[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63126486A - Hybrid dna tandem containing dna fragment of gemini virus - Google Patents

Hybrid dna tandem containing dna fragment of gemini virus

Info

Publication number
JPS63126486A
JPS63126486A JP27194486A JP27194486A JPS63126486A JP S63126486 A JPS63126486 A JP S63126486A JP 27194486 A JP27194486 A JP 27194486A JP 27194486 A JP27194486 A JP 27194486A JP S63126486 A JPS63126486 A JP S63126486A
Authority
JP
Japan
Prior art keywords
dna
virus
hybrid
fragment
geminivirus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27194486A
Other languages
Japanese (ja)
Inventor
Tsutae Morinaga
森永 傅
Kinichiro Miura
謹一郎 三浦
Masato Ikegami
正人 池上
Yataro Ichikawa
市川 弥太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP27194486A priority Critical patent/JPS63126486A/en
Publication of JPS63126486A publication Critical patent/JPS63126486A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/12011Geminiviridae
    • C12N2750/12022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

PURPOSE:To obtain a hybrid DNA, containing DNA having sequentially >=2 linked DNA fragments derived from gemini viruses in the same direction and useful as a vector for introducing exogenotes into plant cells. CONSTITUTION:A hybrid DNA, prepared by directly linking DNA fragments which are obtained by converting single-stranded DNA of gemini viruses into double-stranded DNA by recombining operation and containing a region considered as a replication starting point of at least the gemini viruses DNA or DNA fragments of size 2,500-2,800 based pairs and containing a transcription starting region of a coat protein in addition to the replication starting region in replication intermediate DNA of the gemini viruses by treatment with a restriction enzyme or ligase reaction so as to provide at least two of the DNA fragment of the above-mentioned viruses having the same sequence and plasmid vector DNA, etc., for Escherichia coli linked to the other end. Exogenotes can be introduced into the afore-mentioned DNA and then into plant individuals.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、植物或いは植物細胞に外来遺伝子を導入する
ベクターとして使用し1qるジエミニウィルスのDNA
断片を含むハイブリッドDNAに関する。更に詳しくは
、ジェミニウイルス由来のDNA11′i片が2個以上
同一の方向へ配列結合したDNAを含むハイブリッドD
NAに関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is directed to the use of dieminivirus DNA to be used as a vector for introducing foreign genes into plants or plant cells.
It relates to hybrid DNA containing fragments. More specifically, a hybrid D containing DNA in which two or more geminivirus-derived DNA11'i fragments are linked in the same direction.
Regarding NA.

〈従来技術〉 ウィルスからのDNA遺伝子は、最近遺伝子組み換え技
術において、ベクターとして開発利用されつつある。特
に動物ウィルスのシミアンウィルス(SV)40やパピ
ロマウイルス、ボバインウイルス、アデノウィルスの如
きウィルスのDNAがよく利用されている。これらは動
物系のベクターとして見い出されたものであって、植物
系の細胞中では増殖しない。従ってこれらは植物の遺伝
子組み換え用のベクターとして利用は出来ない。
<Prior Art> DNA genes from viruses are recently being developed and used as vectors in genetic recombination technology. In particular, the DNA of viruses such as the animal virus simian virus (SV) 40, papillomavirus, bovine virus, and adenovirus are often used. These were discovered as animal vectors and do not proliferate in plant cells. Therefore, these cannot be used as vectors for genetic modification of plants.

現在までに、植物へ外来遺伝子を導入する為に利用出来
る植物ベクターとして、例えばトマト。
To date, tomatoes have been used as plant vectors that can be used to introduce foreign genes into plants.

タバコなどに腫瘍を作るアグロバクテリウム・チューム
ファシエンスが有している11−プラスミド。
An 11-plasmid possessed by Agrobacterium tumfaciens, which causes tumors in tobacco and other plants.

白菜やキャベツなどに病気を起こすカリフラワーモザイ
クウィルスのDNAが知られているのみであった。Ti
−プラスミド、カリフラワーモザイクウィルスのDNA
は夫々外来遺伝子をつなぎ込んで植物へその外来遺伝子
を運び込む例が報告されているが、適用出来る植物は大
部分双子葉植物に限られている。人類にとって重要穀物
であるイネ。
The only known DNA was cauliflower mosaic virus, which causes diseases in Chinese cabbage and cabbage. Ti
-Plasmid, cauliflower mosaic virus DNA
There have been reports of cases in which foreign genes are linked together and transferred to plants, but the plants that can be used are mostly limited to dicotyledonous plants. Rice is an important grain for humankind.

ムギ、トウモロコシの如き単子葉植物に適用出来るベク
ターの開発は極めて重要な価値を有することであり工業
的にも価値あることである。
The development of vectors that can be applied to monocotyledonous plants such as wheat and corn has extremely important value and is also of industrial value.

遺伝子組み換え用のベクターになり得る可能性のあるD
NA遺伝子を有する植物ウィルスは前記のカリフラワー
モザイクウィルスが早くから知られており、そのベクタ
ー化の研究も進められている。
D that has the potential to become a vector for genetic recombination
The cauliflower mosaic virus described above has been known for a long time as a plant virus having an NA gene, and research on its vectorization is also progressing.

カリフラワーモザイクウィルスのDNAは大腸菌内で増
殖したものでもキャベツや白菜に感染性のあることが、
ジー◆レベラリエール (G、 LebelJrier)らにより報告され(G
ene 12139(1980)] 、更に同著者らは
Pr0C,Natl、^cad。
Cauliflower mosaic virus DNA is found to be infectious to cabbage and Chinese cabbage even if it is grown in E. coli.
G◆Reported by Lebel Jrier (G) et al.
ene 12139 (1980)], and the same authors Pr0C, Natl, ^cad.

Sci、USA  792932〜2938 (19B
2)において、カリフラワーモザイクウィルスのDNA
を2ケ連結したものは、大腸菌ベクターD N A p
BR322と結合したままでカブに接種してカリフラワ
ーモザイクウィルスのDNA@得たことを報告している
。同著者らの研究成果はカリフラワーモザイクウィルス
DNAの植物ベクター化へ通を開くものであったが、1
984年カリフラワーモザイクウィルスは一般のDNA
ウィルスと異なり複製の途中でRNAを経て逆転写され
ることがエム・ポロヴイツチら[The E)IBOJ
ournai 3309 (1984)]により報告さ
れており、特異なウィルスと考えられる。
Sci, USA 792932-2938 (19B
In 2), cauliflower mosaic virus DNA
The E. coli vector DNA p
It has been reported that DNA of cauliflower mosaic virus was obtained by inoculating turnips while conjugated with BR322. The authors' research results opened the door to the use of cauliflower mosaic virus DNA as a plant vector, but 1
984 cauliflower mosaic virus is common DNA
Unlike viruses, reverse transcription occurs through RNA during replication, as reported by M Polovitzi et al.
3309 (1984)] and is considered to be a unique virus.

一方近年になって、ジェミニウイルスと呼ばれる一群の
ウィルスが知られる様になってきた。ジェミニウイルス
は、大きさが2500〜2700塩基の環状一本鎖のD
NAを遺伝子とする植物ウィルスであり、タバコ、トマ
ト、マメ、ムギ、トウモロコシなどに感染・増殖するも
のが知られている。即ちジェミニウイルスが感染・増殖
する宿主領域は、Ti−プラスミド、カリフラワーモザ
イクウィルスが双子葉類植物にほとんど限られているの
に対し、双子葉類のみに限られず単子葉類にもわたって
いる。従って、ジェミニウイルスのベクター化自体極め
て意味あることである。
On the other hand, in recent years, a group of viruses called geminiviruses have become known. Geminivirus is a circular single-stranded D virus with a size of 2500 to 2700 bases.
It is a plant virus that carries NA as a gene, and is known to infect and multiply in tobacco, tomatoes, beans, wheat, corn, etc. That is, the host region where geminiviruses infect and propagate is not limited to dicotyledons but also extends to monocotyledonous plants, whereas Ti-plasmid and cauliflower mosaic virus are mostly limited to dicotyledonous plants. Therefore, vectorization of geminivirus itself is extremely significant.

ジェミニウイルスは、1977年口バート・エム・グツ
ドマンらがビーンゴールアンモザイクウイルス(以後B
GMVと略称する)を発見し、その遺伝子が約2500
塩基からなる環状一本鎖のDNAであることを見い出し
[Virology 83.171 (1977)]、
その後、世界各地で同じ特徴を持ったウィルスにマング
ビーンイエローモザイクウィルス(MYMV)[ピー・
トング・ミーアコムらphytopatho−1ogy
  亘41 (1981)]、 トマトゴールデンモザ
イクウィルス(TGMV)[ジエイ・シー・マチイスら
Summa Phytophathological 
2B? (1975)]、キャツサバラテントウイルス
(CLV)[ビー・ディー・ハリソンら、Nature
 270760 (1977>]、タバコリーフカール
ウィルス(TLCV)[尾崎ら日本植物病理学会報 4
562 (1979)] 、ユーホルビアモザイクウイ
ルス(EMV)[ケイ・ニス・キムらPhytopat
hology  69980 (1979)]、  ]
トマトイエQ−ドIJ−7ウイルスTomato  Y
DV)  [尾崎ら日本植物病理学会報 44167 
(1978)]、]ビートカーリートップウィルスBT
CV)[デー・エルー?ムフオード、 Phytopa
thology  64136(1974)]、メイズ
ストリークウィルス(MSV)[ビー・デーー/’1リ
ソンらNature 270760(1977)]、ウ
ライ−トドワーフウィルスWDV>。
Geminivirus was first discovered in 1977 by Bart M. Gutsman et al.
(abbreviated as GMV), and its genes are approximately 2,500.
discovered that it is a circular single-stranded DNA consisting of bases [Virology 83.171 (1977)],
After that, Mung Bean Yellow Mosaic Virus (MYMV) [P.
Tong Meerkom et al. phytopatho-1ogy
Wataru 41 (1981)], Tomato Golden Mosaic Virus (TGMV) [J. C. Matthiis et al. Summa Phytophathological
2B? (1975)], Catsara tent virus (CLV) [B.D. Harrison et al., Nature
270760 (1977>), Tobacco Leaf Curl Virus (TLCV) [Ozaki et al. Japanese Society of Plant Pathology Bulletin 4
562 (1979)], Euphorbia mosaic virus (EMV) [K. Nis. Kim et al. Phytopat
hology 69980 (1979)], ]
Tomato Y Q-do IJ-7 virus Tomato Y
DV) [Ozaki et al. Japanese Society of Plant Pathology Bulletin 44167
(1978) ], ] Beat Curly Top Virus BT
CV) [De Elu? Mufuod, Phytopa
thology 64136 (1974)], maize streak virus (MSV) [B.D./'1 Rison et al. Nature 270760 (1977)], and dwarf virus WDV>.

クローリスストライエイトウィルス(C8V)[アール
・アイ・ビー・フランスキイーらViroloc+y 
101233 (1980)1.ミスカンザスストリー
クウイルス(荻条斑ウィルスHisV)[山下ら日本植
物病理学会報51582 (1985月などが知られて
いる。
Cloris striate virus (C8V) [R.I.B. Francesky et al. Viroloc+y
101233 (1980)1. Miss Kansas Streak Virus (HisV) [Yamashita et al. Bulletin of the Japanese Society of Plant Pathology 51582 (1985) is known.

これらはいずれもその遺伝子が約2500〜2800塩
基からなる環状二本鎖のDNAであり、前期カリフラワ
ーモザイクウィルス(環状二本鎖DNA。
All of these are circular double-stranded DNA whose genes are approximately 2,500 to 2,800 bases long, and the early cauliflower mosaic virus (circular double-stranded DNA).

大きさ約8キロ塩基対)とは全く異なった別種のDNA
植物ウィルスで、植物ベクター化するためには独自の技
術を開発することが必要となる。
A completely different type of DNA (approximately 8 kilobase pairs in size)
Since it is a plant virus, it is necessary to develop a unique technology to turn it into a plant vector.

く本発明の構成〉 本発明者らは、ジェミニウイルスの一本tJIDNAe
遺伝子組み換え操作において技術的に取り扱い易い様に
二本鎖化したDNAやジェミニウイルス遺伝子の複製中
間状態の二本鎖DNAを、大腸菌ベクターDNAや酵母
菌ベクターDNAなどに組み込んだハイブリッドDNA
などについて研究を進め、ジェミニウイルスのDNAに
ついて驚くべきことに、そのDNA断片が少くとも2ヶ
同じ方向へ配列結合したDNAは植物へよく感染しかつ
よく増殖することを見い出し本発明に到達したものであ
る。
Structure of the present invention> The present inventors have discovered that one of the geminiviruses, tJIDDNAe,
Hybrid DNA is a hybrid DNA in which double-stranded DNA or double-stranded DNA in an intermediate state of replication of gemini virus genes is incorporated into E. coli vector DNA, yeast vector DNA, etc. so that it is technically easy to handle in genetic recombination operations.
As a result of conducting research on gemini virus DNA, it was surprisingly discovered that DNA in which at least two DNA fragments are linked in the same direction infects plants and multiplies well, resulting in the present invention. It is.

すなわち本発明は、ジェミニウイルスのDNA断片を少
くとも2ヶ同じ方向へ配列結合したDNAを含むハイブ
リッドDNAに関する。
That is, the present invention relates to a hybrid DNA containing DNA in which at least two geminivirus DNA fragments are linked in the same direction.

ジェミニウイルスは先に挙げた様に10数種類知られて
いるが、これらの遺伝子DNAは特開昭60−5468
3号公報や特開昭60−54684号公報記載の方法で
二本鎖化することができる。このようにして二本鎖化し
たDNAを、本発明のジェミニウイルスのDNA断片と
して使用することができる。
As mentioned above, more than 10 types of geminiviruses are known, and their genetic DNA was published in Japanese Patent Application Laid-Open No. 60-5468.
It can be made into double strands by the method described in Publication No. 3 and Japanese Patent Application Laid-Open No. 60-54684. The DNA thus double-stranded can be used as the geminivirus DNA fragment of the present invention.

またジェミニウイルスは、複製中間体型DNAがBGM
V (特開昭60−54684号公報参照)、MYMV
 (特開昭60−54683号公報参照)、TGMV[
ハミルトンらNucleic Ac1ds Re5ea
rch、 104901 (198,2)参照]などに
知られており、これらはその他のジェミニウイルスでも
一般に存在しているものと信じられる。これらの複製中
間体DNAのうち、大きさが2500〜2800塩基′
からなる環状二本鎖のDNAも、本発明のジェミニウイ
ルスのDNA断片として使用することができる。
In addition, in geminiviruses, the replication intermediate type DNA is background music.
V (see Japanese Patent Application Laid-Open No. 60-54684), MYMV
(Refer to Japanese Patent Application Laid-Open No. 60-54683), TGMV [
Hamilton et al Nucleic Ac1ds Re5ea
rch, 104901 (198, 2)], and it is believed that these are commonly present in other geminiviruses as well. Among these replication intermediate DNAs, those with a size of 2500 to 2800 bases'
A circular double-stranded DNA consisting of can also be used as the geminivirus DNA fragment of the present invention.

これらのジェミニウイルスのDNA断片は、ジェミニウ
イルスの遺伝子全長を含んでいてもよく、或いは、一部
分を欠失していてもよい。少くともジェミニウイルスD
NAの複製開始点と考えられる領域を含んでいればよい
。該領域は、BGMV。
These geminivirus DNA fragments may contain the entire length of the geminivirus gene, or may be partially deleted. At least Gemini virus D
It is sufficient that the region includes a region considered to be the origin of NA replication. The area is BGMV.

MYMV、TGMV、CLVk−tjいT、夫々見い出
される二種のDNA (即ち二分節になったDNA)で
お互いに塩基配列の相同性の非常に高い約200塩基か
らなる領域である。その仙のジェミニウイルスDNAに
おいては、上記4種のジェミニウイルスにおいて見い出
される複製開始領域の塩基配列と50%以上の相同性の
ある約200塩基からなる領域である。
MYMV, TGMV, and CLVk-tjT are two types of DNA (that is, bisegmented DNA) found in each of these regions, each consisting of about 200 bases with extremely high base sequence homology. In the geminivirus DNA, it is a region consisting of about 200 bases that has 50% or more homology with the base sequence of the replication initiation region found in the four types of geminiviruses mentioned above.

更に、ジェミニウイルスの遺伝子DNAが、二分節にな
っている場合、ウィルスのコートタンパク質をコードス
ル分節DNAでは、DNAの複製開始領域の他に、コー
トタンパク質の転写開始領域も含むことが好ましい。コ
ートタンパク質の転写開始領域は、ジェミニウイルスの
お互いの塩基配列の相同性の高い約200塩基に亘る複
製開始領域の次から、コートタンパク質のタンパク翻訳
開始信号コドン(ATG>までの領域である。
Further, when the geminivirus genetic DNA is bisegmented, the segmented DNA that encodes the viral coat protein preferably contains not only the DNA replication initiation region but also the transcription initiation region of the coat protein. The transcription initiation region of the coat protein is a region from the replication initiation region of about 200 bases of geminiviruses with high base sequence homology to the protein translation initiation signal codon (ATG> of the coat protein).

本発明では、ジエミニウィルスのDNA断片が2ヶ以上
同じ方向へ配列(一般にこれは゛タンデム゛′と称され
ている)結合していることを特徴とする。2ヶ以上タン
デムに結合していると植物へ導入した場合に、ジェミニ
ウィルス由来のDNAの感染・増殖がよくなるので、ベ
クターとしての性能もそれだけ高くなる。
The present invention is characterized in that two or more DNA fragments of the dieminivirus are linked in the same direction (generally referred to as 'tandem'). When two or more viruses are linked in tandem, the infection and proliferation of geminivirus-derived DNA becomes better when introduced into plants, and the performance as a vector becomes correspondingly higher.

また本発明では、ジエミニウィルスのDNA断片が少く
とも2ケタンデムに結合したDNA部分の他に、大腸菌
、酵母菌または枯草菌中で作用するDNA複製開始点及
び選別マーカー遺伝子のDNAを有するハイブリッドD
NAであれば、該ハイブリッドDNAは大腸菌、N母菌
または枯草菌中で増幅・調製することが出来るので特に
有利である。
Furthermore, in the present invention, in addition to a DNA portion in which at least two digit tandem DNA fragments of dieminivirus are linked, a hybrid D having DNA of a DNA replication origin and a selection marker gene that acts in Escherichia coli, yeast, or Bacillus subtilis is used.
NA is particularly advantageous because the hybrid DNA can be amplified and prepared in E. coli, N mother bacteria, or Bacillus subtilis.

大賜菌、酵母菌又は枯草菌の内で働<DNA複製開始点
及び選別マーカー遺伝子のDNAは、例えば大腸菌用の
プラスミドベクター(例えば1)BR322,1)BR
325,pBR325,pBR328,1)NEO,p
UC8゜pKC7,pH89など〉コスミッドベクター
(例えばpKY2662など)、ファージベクター(例
えばシャロン1など)、酵母菌用ベクター(例えばYR
p7゜YEI)13. YIp32. pYcl、 p
YC2など)、枯草菌用のプラスミドベクタ−(pUB
llo、 pUB112.1)SAO501゜plP4
.  pTA1060.  DE194.  pTA1
020.  pc194.  pC22LpC223な
ど)などが挙げられる。
The DNA of the DNA replication origin and selection marker gene can be used in E. coli plasmid vectors (e.g. 1) BR322, 1) BR
325, pBR325, pBR328, 1) NEO, p
UC8゜pKC7, pH89, etc.> Cosmid vectors (e.g. pKY2662, etc.), phage vectors (e.g. Sharon 1, etc.), yeast vectors (e.g. YR
p7゜YEI)13. YIp32. pYcl, p
YC2, etc.), plasmid vector for Bacillus subtilis (pUB
llo, pUB112.1) SAO501゜plP4
.. pTA1060. DE194. pTA1
020. pc194. pC22LpC223, etc.).

これらの内で大腸菌用のプラスミドベクターDNAが最
も取り扱い易く、DNAの調製・増幅が行ない易いので
好ましい。
Among these, plasmid vector DNA for E. coli is preferred because it is the easiest to handle and the DNA can be easily prepared and amplified.

本発明では、ジェミニウイルスのDNA断片の少くとも
2ヶが同じ配列方向となる様に直接結合し、他端に例え
ば大腸菌用のプラスミドベクターDNAが結合している
ハイブリッドDNAが作成し易く簡単な為に好ましい。
In the present invention, a hybrid DNA in which at least two geminivirus DNA fragments are directly linked in the same sequence direction and a plasmid vector DNA for E. coli, for example, is linked to the other end is easy and simple to create. preferred.

本発明のハイブリッドDNAは、コバレントリー・クロ
ーズド・サーキュラ−(CCC>フオーム[一般に使用
する言葉で、DNAの形態を示す]のままで植物固体又
は植物細胞へ導入することが可能でかつ植物の内でジェ
ミニウイルスのDNA断片の部分が非常に複製・増殖し
易いので優れた構成のハイブリッドDNAであり、植物
ベクターとして非常に優れたものと言える。
The hybrid DNA of the present invention can be introduced into a plant solid or a plant cell in a covalently closed circular (CCC> form [a commonly used term indicating the form of DNA]) and can be introduced into a plant body. Since the geminivirus DNA fragment portion is extremely easy to replicate and propagate, it is a hybrid DNA with an excellent structure and can be said to be an excellent plant vector.

本発明のハイブリッドDNAにおいて外来遺伝子を導入
する部位は、外来遺伝子を導入したハイブリッドDNA
が植物中で複製・増殖出来るような部位であればよく特
別の制約は受けない。導入する外来遺伝子は、ジェミニ
ウイルスのDNA断片の中に挿入結合またはジェミニウ
イルスのDNA断片の一喘に結合して、これらもジェミ
ニウイルスのDNA断片及び外来遺伝子を一単位として
少くとも二単位が同じ方向へ配列結合してハイブリッド
DNAを形成するのが好ましい。
In the hybrid DNA of the present invention, the site into which the foreign gene is introduced is the hybrid DNA into which the foreign gene has been introduced.
There are no particular restrictions as long as the site can be replicated and propagated in the plant. The foreign gene to be introduced is inserted into a geminivirus DNA fragment or bound to one part of the geminivirus DNA fragment, so that at least two units are the same, with the geminivirus DNA fragment and the foreign gene being one unit. Preferably, the hybrid DNA is formed by directional sequence linkage.

導入する外来遺伝子として、従来の植物に新しい形質を
もたらし得る遺伝子をコードしたDNA断片を主たるも
のとする。かかるものとして例えば、抗生物質(例えば
カナマイシン、ネオマイシン、メリトレキセートなど)
耐性遺伝子、除草剤〈例えばグリホセート、アトラジン
、スルフロン。
The foreign genes to be introduced are mainly DNA fragments encoding genes that can bring new traits to conventional plants. Such as, for example, antibiotics (e.g. kanamycin, neomycin, melitrexate, etc.)
Resistance genes, herbicides (e.g. glyphosate, atrazine, sulfuron).

バラコートなど)耐性遺伝子、成る種の貯蔵タンパク貿
遺伝子(例えばファゼオリン、グリシニン。
Balaquat, etc.) resistance genes, consisting of species storage protein trade genes (eg phaseolin, glycinin).

ビインなどをコードした遺伝子)などが挙げられる。Genes that code for Biin, etc.).

本発明のハイブリッドDNAを植物固体へ導入するには
、例えばハイブリッドDNAの0.15)INaα−0
,015Mクエン酸ナトリウム水溶液(DNA′ail
O〜200 μg/11 f )をセライト(Celi
te)とともに植物体へ家何Gノる。あるいは植物細胞
へ導入する為には、プロトプラスト化した細胞にCa2
+及びポリエチレングリコール存在下本発明のハイブリ
ッドDNAを作用させる方法、プロトプラスト化した細
胞又は細胞壁のある細胞と本発明のハイブリッドDNA
の存在下電気ショックによるいわゆるエレクトロポレー
ションの方法又はエレクトロインジェクションの方法、
更に植物細胞へ本発明のDNAを機械的に直接導入する
方法(マイクロインジェクション)などがある。
In order to introduce the hybrid DNA of the present invention into a plant solid, for example, 0.15) INaα-0 of the hybrid DNA
, 015M sodium citrate aqueous solution (DNA'ail
O ~ 200 μg/11 f) was added to Celi
te) to the plant body. Alternatively, in order to introduce Ca2 into plant cells, add Ca2 to protoplast cells.
+ and a method of acting the hybrid DNA of the present invention in the presence of polyethylene glycol, a protoplast cell or a cell with a cell wall, and the hybrid DNA of the present invention
the so-called electroporation method or electroinjection method by electric shock in the presence of
Furthermore, there is a method of mechanically directly introducing the DNA of the present invention into plant cells (microinjection).

特に本発明のハイブリッドDNAは、Tiプラスミドの
様に植物へ導入する為にバクテリアの助けを受けるなど
の必要もなく、植物固体へ直接振付けるのみで全身感染
することが出来るので、優れたベクターと言える。
In particular, the hybrid DNA of the present invention does not require the assistance of bacteria to be introduced into plants, unlike the Ti plasmid, and can be used to infect the entire body of a plant simply by direct choreography, making it an excellent vector. I can say it.

以下実施例を挙げて本発明を更に述べるが、本発明はこ
れに限定を受けるものではない。
The present invention will be further described below with reference to Examples, but the present invention is not limited thereto.

実施例1 特開昭60−5468,11号公報記載のDNApBG
fll  (3μ9)及びI)BGCI  (3μg)
を夫々制限酵素[宝酒造製])tindll、 C1a
 Iで、供給者の指示書に従ッ”C完全分解し、該分解
物を前期特開昭の公報の1g記載と同様の方法でアガロ
ースゲル電気泳動を行ない、ビーンゴールアンモザイク
ウイルスのDNA断片[pBG旧からは2.58キロ塩
基対のDNA断片(以下旧断片と呼ぶ) 、1)BGC
Iからは2.65キロの塩基対のDNA断片(以下C1
断片と呼ぶ)]及び大腸菌ベクタープラスミドD N 
A pBR322断片[p8GH1からはp13R32
2−H断片、 pBGclからはpBR322−C断片
と呼ぶ]を特開昭60−546841gと同様の処理に
てDNAを精製し、滅菌蒸溜水20μに溶解した。
Example 1 DNApBG described in JP-A No. 60-5468, 11
fll (3μ9) and I) BGCI (3μg)
Restriction enzymes [manufactured by Takara Shuzo]) tindll, C1a
Completely decompose the decomposed product according to the supplier's instructions, and perform agarose gel electrophoresis on the decomposed product in the same manner as described in the earlier publication of JP-A-Sho, to obtain DNA fragments of Bean Goal Ann Mosaic Virus. [2.58 kilobase pair DNA fragment from pBG old (hereinafter referred to as old fragment), 1) BGC
From I, a 2.65 kilobase pair DNA fragment (hereinafter referred to as C1
fragment)] and E. coli vector plasmid DN
A pBR322 fragment [p13R32 from p8GH1
2-H fragment (referred to as pBR322-C fragment from pBGcl) was purified in the same manner as in JP-A-60-546841g, and dissolved in 20μ of sterile distilled water.

H1断片水溶液10μlとp8R322−H断片水溶液
1μl、特開昭60−54684記載の10倍DNA連
結酵素用バッファー3μi’、T4−DNAリガーゼ[
宝酒造(製)]0.5μl、滅菌蒸溜水14.5μlを
加え、3℃16時間反応させ、該反応液5μlを用いて
、特開昭60−54684の「大腸菌II 8101の
コンピテントセルの調製及びその形質転換」の項で述べ
たと同様の手法により、大腸菌88101のコンピテン
トセルを形質転換し、アンピシリン50μg/−含有す
るL−agarプレートに数百例のコロニーを得た。
10 µl of H1 fragment aqueous solution, 1 µl of p8R322-H fragment aqueous solution, 3 µi' of 10x DNA ligating enzyme buffer described in JP-A-60-54684, T4-DNA ligase [
Takara Shuzo Co., Ltd.] 0.5 μl and 14.5 μl of sterilized distilled water were added and reacted for 16 hours at 3°C. Using 5 μl of the reaction solution, ``Preparation of competent cells of Escherichia coli II 8101'' in JP-A-60-54684 was carried out. Competent cells of Escherichia coli 88101 were transformed by the same method as described in the section ``And Transformation thereof'', and several hundred colonies were obtained on L-agar plates containing 50 μg/- of ampicillin.

この内10ケのコロニーを特開昭60−54684と同
様のBOilinfj Lysis法でプラスミドDN
Aのミニ調製を行ない、プラスミドDNAの解析を行な
った。
Plasmid DNA was extracted from 10 of these colonies using the BOilinfj Lysis method similar to that used in JP-A No. 60-54684.
A mini-preparation of A was performed and the plasmid DNA was analyzed.

このプラスミドDNAを制限酵素1tindll[、8
g[11夫々で分解解析することにより3種のものが、
2ケの旧断片を同一の配列方向にpBR322のHin
du部位に結合していることがわかった。このハイブリ
ッドDNAの1つをり8H[)101とする。ざらに別
の一種は3ケのtiI断片を同一配列方向にpBR32
2のtlind11部位に結合していることがわかった
。このハイブリッドDNAの1つをp811T101と
する。
This plasmid DNA was digested with restriction enzyme 1tindll[,8
By decomposing and analyzing each of g[11, three types of
Place the two old fragments in the same sequence direction as Hin of pBR322.
It was found that it binds to the du site. One of these hybrid DNAs is designated as 8H[)101. Another type is to insert three tiI fragments into pBR32 in the same sequence direction.
It was found that it binds to the tlind11 site of 2. One of these hybrid DNAs is designated as p811T101.

CI断片水溶液10μl及び1)BR322−C断片水
溶液1μlとからも前期pBHDIOIを得たと同様の
反応以下の操作を行ない、数百例の形質転換コロニーを
得、この内の15ケのプラスミドDNAの解析を行なっ
た。制限酵素C1a I、 Bgl II夫々で分解・
解析することにより5種のものが2ケのCI断片を同一
の配列方向にpBR322のC1a I部位に結合して
いることがわかった。このハイブリッドDNAの1ツヲ
p[5cI)101 トlル。
Using 10 μl of CI fragment aqueous solution and 1 μl of 1) BR322-C fragment aqueous solution, the same reaction as that used to obtain early pBHDIOI was performed. Several hundred transformed colonies were obtained, and the plasmid DNA of 15 of them was analyzed. I did it. Digested with restriction enzymes C1a I and Bgl II.
Through analysis, it was found that five types of fragments bind two CI fragments in the same sequence direction to the C1a I site of pBR322. One piece of this hybrid DNA is p[5cI)101.

更に別の1種のものに3ケのCI断片を同一配列方向に
pBR322のC1a 1部位に結合していた。このプ
ラスミドをpBcTlolとする。
In yet another type, three CI fragments were ligated to the C1a 1 site of pBR322 in the same sequence direction. This plasmid is designated pBcTlol.

プラスミドDNADBHDIOI、 I)B11T10
1、pBcDlol。
Plasmid DNADBHDIOI, I) B11T10
1, pBcDlol.

pBcllolをマニアティスら著[)1o1ecul
arCloning−A Laboratory Ma
nual J  (コールドスプリングへ−バー編)第
86〜96頁記載の方法に従って約800 mの培地よ
り大口に調製し夫々の精製DNAを1〜2mCl得た。
pBclol by Maniatis et al. [)1o1ecul
arCloning-A Laboratory Ma
A large volume of each purified DNA was prepared from approximately 800 m of culture medium according to the method described in pages 86 to 96 of Nual J (edited by Cold Spring Heber), and 1 to 2 mCl of each purified DNA was obtained.

これらのDNA1.15HNaCf2−0.015)1
クエン酸ナトリウム(” lX5SC”と以下呼ぶ)溶
液に溶解し、表1の組み合わせの混合物で、発芽後6日
目のトップクロツプインゲンノ若葉の表面に、セライト
とともに滅菌手袋を使用しこすりつけ接種した。全部で
?O個体に接種し、バイオトロン(小糸製作所製コイト
トロン)で昼間状態14時間30℃、夜間状態10時間
27℃、湿f980%以上の条件で成育させビーンゴー
ルダンモザイク病の発病を観察した。接種後100日目
発病の観察された個体数及び病徴出現率は下記表1の如
くであった。
These DNA1.15HNaCf2-0.015)1
A mixture of the combinations shown in Table 1 dissolved in a sodium citrate (hereinafter referred to as "1 . In all? O individuals were inoculated and grown in a Biotron (Koitoron manufactured by Koito Seisakusho) at 30°C for 14 hours during the day, 27°C for 10 hours at night, and a humidity of 980% or higher, and the onset of Bean Goldan mosaic disease was observed. The number of individuals observed to develop the disease 100 days after inoculation and the incidence of disease symptoms are as shown in Table 1 below.

比較例1 比較の為にpBR322D N A蚤を実施例1〜3と
一緒に同様に接種し病徴を見たが、ビーンゴールアンモ
ザイクの病徴は接種後10日〜20日経ても見られなか
った。その結果も表1に示す。
Comparative Example 1 For comparison, pBR322DNA fleas were inoculated in the same manner as in Examples 1 to 3 and disease symptoms were observed, but the disease symptoms of Bean Goal Anne Mosaic were observed even 10 to 20 days after inoculation. There wasn't. The results are also shown in Table 1.

実施例1〜3より本発明のハイブリッドDNAが大腸菌
ベクタープラスミドpBR322を含んだままでも植物
体へ接種可能でかつ植物の内でBGM由来のDNAが植
物全体に亘って感染・増殖していることがわかり、本発
明のハイブリッドDNAは植物ベクターとして有用であ
ると言える。
Examples 1 to 3 show that the hybrid DNA of the present invention can be inoculated into plants even when it contains the E. coli vector plasmid pBR322, and that BGM-derived DNA infects and proliferates throughout the plant. Therefore, it can be said that the hybrid DNA of the present invention is useful as a plant vector.

更にDNA接種個体の水薬を採取し、その1gを0.1
Mリン酸ナトリウム50mHE D T A−10%S
[)S水溶液(1)H8,4)3rn!及び3dフエノ
ール/クロpホルム(4/1容積混合物)の中で乳鉢に
てすり潰し、4000rpm 5分間で遠心し水層を更
にフェノール/クロロホルム混合液で抽出処理3回行な
い、水層に200111の3HNaOAc水溶液(pH
5,4)及びエタノール4rf11を加え、−20’C
2時間後遠心し、沈澱したDNAベレットを蒸溜水1r
IIlに溶解し、この溶液3μmをニトロセルロースフ
ィルターにドツトし0.5HNaOH/1.5HHa 
Cal溶液で30秒間処理後、1.OHTrisHCu
 (pH7,0)液で中和後、80℃で2時間ニトロセ
ルロースフィルターを処理した。
Furthermore, collect the liquid medicine from the DNA-inoculated individual, and add 1g of it to 0.1
M Sodium Phosphate 50mHE DTA-10%S
[)S aqueous solution (1)H8,4)3rn! and 3d phenol/chloroform (4/1 volume mixture) in a mortar, centrifuged at 4000 rpm for 5 minutes, and the aqueous layer was further extracted three times with a phenol/chloroform mixture. Aqueous solution (pH
5,4) and ethanol 4rf11, and heated to -20'C.
After 2 hours, centrifuge and add the precipitated DNA pellet to 1 liter of distilled water.
3 μm of this solution was dotted onto a nitrocellulose filter and 0.5HNaOH/1.5HHa
After treatment with Cal solution for 30 seconds, 1. OHTrisHCu
After neutralization with a solution (pH 7,0), the nitrocellulose filter was treated at 80°C for 2 hours.

次に特開昭60−54684記載と同様の32Dラベル
したBGMVのDNAをプローブに用いて、前出書1−
)tolecular Cloning−A Labo
ratory Manual J第387〜389頁と
同様の操作でDNA−DNAハイブリダイゼーションを
行ない、以下一般に行われている手法によりオートラジ
オグラフィーを行ない、実施例1〜3及び比較例1の採
取葉内にBGMV山来のDNAが検出されるかどうかを
調べた。
Next, using the same 32D-labeled BGMV DNA as described in JP-A-60-54684 as a probe,
)tolecular Cloning-A Labo
DNA-DNA hybridization was performed in the same manner as in Ratory Manual J, pp. 387-389, and autoradiography was performed using a commonly used method to detect BGMV in the collected leaves of Examples 1 to 3 and Comparative Example 1. We investigated whether Yamaki's DNA could be detected.

その結果も前記表1に示す。The results are also shown in Table 1 above.

実施例4 特願昭60−98108記載のDNApBGHlo及び
pBGcloを実施例1〜3と同様の処理を行なって、
ビーンゴールアンモザイクウイルスのDNA断片[1)
BGIlloからは2.58キロ塩基対のDNA断片(
HIO断片と呼ぶ) 、 pBGcloからは2.65
キロ塩基対のDNA断片(C10断片と呼ぶ)]を得、
旧O断片と1)BR322−11断片を実施例1〜3と
同様に結合し、大腸菌t18101のコンピテントセル
を形質転換し、同様の処理解析にて、旧O断片が2ケ同
一方向に配列結合してpBR322の旧ndln部位に
結合したハイブリッドD N A pBflD102を
得た。
Example 4 DNA pBGHlo and pBGclo described in Japanese Patent Application No. 60-98108 were treated in the same manner as in Examples 1 to 3,
DNA fragment of Bean Goal Ann mosaic virus [1]
A 2.58 kilobase pair DNA fragment (
HIO fragment), 2.65 from pBGclo
A kilobase pair DNA fragment (called a C10 fragment)] was obtained,
The old O fragment and 1) BR322-11 fragment were ligated in the same manner as in Examples 1 to 3, E. coli t18101 competent cells were transformed, and the same treatment analysis revealed that the two old O fragments were aligned in the same direction. The resulting hybrid DNA pBflD102 was ligated to the old ndln site of pBR322.

CIO断片についても同様の処理・操作を行ない、CI
O断片が2ケ同一方向に配列結合してp8R322のC
(2aI部位に結合したハイブリッドDNApBCひ1
02を1qた。
Similar processing and operations are performed on the CIO fragment, and the CI
Two O fragments are linked in the same direction to form the C of p8R322.
(Hybrid DNA pBChi1 bound to 2aI site)
I got 1q of 02.

pBllD102及びDBCDIQ2のDNAを用いて
実施例1〜3と同様表1の所定聞のDNAをインゲン若
葉へ接種し、病徴出現、ジェミニウイルス由来DNAの
検出を行なった。その結果を前記表1に示した。
Using pBllD102 and DBCDIQ2 DNA, predetermined lengths of DNA shown in Table 1 were inoculated into young kidney bean leaves in the same manner as in Examples 1 to 3, and disease symptoms were observed and geminivirus-derived DNA was detected. The results are shown in Table 1 above.

本実施例のハイブリッドDNAにおいても、インゲンに
全体感染し、ジェミニウイルスのDNAが増殖している
ことが確認出来、植物ベクターとして有用なことがわか
る。
It can be confirmed that the hybrid DNA of this example also infects the entire kidney bean and that the gemini virus DNA is proliferating, indicating that it is useful as a plant vector.

実施例5 特開昭60−54684記載のD N A pBGRF
tll及びpBGRFclを実施例1〜3と同様の処理
を行なってビーンゴールアンモザイクウイルスのDNA
断片[pBGRFHlからはRFI11断片、 1)B
GRFClからはRFCI断片]を得、RFHI断片と
DBR322−H断片を、RFC1断片とpBR322
−C断片とを夫々実施例1〜3と同様に結合し以下同様
あ処理・解析した。RE旧断片がpBR322の旧nd
I11部位に結合したハイブリッドDNAt)BHRF
DIOI、 RFCI断片がpBR322のcf2aI
部位に結合したハイブリッドD N A pBcRFD
lolを得た。
Example 5 DNA pBGRF described in JP-A-60-54684
tll and pBGRFcl were treated in the same manner as in Examples 1 to 3 to obtain Bean Goal Ann mosaic virus DNA.
Fragment [RFI11 fragment from pBGRFHl, 1)B
RFCI fragment] from GRFCl, RFHI fragment and DBR322-H fragment, RFC1 fragment and pBR322
-C fragments were ligated in the same manner as in Examples 1 to 3, and treated and analyzed in the same manner. The RE old fragment is the old nd of pBR322.
Hybrid DNA bound to I11 site) BHRF
DIOI, RFCI fragment is cf2aI of pBR322
Hybrid DNA pBcRFD bound to site
Got lol.

pBHRF[)101及びpBcRFDlolのDNA
を用いて実施例1〜3と同様衣1の所定量のDNAをイ
ンゲン若葉に接種し、防黴出現・ジェミニウイルス由来
DNAの検出を行なった。その結果も表1に示した。
DNA of pBHRF[)101 and pBcRFDlol
As in Examples 1 to 3, a predetermined amount of DNA from Cloth 1 was inoculated into young green bean leaves, and the appearance of mildew resistance and detection of geminivirus-derived DNA were performed. The results are also shown in Table 1.

本実施例のハイブリッドDNAも実施例1〜4と同様、
インゲン全体に感染し、ジェミニウイルスDNAが増殖
していることが確認出来、植物ベクターとして有用なこ
とがわかる。
The hybrid DNA of this example is similar to Examples 1 to 4,
It was confirmed that the entire kidney bean was infected and the geminivirus DNA was propagated, indicating that it is useful as a plant vector.

Claims (1)

【特許請求の範囲】 1、ジェミニウイルスのDNA断片が少くとも2ケ同じ
方向へ配列結合したDNAを含んだハイブリッドDNA
。 2、該ジェミニウイルスがビーンゴールデンモザイクウ
イルス、マングビーンイエローモザイクウイルス、トマ
トゴールデンモザイクウイルス、キャッサバラテントウ
イルス、タバコリーフカールウイルス、メイズストリー
クウイルス、ウィートドワースウイルス、クローリスス
トライエイトウイルスなる群から選ばれたものである特
許請求の範囲第1項記載のハイブリッドDNA。 3、該ジェミニウイルスがビーンゴールデンモザイクウ
イルスまたはマングビーンイエローモザイクである特許
請求の範囲第1項記載のハイブリッドDNA。 4、該DNA断片がジェミニウイルスの遺伝子DNAの
二本鎖化されたDNAである特許請求の範囲第1項記載
のハイブリッドDNA。 5、該DNA断片がジェミニウイルスの複製中間型DN
Aである特許請求の範囲第1項記載のハイブリッドDN
A。 6、該DNA断片がジェミニウイルスのDNA複製開始
点及びウィルスのコードタンパク質の転写開始点を少く
とも含んでいる特許請求の範囲第1項記載のハイブリッ
ドDNA。 7、該ジェミニウイルスのDNA断片が少くとも2ケ同
じ方向へ配列結合したDNAの他に、大腸菌の中で作用
するDNA複製開始点及び選択マーカー遺伝子DNAを
有する特許請求の範囲第1項記載のハイブリッドDNA
。 8、該ジェミニウイルスのDNA断片が少くとも2ケ同
じ方向へ配列結合したDNAの他に、酵母菌又は枯草菌
の中で作用するDNA複製開始点及び選択マーカー遺伝
子のDNAを有する特許請求の範囲第1項記載のハイブ
リッドDNA。 9、該ジェミニウイルスのDNA断片の中に或いは該断
片の一端に外来遺伝子が結合している特許請求の範囲第
1項記載のハイブリッドDNA。
[Claims] 1. Hybrid DNA containing DNA in which at least two geminivirus DNA fragments are aligned in the same direction.
. 2. The gemini virus is selected from the group consisting of bean golden mosaic virus, mung bean yellow mosaic virus, tomato golden mosaic virus, cassava tent virus, tobacco leaf curl virus, maize streak virus, wheat dwarf virus, and cloris striate virus. The hybrid DNA according to claim 1, which is a hybrid DNA. 3. The hybrid DNA according to claim 1, wherein the gemini virus is bean golden mosaic virus or mung bean yellow mosaic virus. 4. The hybrid DNA according to claim 1, wherein the DNA fragment is a double-stranded DNA of a geminivirus gene. 5. The DNA fragment is a replication intermediate DNA of gemini virus.
The hybrid DN according to claim 1 which is A
A. 6. The hybrid DNA according to claim 1, wherein the DNA fragment contains at least a geminivirus DNA replication origin and a virus-encoded protein transcription initiation site. 7. In addition to DNA in which at least two DNA fragments of the geminivirus are linked in the same direction, the virus has a DNA replication origin and a selection marker gene DNA that acts in E. coli. hybrid dna
. 8. Claims that include, in addition to DNA in which at least two DNA fragments of the geminivirus are linked in the same direction, a DNA replication origin and a selection marker gene that act in yeast or Bacillus subtilis. Hybrid DNA according to item 1. 9. The hybrid DNA according to claim 1, wherein a foreign gene is bound to the geminivirus DNA fragment or to one end of the fragment.
JP27194486A 1986-11-17 1986-11-17 Hybrid dna tandem containing dna fragment of gemini virus Pending JPS63126486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27194486A JPS63126486A (en) 1986-11-17 1986-11-17 Hybrid dna tandem containing dna fragment of gemini virus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27194486A JPS63126486A (en) 1986-11-17 1986-11-17 Hybrid dna tandem containing dna fragment of gemini virus

Publications (1)

Publication Number Publication Date
JPS63126486A true JPS63126486A (en) 1988-05-30

Family

ID=17507004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27194486A Pending JPS63126486A (en) 1986-11-17 1986-11-17 Hybrid dna tandem containing dna fragment of gemini virus

Country Status (1)

Country Link
JP (1) JPS63126486A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054684A (en) * 1983-09-05 1985-03-29 Teijin Ltd Novel dna and hybrid dna
JPS61257186A (en) * 1985-05-10 1986-11-14 Teijin Ltd Novel dna and hybrid dna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054684A (en) * 1983-09-05 1985-03-29 Teijin Ltd Novel dna and hybrid dna
JPS61257186A (en) * 1985-05-10 1986-11-14 Teijin Ltd Novel dna and hybrid dna

Similar Documents

Publication Publication Date Title
AU633248B2 (en) Agrobacterium mediated transformation of germinating plant seeds
Sera Inhibition of virus DNA replication by artificial zinc finger proteins
Li et al. Involvement of KU80 in T-DNA integration in plant cells
Tzfira et al. Nucleic acid transport in plant-microbe interactions: the molecules that walk through the walls
IL84381A (en) Process for the genetic modification of monocotyledonous plants of the family gramineae using agrobacterium
Lacroix et al. Will you let me use your nucleus? How Agrobacterium gets its T-DNA expressed in the host plant cell
DK159976B (en) PLASMID VECTORS, METHOD OF PRODUCING THEREOF, BACTERY CELLS TRANSFORMED WITH PLASMID VECTORS, AND EXPRESSION OF PROTEIN IN TRANSFORMED BACTERY CELLS
Pasumarthy et al. The presence of tomato leaf curl Kerala virus AC3 protein enhances viral DNA replication and modulates virus induced gene-silencing mechanism in tomato plants
WO2022193849A1 (en) Liquid yeast one- and two-hybrid high-throughput library screening method and application thereof
KR20070026257A (en) A new gene related to stresses and a method for producing a stress-resistant plant using the same
JPH06228190A (en) Natural and synthetic proteins having inhibition activity against pathogenic microbe
Padidam et al. A phage single-stranded DNA (ssDNA) binding protein complements ssDNA accumulation of a geminivirus and interferes with viral movement
García-Cano et al. The Agrobacterium F-box protein effector VirF destabilizes the Arabidopsis GLABROUS1 enhancer/binding protein-like transcription factor VFP4, a transcriptional activator of defense response genes
Vivian et al. Isolation and characterization of cloned DNA conferring specific avirulence in Pseudomonas syringae pv. pisi to pea (Pisum sativum) cultivars, which possess the resistance allele, R2
JPS61162188A (en) Selectable marker for developing vector and character converting system in plant
Desjardins et al. A cytological analysis of wheat meiosis targeted by virus-induced gene silencing (VIGS)
JPH01160998A (en) Polypeptide
JPS63126486A (en) Hybrid dna tandem containing dna fragment of gemini virus
Pueppke et al. Understanding the binding of bacteria to plant surfaces
Iwakawa et al. Perturbation of H3K27me3-associated epigenetic processes increases Agrobacterium-mediated transformation
JPS61234799A (en) Qualitative test of nucleic acid
Endo et al. Targeted mutagenesis using FnCpf1 in tobacco
Sam et al. DESIGN AND TRANSFER OF OsSWEET14-EDITING T-DNA CONSTRUCT TO BAC THOM 7 RICE CULTIVAR.
Boulton Agrobacterium-mediated transfer of geminiviruses to plant tissues
EP0222332A2 (en) Recombinant sigma NS protein