JPS6312555A - Steering system for conveying metal plate - Google Patents
Steering system for conveying metal plateInfo
- Publication number
- JPS6312555A JPS6312555A JP15277586A JP15277586A JPS6312555A JP S6312555 A JPS6312555 A JP S6312555A JP 15277586 A JP15277586 A JP 15277586A JP 15277586 A JP15277586 A JP 15277586A JP S6312555 A JPS6312555 A JP S6312555A
- Authority
- JP
- Japan
- Prior art keywords
- metal plate
- magnetic field
- conveyed
- width direction
- linear motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002184 metal Substances 0.000 title claims abstract description 61
- 230000006698 induction Effects 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010291 electrical method Methods 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C47/00—Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
- B21C47/34—Feeding or guiding devices not specially adapted to a particular type of apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C47/00—Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
- B21C47/34—Feeding or guiding devices not specially adapted to a particular type of apparatus
- B21C47/3408—Feeding or guiding devices not specially adapted to a particular type of apparatus for monitoring the lateral position of the material
- B21C47/3425—Feeding or guiding devices not specially adapted to a particular type of apparatus for monitoring the lateral position of the material without lateral edge contact
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C47/00—Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
- B21C47/34—Feeding or guiding devices not specially adapted to a particular type of apparatus
- B21C47/3466—Feeding or guiding devices not specially adapted to a particular type of apparatus by using specific means
- B21C47/3483—Magnetic field
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Non-Mechanical Conveyors (AREA)
- Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分時〉
この発明は連続焼純ライン、連続亜鉛メツキライン、連
続酸洗いライン等における金属板搬送ラインにおけるス
テアリング装置に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application> The present invention relates to a steering device in a metal plate conveyance line such as a continuous sintering line, continuous galvanizing line, continuous pickling line, etc.
〈従来の技術〉
たとえば製鉄所等において、鋼板を搬送するラインとし
ては大別して3 mm以上の厚板又は熱延帯鋼を低速で
搬送して圧延や加熱、冷却するラインや0.1〜3 m
m程度の冷延帯鋼などの薄板を高速搬送して切断、巻き
取り、加熱冷却、表面処理を行わせるラインがある。<Prior art> For example, in steel works, etc., lines for conveying steel plates can be roughly divided into lines that convey thick plates of 3 mm or more or hot-rolled steel strips at low speed for rolling, heating, and cooling; m
There is a line that transports thin plates such as cold-rolled steel strips with a thickness of approximately 1.5 m in diameter at high speed, and performs cutting, winding, heating and cooling, and surface treatment.
ところで、このような鋼板を搬送するラインでは、一般
的に鋼板を下方からロールで支持して搬送している。こ
のロールはラインにもよるが、搬送する鋼板の下方にの
み設ける場合もあるが、上下両面側に設ける場合もある
。このような搬送ラインにおいては、搬送する鋼板の幅
方向の位置調整(以下「ステアリング」という)は、従
来第7図(5)に)に示すようなディスブレースメント
ガイド(displacementguide)と称せ
られるステアリング装置によって行っていた。第7図は
その概略構成のみを示すものであって、搬送されてきた
ストリップ1をエントリーロール(entry−rol
l) 20によって走行方向を」二向きに変えられ、フ
レーム21上に固定して設けた2本のローラ22を通っ
て下向きに変えられ、エキジットロール(exit−r
oll) 2 gから出て行くようになっている。これ
はフレームを、ピボット点Pを固定中心として僅かに揺
動されて、出側のフレーム上ローラの位置を僅かに変え
ろことによって、胃−ラ」二(こ巻きついているストリ
ップの走行移置を変えるJうにしている。By the way, in a line for conveying such steel plates, the steel plates are generally conveyed while being supported from below by rolls. Depending on the line, these rolls may be provided only below the steel plate to be conveyed, or they may be provided on both the top and bottom sides. In such a conveyance line, the position adjustment in the width direction of the steel plate to be conveyed (hereinafter referred to as "steering") is conventionally performed using a steering wheel called a displacement guide as shown in FIG. 7 (5). It was done by a device. FIG. 7 shows only the schematic structure, and the conveyed strip 1 is placed on an entry roll (entry-roll).
l) The running direction is changed in two directions by means of 20, and is changed downward through two rollers 22 fixedly provided on a frame 21, and an exit roll (exit-r
oll) 2 It is supposed to go out from g. This allows the frame to be slightly swung about a fixed pivot point P, and by slightly changing the position of the rollers on the frame on the exit side, the traveling displacement of the wound strip is controlled. I'm trying to change it.
〈発明が解決しJ、うとずろ問題点〉
しかし、上述した従来の搬送金属板のステアリング装置
(31、金属板を17−ルと接触させて板中央の走行位
置を変えろ方法をとっているために
■ 板表面にII−ルどの接触による傷がついたり、大
きな幅方向ずれを直すときに板が変形したりする。<The invention has solved the problems that are still bothering us.> However, since the above-mentioned conventional steering device for conveying metal plates (31) uses a method of bringing the metal plate into contact with the 17-ru to change the running position of the center of the plate. ■ The surface of the board may be damaged by contact with the II-ru, or the board may be deformed when correcting a large deviation in the width direction.
Oまな、ftl属板の加熱中又は冷却中に、ロールとの
接触の程度による接触ムラのため金属板に温度ムラが生
じる。During heating or cooling of the metal plate, temperature unevenness occurs in the metal plate due to contact unevenness depending on the degree of contact with the roll.
θ また、ストリップの表面を電解クリーニングや酸洗
している場合には、ロールとの接触部分が有効なりリー
ニング区間や酸洗区間として使用できないなどの欠点が
あった。θ Further, when the surface of the strip is subjected to electrolytic cleaning or pickling, there is a drawback that the contact portion with the roll is effective and cannot be used as a leaning section or a pickling section.
この発明は、従来の金属板のステアリング装置における
上述の欠点を除去した搬送金属板のステアリング装置を
提供しようとするものである。The present invention aims to provide a steering device for a conveyed metal plate that eliminates the above-mentioned drawbacks of conventional steering devices for metal plates.
く問題点を解決するための手段〉
上述の目的を達成するための本発明の搬送金属板のステ
アリング装置は、金属板の搬送方向に沿って配列した複
数の支持装置を有する搬送金属板のステアリング装置に
おいて、搬送する金属板面に対し一定の間隔を置いて配
置され、搬送する金属板の幅方向に磁界を移動させなが
ら印加できると共に、当該金属板の幅方向に位置ずれ量
に応じた強度の磁界を印加できる直線移動磁界型誘導電
動機を備えたことを特徴とするものてあある。Means for Solving the Problems〉 To achieve the above-mentioned object, the conveying metal plate steering device of the present invention has a plurality of supporting devices arranged along the conveying direction of the metal plate. The device is placed at a fixed distance from the surface of the metal plate to be transported, and can apply a magnetic field while moving it in the width direction of the metal plate to be transported, as well as apply a magnetic field with an intensity that corresponds to the amount of positional deviation in the width direction of the metal plate. There is a device characterized by comprising a linear moving magnetic field type induction motor capable of applying a magnetic field of .
−3=
く作 用〉
このように、多数の支持装置によって支持されて搬送す
る金属板の下側あるいは上側に直線移動磁界型誘導電動
機を配置し、搬送される金属板の幅方向のずれに対して
、ずれ量に応じ強度の!li界が印加するので、常に設
定された中央位置に自動的に曳帰し走行するように、調
整されるので、金属板面への傷や変形が生しることもな
く、安定して支持し、走行させることができろ。−3 = Effect> In this way, a linear moving magnetic field type induction motor is placed below or above a metal plate that is supported and conveyed by a large number of support devices, and the linear movement magnetic field type induction motor is placed below or above the metal plate that is being conveyed while being supported by a large number of supporting devices. On the other hand, the strength depends on the amount of deviation! Since the li field is applied, it is adjusted so that it always returns to the set center position automatically and travels, so there is no damage or deformation to the metal plate surface, and the metal plate is stably supported and travels. You can do it.
〈実 施 例〉
つぎに、図面を用い゛にの発明の代表的な実施例につい
て説明する。<Embodiments> Next, typical embodiments of the invention will be described with reference to the drawings.
第1図は、この発明にかかる搬送金属板のステアリング
装置全体の配置構成を表わす斜視図、第2図間B)はそ
れぞれこの発明の搬送金属板のステアリング装置に使用
する直線移動磁界型誘導電動機の構造を示す断面図およ
び平面図、第3図(5)(2)は第2図に示す直線移動
磁界型誘導電動機の磁界強度分布図および幅方向断面構
造図、第4図(AJ@は第1図の装置の上方および横方
向から見た概略構成図、第5図は第1の実施例の装置に
おいける電流とずれ量の関係を示すグラフ、第6図(A
l(B)はこの発明の第2実施例の構成図および励磁電
流とずれ量の関係を示すグラフである。FIG. 1 is a perspective view showing the overall arrangement of the steering device for conveying metal plates according to the present invention, and FIG. Figure 3 (5) and (2) are the magnetic field strength distribution diagram and cross-sectional structure diagram in the width direction of the linear moving magnetic field type induction motor shown in Figure 2, and Figure 4 (AJ@ FIG. 1 is a schematic configuration diagram of the device seen from above and in the lateral direction. FIG. 5 is a graph showing the relationship between current and deviation amount in the device of the first embodiment. FIG.
1(B) is a diagram showing the configuration of a second embodiment of the present invention and a graph showing the relationship between excitation current and deviation amount.
第1図においては、ロール5A、5Bの間に設置した直
線移動磁界型誘導電動機10の概念図を示す1が金属板
又は金属ストリップ(以後「金属板」と称する)である
。In FIG. 1, a conceptual diagram of a linearly moving magnetic field type induction motor 10 installed between rolls 5A and 5B is shown. Reference numeral 1 is a metal plate or metal strip (hereinafter referred to as a "metal plate").
10は金属板1とある間隙を有して設置された直線移動
磁界型誘導電動機(以下、リニアモータと称する)であ
り、本図では2個の彎−ル5A、5Bの中間に配した例
を示しているが、特に設置場所の限定は無く、何処でも
よい。10 is a linear moving magnetic field type induction motor (hereinafter referred to as a linear motor) installed with a certain gap from the metal plate 1, and in this figure, it is placed between two curved wheels 5A and 5B. However, there is no particular restriction on the installation location, and it may be installed anywhere.
第2図(5)、@はリニアモータ10を示すもので、磁
性金属材料でなり、いくつかの歯を有するヨーク12お
よび歯の周囲を取り巻くように巻かれた複数のコイル1
1とから構成されている。第3図は、このリニアモータ
ー。In Fig. 2 (5), @ shows the linear motor 10, which is made of a magnetic metal material, includes a yoke 12 having several teeth, and a plurality of coils 1 wound around the teeth.
It is composed of 1. Figure 3 shows this linear motor.
における磁界強度の特性を示している。なお、リニアモ
ーター0にはコイル11に電流を流すための交流電源が
接続されるが、ここでは記述しない。リニアモーター0
の駆動原理は従来よりよく知られたもので、本発明にお
いでも特に異なる所はない、1駆動方法には電流の相数
や極数(N、S極の数)によって種々のものがあるが、
特に限られた方法に限定されるものではない。ここでは
、最も典型的な2極3相方式をもとに説明する。第2図
(5)。It shows the characteristics of magnetic field strength at . Note that an alternating current power source for passing current through the coil 11 is connected to the linear motor 0, but this will not be described here. linear motor 0
The driving principle is well known in the past, and there is no particular difference in the present invention.1 There are various driving methods depending on the number of current phases and the number of poles (number of N and S poles). ,
It is not limited to any particular method. Here, the explanation will be based on the most typical two-pole three-phase system. Figure 2 (5).
に)および第3図におい一〇1図中のF、G、Hは3相
それぞれに対応したコイル11を示すもので、F−2,
G−2,H−2のコイル11は、F、G、IIのコイル
11とは逆向きに目−り12に巻かれたコイル11を表
わしている。) and Figure 3, F, G, and H in Figure 101 indicate the coils 11 corresponding to each of the three phases, and F-2,
The coils 11 of G-2 and H-2 represent the coils 11 wound around the mesh 12 in the opposite direction to the coils 11 of F, G and II.
いま、F、G、IIお」びF−2,G−2゜H−2のコ
イル11に、それぞれ位相が120度(−π)ずれrコ
次の電流を流すものとする。Now, it is assumed that the following currents are passed through the coils 11 of F, G, II and F-2, G-2°H-2, respectively, with a phase shift of 120 degrees (-π).
t、、I、’ = 1o61116
・・・(1)そうすると、それぞれのコイル11が
巻かれたヨーク12には、その電流に比例した磁界が発
生する。第3図の実線Jで示したグラフはヨーク12の
上方Y方向位置での発生する磁界のX方向の強度成分を
示したもので、電流位相θ−0の場合のものである。い
ま、リニアモータ10の極数が2極であるため、磁界の
形としてはN極、S極がそれぞれ1づつ生じるほぼ正弦
波の形となる。上記電流位相θは、ある周期で0〜36
0度(2π)まで変化するが、その変化に合せて磁界の
正弦波も移動していく。その移動方向は位相が進んで行
く方向と同じであり、この場合はX方向である。図中点
線に−で示したのはθが約120度の場合のものである
。この位相の周期は加える電流の周波数によるが、最も
一般的な周波数1160ヘルツ(1秒間に60回)であ
る。t,,I,' = 1o61116
(1) Then, a magnetic field proportional to the current is generated in the yoke 12 around which each coil 11 is wound. The graph indicated by the solid line J in FIG. 3 shows the intensity component in the X direction of the magnetic field generated at the position above the yoke 12 in the Y direction, and is for the case where the current phase is θ-0. Now, since the linear motor 10 has two poles, the shape of the magnetic field is approximately a sine wave with one north pole and one south pole. The above current phase θ is 0 to 36 in a certain period.
It changes up to 0 degrees (2π), but the sine wave of the magnetic field also moves along with the change. The direction of movement is the same as the direction in which the phase advances, in this case the X direction. In the figure, the dotted line indicated by - indicates the case where θ is approximately 120 degrees. The period of this phase depends on the frequency of the applied current, but the most common frequency is 1160 hertz (60 times per second).
以上のように、リニアモータ10はヨーク12の上方に
直線状に移動する磁界を発生させるものである。このリ
ニアモータ10のヨーク12の上方に導電体を買くと次
のようなメカニズムにより導電体に力が発生する。すな
わち、移動する磁界が導電体を横切ると、マックスウェ
ルの誘導磁界の法則により導電体内部に渦電流が発生す
る。この渦電流と磁界が作用して所謂ローレンツ力なる
力が発生する。As described above, the linear motor 10 generates a magnetic field that moves linearly above the yoke 12. When a conductor is placed above the yoke 12 of the linear motor 10, force is generated in the conductor by the following mechanism. That is, when a moving magnetic field crosses a conductor, eddy currents are generated inside the conductor according to Maxwell's law of induced magnetic fields. This eddy current and magnetic field act to generate a so-called Lorentz force.
その力の方向は移動磁界の移動方向と同じである。The direction of the force is the same as the direction of movement of the moving magnetic field.
いま、第4図に示す第1実施例のように、リニアモータ
を帯状体である金属板1の下方(または上方、あるいは
両方)に、ある空隙を置いて配置する。第1実施例では
2個のりニアモータIOA、IOBをその移動磁界の移
動方向り、Mが互いに金属板1の幅方向外向きになるよ
うに配置している。配置の位置−8=
関係は金属板1の位置決めライン(図中のセンタライン
)を中心にほぼ左右対称とする。Now, as in the first embodiment shown in FIG. 4, a linear motor is placed below (or above, or both of) the metal plate 1, which is a strip-shaped body, with a certain gap. In the first embodiment, two linear motors IOA and IOB are arranged so that their M points face outward in the width direction of the metal plate 1 in the direction of movement of their moving magnetic fields. Arrangement position -8 = The relationship is approximately symmetrical with respect to the positioning line of the metal plate 1 (center line in the figure).
この場合、上記したような原理により、金属板1には移
動磁界に起因した力fが発生する。In this case, a force f due to the moving magnetic field is generated in the metal plate 1 according to the principle described above.
すなわち、リニアモータIOA上の金属板1の部分には
、その移動磁界方向と同方向すなわち外向きの力f、が
作用し、また、リニアモータ10Bには同様にf8とは
反対向きの力fbが作用する。That is, a force f in the same direction as the direction of the moving magnetic field, that is, an outward force, acts on the metal plate 1 on the linear motor IOA, and a force fb, which is directed opposite to f8, acts on the linear motor 10B. acts.
いま、この金属板1が位置決めラインに沿って走行して
いる場合には、上記fおよびfの大きさは等しく、逆向
きとなるため、金属板1全体としてはカキャンセルされ
、特に金属板1を移動させることはない。しかしながら
、もし、なんらかの原因により金属板1が幅方向に移動
(蛇行)したとすると、リニアモータIOAおよびIO
Bがカバーする金属板1の面積が変化する。すなわち、
移動した方向のりニアモータがカバーする面積が増え、
反対方向が減少する。金属板1の発生する力fはリニア
モータがカバーする面積に比例するため、例えば、移動
方向をリニアモータIOAの方向とすると、f、> f
、となり、このままでは金属板1のずれを更に増幅する
こととなる。いま、金属板1の左右エツジ近傍に、この
金属板1のずれ巣を検知するセンサ13を取付け、この
ずれ量に応じて移動磁界の強度を可変とする。Now, when the metal plate 1 is running along the positioning line, the magnitudes of f and f are equal and the directions are opposite, so the metal plate 1 as a whole is canceled, and especially the metal plate 1 will not be moved. However, if the metal plate 1 were to move (meander) in the width direction for some reason, the linear motors IOA and IO
The area of the metal plate 1 covered by B changes. That is,
The area covered by the near motor increases in the direction of movement,
The opposite direction decreases. Since the force f generated by the metal plate 1 is proportional to the area covered by the linear motor, for example, if the moving direction is the direction of the linear motor IOA, then f, > f
, and if this continues, the displacement of the metal plate 1 will be further amplified. Now, a sensor 13 is installed near the left and right edges of the metal plate 1 to detect the deviation of the metal plate 1, and the intensity of the moving magnetic field is made variable according to the amount of deviation.
第5図にこのずれ量と移動磁界の強度、すなわち前記し
た式(1)〜(3)のける。Ioどの関係を表オ〕ずグ
ラフを示す。ずれ量δが零の場合、10AとIOBの2
つのりニアモータに流れる電流は等しく、−に記f、と
fbも等しくなり、力はキャンセルされる。もし、金属
板1がa側にδ、だけずれたとすると、リニアモータI
OHには励磁電流■5が流れ、リニアモータIOAには
励磁電流■、が流れろ。その場合、■、〉■、からf、
> f、となり、金属板1を設定位置に復元させろ力Δ
f=f、、−f、が働らき、金属板1は設定位置に速や
かに復元されろこととなる。勿論、ここで、ずれ量δと
励磁電流I との関係は、前記したずれ址に比例して生
じる左右力f、−f、(アンバランスを増大する力)を
十分に上回るだけの力を発生するよう設定しておく必要
がある。FIG. 5 shows the amount of deviation and the strength of the moving magnetic field, that is, the equations (1) to (3) described above are calculated. A graph is shown without showing any relationship between Io and Io. If the deviation amount δ is zero, 2 of 10A and IOB
The currents flowing through the near motor are equal, and f and fb written in - are also equal, and the forces are canceled. If the metal plate 1 is shifted by δ to the a side, the linear motor I
Exciting current 5 should flow through OH, and exciting current 5 should flow through linear motor IOA. In that case, ■, 〉■, to f,
> f, and the force Δ to restore the metal plate 1 to the set position is
f=f, , -f, and the metal plate 1 is quickly restored to the set position. Of course, here, the relationship between the amount of deviation δ and the excitation current I is such that a force that sufficiently exceeds the left-right force f, -f (force that increases unbalance) generated in proportion to the above-mentioned deviation is generated. You need to set it to do so.
以上のように金属板のずれ量を検出し、そのずれ1に比
例してリニアモータの励磁電流をコントロールすること
により金属板を常に設定走行位置にステアリングできる
ことになる。As described above, by detecting the amount of deviation of the metal plate and controlling the excitation current of the linear motor in proportion to the deviation 1, the metal plate can always be steered to the set traveling position.
なお、第4図では2個のりニアモータを用いた場合の例
を示したが、勿論1個のりニアモータでも同様のステア
リング機能を発揮させることば可能である。この例を第
6図(5)。Although FIG. 4 shows an example in which two linear motors are used, it is of course possible to perform the same steering function with one linear motor. An example of this is shown in Figure 6 (5).
(へ)に示す。この場合は、移動磁界方向P、Qは図示
する如くであり、ずれ方向に応じて磁界の移動方向を変
える必要があるため、装置的にはややWeftとなる。Shown in (f). In this case, the moving magnetic field directions P and Q are as shown in the figure, and since it is necessary to change the moving direction of the magnetic field according to the direction of deviation, the device becomes a little Weft.
これに対して、第4図に示した例では磁界の移動方向は
変化せず、励磁電流値が変化するのみであるため装置的
には容易となる。On the other hand, in the example shown in FIG. 4, the moving direction of the magnetic field does not change, and only the excitation current value changes, so the apparatus is simpler.
なお、本実施例は金属板が水平に走行している場合を示
しているが、特に水平と限定する必要はなく、垂ifに
走行している場合も本発明を利用できろ。Although this embodiment shows the case where the metal plate is running horizontally, it is not particularly necessary to limit it to horizontal, and the present invention can also be used when the metal plate is running vertically.
〈発明の効果〉
以上の説明から明らかなように、この発明の搬送金属板
のステアリング装置によれば、■ 安定しt、−通板が
可能、。<Effects of the Invention> As is clear from the above description, according to the steering device for conveying metal plates of the present invention, (1) Stable sheet threading is possible.
■ 板キズが生じない。。■ No scratches on the board. .
■ 板変形がなくなる。■ No plate deformation.
■ ラインの搬送速度を高くできる。■ Line conveyance speed can be increased.
■ 電気的な方法なので応答性が速い。■ Fast response because it is an electrical method.
■ メンテナスが容易である。■ Easy maintenance.
■ 設置スペー゛スが小さくできる等の利点がある。■ It has the advantage of requiring less installation space.
第1図は、この発明にかかる搬送金属板のステアリング
装置全体の配置構成を表わす斜視図、第2図(5)σ3
)はそれぞれこの発明の搬送金属板のステアリング装置
に使用する直線移動磁界型誘導電動機の構造を示す断面
図および平面図、第3開開(Fl)は第2図に示す直線
移動磁界型誘導電動機の磁界強度分布図および幅方向断
面構造図、第4図+At (81は第1図の装置の上方
および横方向から見た概略構成図、第5図は第1の実施
例の装置においける電流とずれ量の関係を示すグラフ、
第6図(5)β)はこの発明の第2実施例の構成図およ
び励磁電流とずれ量の関係を示すグラフ、第7図(A)
ff31はそれぞれ従来の搬送金属板のステアリング装
置の要部平面図および要部側面図である。
図面中、
1は金属板又はストリップ、
5A、5Bはロール、
10、IOA、IOBはりニアモータ、11はコイル、
12はヨーク、
13はセンサである〇
第4図
Mノ
第5図
ム
どb11皐ノ □ ず地3δ
□(C償ゴノ第6図
第6図
ずれ量δFIG. 1 is a perspective view showing the overall arrangement of the steering device for conveying metal plates according to the present invention, and FIG. 2 (5) σ3
) are a sectional view and a plan view respectively showing the structure of a linear moving magnetic field type induction motor used in the steering device for conveying metal plates of the present invention, and the third opening (Fl) is a linear moving magnetic field type induction motor shown in Fig. 2. Fig. 4 + At (81 is a schematic configuration diagram of the device of Fig. 1 seen from above and from the side, Fig. 5 is a diagram of the device of the first embodiment) Graph showing the relationship between current and amount of deviation,
FIG. 6 (5) β) is a block diagram of the second embodiment of the present invention and a graph showing the relationship between excitation current and deviation amount, and FIG. 7 (A)
ff31 is a plan view of a main part and a side view of a main part of a conventional steering device for conveying metal plates, respectively. In the drawings, 1 is a metal plate or strip, 5A and 5B are rolls, 10 is IOA, IOB beam near motor, 11 is a coil, 12 is a yoke, and 13 is a sensor.ノ □ Zuzu 3δ
□(C compensation gono Fig. 6 Fig. 6 deviation amount δ
Claims (1)
する搬送金属板のステアリング装置において、搬送する
金属板面に対し一定の間隔を置いて配置され、搬送する
金属板の幅方向に磁界を移動させながら印加できると共
に、当該金属板の幅方向に位置ずれ量に応じた強度の磁
界を印加できる直線移動磁界型誘導電動機を備えたこと
を特徴とする搬送金属板のステアリング装置。In a steering device for a conveyed metal plate, which has a plurality of support devices arranged along the conveyance direction of the metal plate, the steering device is arranged at a constant interval from the surface of the metal plate to be conveyed, and applies a magnetic field in the width direction of the metal plate to be conveyed. 1. A steering device for a conveyed metal plate, comprising a linearly moving magnetic field type induction motor that can apply a magnetic field while moving the metal plate and apply a magnetic field with an intensity corresponding to the amount of positional deviation in the width direction of the metal plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15277586A JPS6312555A (en) | 1986-07-01 | 1986-07-01 | Steering system for conveying metal plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15277586A JPS6312555A (en) | 1986-07-01 | 1986-07-01 | Steering system for conveying metal plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6312555A true JPS6312555A (en) | 1988-01-19 |
Family
ID=15547873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15277586A Pending JPS6312555A (en) | 1986-07-01 | 1986-07-01 | Steering system for conveying metal plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6312555A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01287262A (en) * | 1988-05-11 | 1989-11-17 | Nkk Corp | Continuous production of hot dip metal coated steel strip |
CN111085550A (en) * | 2019-12-27 | 2020-05-01 | 江西理工大学 | Steel plate suspension conveying device and method and application thereof |
WO2023181820A1 (en) * | 2022-03-25 | 2023-09-28 | Jfeスチール株式会社 | Continuous annealing apparatus, continuous hot dip galvanization apparatus, and method for producing steel sheet |
-
1986
- 1986-07-01 JP JP15277586A patent/JPS6312555A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01287262A (en) * | 1988-05-11 | 1989-11-17 | Nkk Corp | Continuous production of hot dip metal coated steel strip |
CN111085550A (en) * | 2019-12-27 | 2020-05-01 | 江西理工大学 | Steel plate suspension conveying device and method and application thereof |
CN111085550B (en) * | 2019-12-27 | 2021-11-05 | 江西理工大学 | Steel plate suspension conveying device and method and application thereof |
WO2023181820A1 (en) * | 2022-03-25 | 2023-09-28 | Jfeスチール株式会社 | Continuous annealing apparatus, continuous hot dip galvanization apparatus, and method for producing steel sheet |
JP7380965B1 (en) * | 2022-03-25 | 2023-11-15 | Jfeスチール株式会社 | Continuous annealing equipment, continuous hot-dip galvanizing equipment, and steel plate manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0335790B2 (en) | ||
JP2019536912A (en) | Compact continuous annealing solution heat treatment | |
JP2000245128A (en) | Linear synchronous motor | |
US5964114A (en) | Method of regulating the stress distribution in metal strips or sheet, especially of nonferromagnetic metals | |
JPS6312555A (en) | Steering system for conveying metal plate | |
US3008026A (en) | Induction heating of metal strip | |
JP4814558B2 (en) | Induction heating device for side trimmer | |
US20110177258A1 (en) | Method and device for wiping liquid coating metal at the outlet of a tempering metal coating tank | |
US4518840A (en) | Method and apparatus for minimizing the power induced in a flat conducting product maintained in position electromagnetically without contact | |
CA2072200A1 (en) | Method for controlling coating weight on a hot-dipping steel strip | |
Jung et al. | Noncontact conveyance of conductive plate using omni-directional magnet wheel | |
JPS6312557A (en) | Steering device for conveying metal plate | |
JPS62130956A (en) | Preventing method for meandering of metal strip | |
JPS62167163A (en) | Floating type strip passing device | |
JP4660911B2 (en) | Non-magnetic material transfer device | |
JPH08105860A (en) | Flaw detector for conductor | |
JPS62107031A (en) | Floating type strip passing device | |
JPS6179790A (en) | Method and device for pickling | |
JP3243402B2 (en) | Conductor flaw detection device | |
US11469657B2 (en) | Apparatus for moving metal products and corresponding movement method | |
JPS62107030A (en) | Floating type strip passing device | |
JPH03297753A (en) | Method and device for controlling zigzagging of beltlike conveyance substance | |
JPS62161926A (en) | Floating type sheet passing device | |
JPS62164833A (en) | Non-contact type traveling direction changer for metallic belt-like body | |
JP4035122B2 (en) | Steel strip heating method with excellent temperature uniformity in the width direction |