alloy powder, mixed powder of aluminum powder and aluminum alloy powder, or mixed powder of aluminum powder or aluminum alloy powder, or mixed powder of these and other metal powder or non-metal powder. A method for producing an aluminum-based powder alloy according to any one of claims 1 to 3, using the method.
特許請求の範囲第1項ないし第4項のいずれかに記載の
アルミニウム系粉末合金の製造方法。(5) The method for producing an aluminum-based powder alloy according to any one of claims 1 to 4, in which extrusion, forging, and rolling are used as the plastic working method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26561186A JPS63121628A (en) | 1986-11-10 | 1986-11-10 | Manufacture of aluminum alloy powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26561186A JPS63121628A (en) | 1986-11-10 | 1986-11-10 | Manufacture of aluminum alloy powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63121628A true JPS63121628A (en) | 1988-05-25 |
JPH0478698B2 JPH0478698B2 (en) | 1992-12-11 |
Family
ID=17419538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26561186A Granted JPS63121628A (en) | 1986-11-10 | 1986-11-10 | Manufacture of aluminum alloy powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63121628A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0254735A (en) * | 1988-08-18 | 1990-02-23 | Showa Alum Corp | Aluminum brazing sheet |
WO1993009899A1 (en) * | 1991-11-22 | 1993-05-27 | Sumitomo Electric Industries, Ltd | Method for degassing and solidifying aluminum alloy powder |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5597447A (en) * | 1979-01-19 | 1980-07-24 | Sumitomo Electric Ind Ltd | Aluminum sintered alloy and production of the same |
JPS5835562A (en) * | 1981-08-26 | 1983-03-02 | Fuji Xerox Co Ltd | Message information recording device |
JPS6015687A (en) * | 1983-07-08 | 1985-01-26 | 日本電気株式会社 | Display |
JPS6360265A (en) * | 1986-08-29 | 1988-03-16 | Mitsubishi Metal Corp | Production of aluminum alloy member |
-
1986
- 1986-11-10 JP JP26561186A patent/JPS63121628A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5597447A (en) * | 1979-01-19 | 1980-07-24 | Sumitomo Electric Ind Ltd | Aluminum sintered alloy and production of the same |
JPS5835562A (en) * | 1981-08-26 | 1983-03-02 | Fuji Xerox Co Ltd | Message information recording device |
JPS6015687A (en) * | 1983-07-08 | 1985-01-26 | 日本電気株式会社 | Display |
JPS6360265A (en) * | 1986-08-29 | 1988-03-16 | Mitsubishi Metal Corp | Production of aluminum alloy member |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0254735A (en) * | 1988-08-18 | 1990-02-23 | Showa Alum Corp | Aluminum brazing sheet |
WO1993009899A1 (en) * | 1991-11-22 | 1993-05-27 | Sumitomo Electric Industries, Ltd | Method for degassing and solidifying aluminum alloy powder |
Also Published As
Publication number | Publication date |
---|---|
JPH0478698B2 (en) | 1992-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4659546A (en) | Formation of porous bodies | |
KR102449774B1 (en) | Titanium bar, titanium plate and method for producing the same | |
JPH0130898B2 (en) | ||
JPS63121628A (en) | Manufacture of aluminum alloy powder | |
CA1045009A (en) | Process for producing copper base alloys | |
JPS63140048A (en) | Manufacture of aluminum powder alloy | |
JP2588889B2 (en) | Forming method of Ti-Al based intermetallic compound member | |
JPH0377243B2 (en) | ||
JP3270798B2 (en) | Method for producing silicon carbide sintered body | |
JPS6360265A (en) | Production of aluminum alloy member | |
JP3691399B2 (en) | Method for producing hot-worked aluminum alloy powder | |
JPH01156402A (en) | Method for compacting powder of aluminum alloy | |
JPH046202A (en) | Manufacture of al series powder compacted body | |
JPS62199703A (en) | Hot hydrostatic compression molding method for al-si powder alloy | |
SU914181A1 (en) | Method of producing metallic powder compacts | |
JPH028301A (en) | Manufacture of metal material by powder canning process | |
JPS61194101A (en) | Method for degassing al powder and al alloy powder | |
JPS62247007A (en) | Production of sintered aluminum alloy parts | |
JP2566434B2 (en) | Method for producing surface-treated rapidly solidified aluminum alloy powder | |
JPS63266078A (en) | Heat treatment for billet or preform of aluminum powder | |
SU401447A1 (en) | THE METHOD OF MANUFACTURING PRODUCTS FROM FIRES | |
JPH01263202A (en) | Production of billet of al-based powder for molding | |
JPS5817802B2 (en) | Hot working method for powder high speed steel | |
JPH02129345A (en) | Fe-al-si alloy and its production | |
JPH04251653A (en) | Manufacture of intermetallic compound |