[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6311050A - Permanent magnet type motor - Google Patents

Permanent magnet type motor

Info

Publication number
JPS6311050A
JPS6311050A JP61153130A JP15313086A JPS6311050A JP S6311050 A JPS6311050 A JP S6311050A JP 61153130 A JP61153130 A JP 61153130A JP 15313086 A JP15313086 A JP 15313086A JP S6311050 A JPS6311050 A JP S6311050A
Authority
JP
Japan
Prior art keywords
permanent magnet
particles
plate
magnetic
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61153130A
Other languages
Japanese (ja)
Inventor
Fumitoshi Yamashita
文敏 山下
Masami Wada
正美 和田
Shuichi Kitayama
北山 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61153130A priority Critical patent/JPS6311050A/en
Priority to US06/937,424 priority patent/US4689163A/en
Priority to DE3642228A priority patent/DE3642228C2/en
Priority to FR878700277A priority patent/FR2595001B1/en
Priority to KR1019870001418A priority patent/KR900003477B1/en
Publication of JPS6311050A publication Critical patent/JPS6311050A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To constitute a small, high-performance motor, by a method wherein plate-shaped Fe-B-R (R: Nd or Pr) grains to constitute a cylindrical magnetic pole section are aligned by magnetic means and solidified by a resin composition. CONSTITUTION:A rotor 1 holds a cylindrical magnetic pole section obtained in that plate-shaped Fe-B-R (R: Nd or Pr) grains are aligned by magnetic means and solidified by a resin composition. A stator section is povided with outer yokes 2a and 2b, two inner yokes 3 in contact with each other back to back, and exciting coils 4a and 4b enclosed between these yokes.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はコンピュータ周辺機、プリンタなどの制御用駆
動用として幅広く使用され、小型軽量化を中心に技術革
新が活発な、所謂永久磁石回転子型、或は永久磁石界磁
型のパルスモータや直流モータなどに関する。更に詳し
くは、少なくとも2極以上多極着磁せしめた小形の永久
磁石モータの、筒状磁石に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a so-called permanent magnet rotor type rotor, which is widely used as a control drive for computer peripherals, printers, etc., and where technological innovation is active centered on miniaturization and weight reduction. Or it relates to a permanent magnet field type pulse motor or a DC motor. More specifically, the present invention relates to a cylindrical magnet of a small permanent magnet motor having at least two or more multipole magnets.

従来の技術 永久磁石モータに用いられる希土類コバルト焼結磁石は
、筒状に形成し、該形状の半径方向に磁気異方化させる
ことが極めて難しい。その主な理由は焼結過程において
異方性に基づく膨張率の差が生じるためであり、該膨張
率の差は磁気異方化の程度や形状にも影響されるが一般
には等方性にて筒状に対応するほかない。このため本来
ならば最大エネルギー積で20〜30MGOe発現する
磁気性能も筒状半径方向では5MGOe程度に低下する
。更に高度な寸法精度を要求する永久磁石モータに搭載
するには焼結後に研削加工が必要で歩留まりが悪く、S
mやCoを主成分とすることも加えると経済性において
性能とのバランスに乏しい。また焼結晶は一般に機械的
に脆弱であるため、その一部が永久磁石型モータのロー
タとステータとの空隙や摺動部位に飛散、移着してモー
タとしての機能維持や信頼性の確保に重大な影響を及ぼ
ず恐れがある。
BACKGROUND ART Rare earth cobalt sintered magnets used in permanent magnet motors are formed into a cylindrical shape, and it is extremely difficult to make the magnets magnetically anisotropic in the radial direction of the shape. The main reason for this is that a difference in expansion coefficient occurs due to anisotropy during the sintering process, and this difference in expansion coefficient is also influenced by the degree and shape of magnetic anisotropy, but in general, it is due to isotropy. There is no other choice but to make it cylindrical. Therefore, the magnetic performance that would normally be 20 to 30 MGOe at the maximum energy product is reduced to about 5 MGOe in the radial direction of the cylinder. In order to install it in a permanent magnet motor that requires even higher dimensional accuracy, grinding is required after sintering, resulting in poor yields and S
Adding to the fact that M and Co are the main components, there is a poor balance between economy and performance. Furthermore, since baked crystals are generally mechanically fragile, some of them may scatter or transfer to the gaps and sliding parts between the rotor and stator of permanent magnet motors, making it difficult to maintain the motor's function and ensure its reliability. There is a risk that there will be no serious impact.

一方、希土類コバルト樹脂磁石の場合にはマトリクスで
ある樹脂が半径方向へ磁気異方化された希土類コバルト
の膨張率の差を吸収できるため、半径方向へ磁気異方化
した筒状磁石が得られる。
On the other hand, in the case of rare earth cobalt resin magnets, the matrix resin can absorb the difference in expansion coefficient of the rare earth cobalt which is magnetically anisotropic in the radial direction, so a cylindrical magnet with magnetic anisotropy in the radial direction can be obtained. .

近年、射出成形タイプの希土類コバルト樹脂磁石をアキ
シャル方向へ磁気異方化すれば最大エネルギー積8〜1
0MGOe程度のものが容易に得られることが知られて
いる。しかも、焼結晶に比べて密度が概ね30%程度軽
減され、且つ高度な寸法精度が確保でき、更に機械的脆
弱さも改善されるものである。
In recent years, if injection molded rare earth cobalt resin magnets are made magnetically anisotropic in the axial direction, the maximum energy product can be increased from 8 to 1.
It is known that 0 MGOe can be easily obtained. Furthermore, the density is approximately 30% lower than that of fired crystals, a high degree of dimensional accuracy can be ensured, and mechanical fragility is also improved.

以上の理由によって半径方向へ磁気異方化した希土類コ
バルト樹脂磁石は、永久磁石型モータの磁石としては希
土類コバルト焼結磁石に比べてより好ましいものである
ことが明白である。
For the above reasons, it is clear that rare earth cobalt resin magnets with magnetic anisotropy in the radial direction are more preferable as magnets for permanent magnet motors than rare earth cobalt sintered magnets.

上記、希土類コバルト樹脂磁石の半径方向への磁気異方
化手段に関する従来技術を説明する。
The prior art related to the above-mentioned means for creating magnetic anisotropy in the radial direction of the rare earth cobalt resin magnet will be explained.

樹脂磁石成形キャビティの半径方向への磁界発生手段と
しては、例えば特開昭57−170501号公報に記載
されているようにキャビティの外周に磁化コイルを配置
した金型を用いるか或はキャビティの外周に磁化コイル
を埋設した金型を用いる必要がある。かかる方法はキャ
ビティ内に所定の強さの磁界を発生させるため高電圧大
電流型の電源を用い、且つ起磁力を大とすることが行わ
れている。
As means for generating a magnetic field in the radial direction of the resin magnet molding cavity, for example, as described in JP-A-57-170501, a mold in which a magnetizing coil is arranged around the outer periphery of the cavity, or It is necessary to use a mold in which the magnetizing coil is embedded. In this method, a high-voltage, large-current power source is used to generate a magnetic field of a predetermined strength within the cavity, and the magnetomotive force is increased.

発明が解決しようとする問題点 しかし、金型の外周からヨークにより磁化コイルで励磁
した磁束をキャビティ内へ有効に集束させるため、磁路
長を長くせざるを得す、特に小型の永久磁石モータの円
筒型磁石の場合には、起磁力のかなりの部分が漏洩磁束
として消費されてしまうため、半径方向へ十分な磁気異
方化を施すことが困難な場合があった。
Problems to be Solved by the Invention However, in order to effectively focus the magnetic flux excited by the magnetized coil from the outer periphery of the mold into the cavity by the yoke, the magnetic path length must be lengthened, especially in small permanent magnet motors. In the case of a cylindrical magnet, a considerable portion of the magnetomotive force is consumed as leakage magnetic flux, so it is sometimes difficult to provide sufficient magnetic anisotropy in the radial direction.

即ち、上記のような高度な寸法精度、並びに機械的に脆
弱でない希土類コバルト樹脂磁石を半径方向へ磁気異方
化することによって得られる永久磁石型モータの小形化
と高性能化には相反する矛盾があった。
In other words, there is a contradiction between the above-mentioned high dimensional accuracy and the miniaturization and high performance of a permanent magnet motor, which can be obtained by making a rare earth cobalt resin magnet, which is not mechanically fragile, magnetically anisotropic in the radial direction. was there.

本発明は上記多極着磁して使用する筒状樹脂磁石を搭載
する永久磁石型モータを、より一層の小形化・高性能化
へ対応可能ならしめることを目的としたものである。
The object of the present invention is to make a permanent magnet motor equipped with the above-mentioned multi-pole magnetized cylindrical resin magnet capable of further miniaturization and higher performance.

問題点を解決するための手段 本発明は永久磁石モータの、円筒型磁石磁極部を構成す
る板状Fe−B−R(RはNdまたは/およびPr)粒
子を磁気的手段で整列したまま樹脂組成物で固定化する
ものである。
Means for Solving the Problems The present invention is a permanent magnet motor in which plate-shaped Fe-B-R (R is Nd or/and Pr) particles constituting the magnetic pole part of a cylindrical magnet are magnetically aligned and processed using resin. It is immobilized with a composition.

作用 先ず、本発明で言う永久磁石型モータとは、当該モータ
の設計思想に基づき、その構造が決定されるもので、所
謂永久磁石回転子型、或は永久磁石界磁型のいずれであ
っても差し支えない。具体的にはパルスモータや各種直
流モータが例示される。しかし、それ等の永久磁石モー
タの磁石としては多極着磁、即ち少なくとも複数の磁極
を有する筒状の磁石である。但し、本発明で言う筒状と
はリング状、円筒状、円柱状のもの全てが包含できるも
のであり、更に磁極部分と非磁極部分とが必ずしも一様
な形状、或は均質な形状でなくとも差し支えない。
Function First, the permanent magnet type motor referred to in the present invention has a structure determined based on the design concept of the motor, and is either a so-called permanent magnet rotor type or a permanent magnet field type. There is no problem. Specifically, pulse motors and various DC motors are exemplified. However, the magnets of these permanent magnet motors are multi-pole magnetized, that is, cylindrical magnets having at least a plurality of magnetic poles. However, the cylindrical shape in the present invention can include all shapes such as a ring shape, a cylindrical shape, and a cylindrical shape, and furthermore, the magnetic pole part and the non-magnetic pole part do not necessarily have a uniform shape or a homogeneous shape. There is no problem.

次に、本発明で言う板状Fe−B−R(RはNdまたは
/およびPr)粒子とは基本式N d + −x(Fe
l−y、By)xで表される組成を有するものである。
Next, the plate-like Fe-B-R (R is Nd or/and Pr) particles referred to in the present invention have the basic formula N d + -x (Fe
It has a composition represented by ly, By)x.

(但し0.5≦X≦0.9,0.05≦Y≦0.10)
具体的にはl’Jdo、87 ()’eo、s3. B
O,07) 0.87で基本式が例示される溶融合金を
Ar雰囲気中にてオリフィス並びにロールを介して急冷
リボン片としたものを適宜粉砕して得る肉厚約10μm
1長手方向数士ないし数百μmの板状粒子を言う。この
板状粒子は、例えばOrthohombic系並びにT
etragonal系Fe5B中に極めて微細なFe−
B−R3元系磁石相が点在するミクロ構造をもつと考え
られ、磁気的には等方性のものである。尚、このような
板状粒子は、該粒子表面に例えばカーボンファンクショ
ナルシランの如き単分子膜以上の皮膜形成したものであ
ることが望ましい。カーボンファンクショナルシランと
してはγ−グリシドキシプロビルトリエトキシシラン、
γ−アミノプロビルトリメトキシシラン、N−β(アミ
ノエチル〉−γ−アミノプロピルトリメトキシシラン、
β+ 3.4エポキシ)エチルトリメトキシシラン、γ
−メタカプトプロピルトリメトキシシランなどが例示で
きるが、その他の有機化合物、例えば有機チタネート化
合物などでも適宜使用できる。
(However, 0.5≦X≦0.9, 0.05≦Y≦0.10)
Specifically, l'Jdo, 87 ()'eo, s3. B
O, 07) A molten alloy whose basic formula is exemplified by 0.87 is quenched into a ribbon piece through an orifice and a roll in an Ar atmosphere, and then pulverized as appropriate to obtain a thickness of approximately 10 μm.
It refers to plate-shaped particles with a length of several tens to hundreds of μm in the longitudinal direction. These plate-like particles are, for example, Orthohombic and T
Extremely fine Fe-
It is thought to have a microstructure in which B-R ternary magnet phases are scattered, and is magnetically isotropic. Incidentally, it is desirable that such plate-like particles have a film formed on the surface of the particles, such as a monomolecular film or more, such as carbon functional silane. Examples of carbon functional silane include γ-glycidoxyprobyltriethoxysilane,
γ-aminopropyltrimethoxysilane, N-β(aminoethyl)-γ-aminopropyltrimethoxysilane,
β+ 3.4 epoxy)ethyltrimethoxysilane, γ
-Metacaptopropyltrimethoxysilane is an example, but other organic compounds such as organic titanate compounds can also be used as appropriate.

上記、板状Fe−B−R粒子を磁気的に整列させる手段
としては成形キャビティの磁界発生手段として既知の方
法を適宜用いることができる。例えば永久磁石モータの
該磁石の磁極部位に拘らず、永久磁石の全てにわたって
板状Fe−B−R粒子を均質に整列させる磁界発生手段
としては成形キャビティを取り囲んで磁性体ヨークと非
磁性体ヨークとを交互に組み合わせ、且つ外側に磁化コ
イルを配置した金型を用いるか、或はキャビティの外周
に磁化コイルを埋設した金型を用いる方法が例示できる
。かかる方法はキャビティ内に所定の磁界の強さを発生
させるため、高電圧大電流型の電源を用いるものである
。一方、板状Fe−B−R粒子を永久磁石型モータの該
永久磁石の磁極部位のみ磁気的に整列させる場合、成形
キャビティ磁界発生手段としては、キャビティ周囲の所
定の位置に相応する磁極部を有する整列ヨークを設置し
、該ヨーク内に導線を設けてなる金型を使用する方法が
例示できる。かかる方式は配向ヨーク内に設置した導線
に通電して励磁する。従って商用周波数交流電源を入力
してオールサイリスク全波位相制御方式によりパルス電
流を発生せしめる瞬間直流電源、もしくは所定の直流電
圧に昇圧整流し、コンデンサ群に充電後サイリスクを経
て放電を行う瞬間直流電源を使用してパルス磁界を発生
するものである。しかし本発明は上記代表的な磁界発生
手段に拘束されるものではない。
As a means for magnetically aligning the plate-shaped Fe-BR particles, any known method for generating a magnetic field in a molding cavity can be appropriately used. For example, irrespective of the magnetic pole position of the magnet in a permanent magnet motor, the magnetic field generating means for uniformly aligning the plate-shaped Fe-B-R particles over the entire permanent magnet includes a magnetic yoke and a non-magnetic yoke surrounding the molded cavity. An example of a method is to use a mold in which a magnetizing coil is arranged on the outside, or a mold in which a magnetizing coil is embedded in the outer periphery of a cavity. This method uses a high voltage, large current type power source to generate a predetermined magnetic field strength within the cavity. On the other hand, when plate-shaped Fe-B-R particles are magnetically aligned only at the magnetic pole portions of the permanent magnets of a permanent magnet type motor, the molding cavity magnetic field generating means is such that magnetic pole portions corresponding to predetermined positions around the cavity are aligned. An example of this method is to use a mold in which an alignment yoke is installed and a conducting wire is provided inside the yoke. In this method, conductive wires installed within the orientation yoke are energized and excited. Therefore, an instantaneous DC power supply that inputs a commercial frequency AC power source and generates a pulse current using the All Cyrisk full-wave phase control method, or an instantaneous DC power source that boosts and rectifies it to a predetermined DC voltage, charges a group of capacitors, and then discharges it through Cyrisk. It uses a power source to generate a pulsed magnetic field. However, the present invention is not limited to the typical magnetic field generating means described above.

次に本発明で言う板状Fe−B−R粒子を固定化する樹
脂組成物とは熱可塑性樹脂から熱硬化性樹脂に至る全て
の高分子化合物が包含される。更に加工助剤、板状Fe
−B−R粒子の磁気的整列を促進させる(減粘〉可塑剤
、熱安定性を付与するための酸化防止剤等既知の各種添
加剤を必要に応じて適宜添加することができる。
Next, the resin composition for fixing the plate-like Fe-BR particles in the present invention includes all polymer compounds ranging from thermoplastic resins to thermosetting resins. Furthermore, processing aids, plate-like Fe
-B-R Various known additives such as a plasticizer for promoting magnetic alignment of particles (reducing viscosity) and an antioxidant for imparting thermal stability can be appropriately added as necessary.

上記樹脂組成物の選択や、その配合或はまた板状Fe−
B−R粒子を磁気的に整列するための磁界発生手段など
は本発明に係る永久磁石モータの特性並びに信頼性を確
保する範囲で適宜個別に決定されるものである。
The selection of the resin composition, its formulation, or the plate-like Fe-
The magnetic field generating means for magnetically aligning the BR particles, etc. are appropriately determined individually within a range that ensures the characteristics and reliability of the permanent magnet motor according to the present invention.

実施例 以下、本発明の実施例を比較例と共に説明する。Example Examples of the present invention will be described below along with comparative examples.

但し、以下に示す実施例によって本発明が限定されるも
のではない。
However, the present invention is not limited to the examples shown below.

(永久磁石素材の製造) Ar雰囲気中の高周波溶解炉で溶融してなる原子組成N
 do、+3(1;’ 6o、s3.80.07) 0
.87の合金をオリフィスを介してロール間隙に連続滴
下することにより急冷リボン片とし、該急冷リボン片を
適宜破砕することで第1図に示すような厚さ約10μm
1長手方向数十から数百μmに至る板状Fe−B−R粒
子を得た。
(Manufacture of permanent magnet material) Atomic composition N obtained by melting in a high frequency melting furnace in an Ar atmosphere
do, +3(1;' 6o, s3.80.07) 0
.. The alloy No. 87 is continuously dropped into the gap between the rolls through an orifice to form a quenched ribbon piece, and the quenched ribbon piece is crushed as appropriate to form a piece with a thickness of about 10 μm as shown in Figure 1.
1. Plate-shaped Fe-BR particles ranging in size from several tens to several hundred μm in the longitudinal direction were obtained.

上記板状Fe−B−R粒子を常法に従ってγ−アミノプ
ロビルトリメトキシシラン処理したのちジシアンジアミ
ド/エポキシドオリゴマー(equiv−ratio)
からなるエポキシ樹脂と混合した。但し、エポキシドオ
リゴマーは分子量380のジグリシジルエーテルビスフ
ェノールAであり、該エポキシドオリゴマーを主成分と
するエポキシ樹脂の板状Fe−B−R粒子への配合割合
は3重量%とじた。
The plate-shaped Fe-BR particles were treated with γ-aminopropyltrimethoxysilane according to a conventional method, and then treated with dicyandiamide/epoxide oligomer (equiv-ratio).
Mixed with epoxy resin consisting of. However, the epoxide oligomer was diglycidyl ether bisphenol A with a molecular weight of 380, and the blending ratio of the epoxy resin containing the epoxide oligomer as a main component to the plate-shaped Fe-BR particles was 3% by weight.

一方、従来例として93.5重量%のS m Co 5
とポリアミド−12中とを常法により混練・造粒した射
出成形タイプの希土類コバルト/ポリアミド−12ペレ
ツトを製造した。
On the other hand, as a conventional example, 93.5% by weight of S m Co 5
Injection molding type rare earth cobalt/polyamide-12 pellets were produced by kneading and granulating the cobalt and polyamide-12 in a conventional manner.

上記、97重量%板状Fe−B−R粒子をエポキシ樹脂
で固定化した磁気的に等方性の密度485g / c+
jの永久磁石の磁気性能は測定磁界25KOe中での最
大エネルギー積が4MGOeであり、一方の93.5重
量%希土類コバルトをアキシャル方向の磁界15KOe
中でポリアミド−12により固定化した磁気異方性の永
久磁石の磁気性能は同一測定磁界中での最大エネルギー
積が9゜7MGOeであった。
Magnetically isotropic density 485g/c+ made by fixing the above 97% by weight plate-shaped Fe-BR particles with epoxy resin
The magnetic performance of the permanent magnet J is such that the maximum energy product in a measuring magnetic field of 25 KOe is 4 MGOe, and 93.5 wt% rare earth cobalt is placed in an axial magnetic field of 15 KOe.
Regarding the magnetic performance of the magnetically anisotropic permanent magnet fixed with polyamide-12, the maximum energy product in the same measured magnetic field was 9°7 MGOe.

(永久磁石の製造) 97重量%板状Fe−B−R粒子/エポキシ樹脂を金型
キャビティに充填する。但し、該金型キャビティは本発
明の対象となる永久磁石型モータの該永久磁石として例
示できる円筒形状であり、その具体的寸法は外径13 
mm 、内径5.5+nm、高さ4.1+nmである。
(Manufacture of permanent magnet) A mold cavity is filled with 97% by weight of plate-shaped Fe-BR particles/epoxy resin. However, the mold cavity has a cylindrical shape that can be exemplified as the permanent magnet of the permanent magnet type motor that is the subject of the present invention, and its specific dimensions are an outer diameter of 13
mm, inner diameter 5.5+nm, and height 4.1+nm.

該キャビティは周囲に所定の磁極部を有する粒子整列ヨ
ークを設置し、且つ当該ヨーク内に導線が設けられたも
のである。導線は所定の直流電圧に昇圧整流し、コンデ
ンサ群に充電後サイリスタを経て放電を行う瞬間直流電
源に接続している。
A particle alignment yoke having a predetermined magnetic pole portion is installed around the cavity, and a conducting wire is provided within the yoke. The conductive wire is connected to an instantaneous DC power supply that boosts and rectifies the DC voltage to a predetermined value, charges the capacitor group, and then discharges it via a thyristor.

上記金型キャビティに充填した97重量%板状Fe−B
−R粒子/エポキシ樹脂の見掛は密度付近まで対向する
パンチを移動させ、然るのち波高値20KA、パルス幅
400μsec電流を、当該導線に通電することにより
キャビティ内に磁界を発生せしめた。これによりキャビ
ティ内の板状Fe−B−2粒子は磁極部を中心として整
列する。
97% by weight plate-like Fe-B filled in the mold cavity
The opposing punches were moved until the apparent density of -R particles/epoxy resin was near, and then a current with a peak value of 20 KA and a pulse width of 400 μsec was applied to the conductive wire to generate a magnetic field in the cavity. As a result, the plate-shaped Fe-B-2 particles within the cavity are aligned with the magnetic pole portion as the center.

次いで対向パンチを介して97重量%板状Fe−B−R
粒子/エポキシ樹脂を密度5 、0 g / cwtと
なるまで圧縮し、更に該エポキシ樹脂の硬化によって9
7重量%板状Fe−B−2粒子を固定化した。(本発明
例) 第21N(a)、(b)は上記、本発明例にかかる少な
くとも円筒磁石磁極部を構成する板状Fe−B−2粒子
が磁気的手段によって整列したまま樹脂組成物で固定化
された様相を示す走査電子類wlR写真である。但し、
(a)は板状Fe−B−2粒子を整列固定化した磁極部
、(b)は板状Fe−E3−2粒子がランダムに固定化
された磁極間である。図から板状Fe−B−2粒子を磁
気的手段により整列せしめた磁極部は、一方の磁極間に
比較して板状Fe−B−2粒子が高濃度で存在すること
が明白である。
Then, 97% by weight plate-like Fe-B-R was
The particles/epoxy resin are compressed to a density of 5.0 g/cwt, and then the epoxy resin is cured to a density of 9.
7% by weight plate-shaped Fe-B-2 particles were immobilized. (Example of the present invention) No. 21N(a) and (b) are made of the resin composition while the plate-shaped Fe-B-2 particles constituting at least the magnetic pole part of the cylindrical magnet according to the example of the present invention are aligned by magnetic means. This is a scanning electron wlR photograph showing the immobilized appearance. however,
(a) shows a magnetic pole part in which plate-shaped Fe-B-2 particles are fixed in an aligned manner, and (b) shows a magnetic pole part in which plate-shaped Fe-E3-2 particles are fixed in a random manner. From the figure, it is clear that in the magnetic pole part where the plate-shaped Fe-B-2 particles are aligned by magnetic means, the plate-shaped Fe-B-2 particles are present at a higher concentration than between one of the magnetic poles.

一方、97重量%板状Fe−B−R粒子/エポキシ樹脂
をそのまま密度5 、0 / craまで圧縮し、更に
該エポキシ樹脂を硬化せしめた同一寸法形状の永久磁石
を製造した。(比較例) 更に、上記永久磁石と同一寸法形状の金型キャビティを
取り囲んで磁性体ヨークと非磁性体ヨークとを交互に組
み合わせ、且つ外側に磁化コイルを配置した金型を用意
した。該磁化コイルで60゜000ATの起磁力を連続
して発生させながら93.5M量%希土類コバルト/ポ
リアミド−12・ を溶融射出し、且つキャビティ内で
の当該ポリアミド−12の冷却固化により、ラジアル方
向に磁気異方化した希土類コバルトを固定化せしめた。
On the other hand, 97% by weight plate-shaped Fe-BR particles/epoxy resin were compressed as they were to a density of 5.0/cra, and the epoxy resin was further cured to produce a permanent magnet having the same size and shape. (Comparative Example) Furthermore, a mold was prepared in which a magnetic yoke and a non-magnetic yoke were alternately combined to surround a mold cavity having the same size and shape as the permanent magnet, and a magnetizing coil was arranged on the outside. While continuously generating a magnetomotive force of 60°000 AT with the magnetizing coil, 93.5 M mass % rare earth cobalt/polyamide-12 was melt-injected, and the polyamide-12 was cooled and solidified in the cavity to create a radial direction. Magnetically anisotropic rare earth cobalt was immobilized on the surface.

この永久磁石の密度は5.5g/c−であった。(従来
例) (永久磁石型モータの特性) 第3図は例示の対称とした永久磁石回転子型モータの構
成を示すものである。図中1は外径81の外周面を10
極均等着磁した本発明例(即ち少なくとも円筒磁石磁極
部を構成する板状Fe−B−2粒子が磁気的手段によっ
て整列したまま樹脂組成物で固定化された永久磁石)お
よび比較例、従来例を搭載するロータである。ステータ
部は外ヨーク2a、2bと互いに背中合わせに接合され
た2個の内ヨーク3と、それ等の間に収容される励磁コ
イル4a、4bとを備えている。このような所謂PM型
パルスモータは1パルス電流に対応する励磁コイルの起
磁力により1ステツプ角だけロータが変位する動作を行
う。
The density of this permanent magnet was 5.5 g/c-. (Conventional Example) (Characteristics of Permanent Magnet Type Motor) FIG. 3 shows the configuration of an exemplary symmetrical permanent magnet rotor type motor. 1 in the figure indicates the outer peripheral surface with an outer diameter of 81.
Examples of the present invention with polar uniform magnetization (that is, permanent magnets in which plate-shaped Fe-B-2 particles constituting at least the magnetic pole portion of a cylindrical magnet are fixed with a resin composition while being aligned by magnetic means), comparative examples, and conventional examples. This is a rotor equipped with an example. The stator section includes outer yokes 2a and 2b, two inner yokes 3 joined back to back, and excitation coils 4a and 4b housed between them. Such a so-called PM type pulse motor performs an operation in which the rotor is displaced by one step angle due to the magnetomotive force of the excitation coil corresponding to one pulse current.

第4図は、上記永久磁石回転子型モータのパルスレート
とプルアウト・トルクの関係を示す特性図である。図中
1は本発明例、2は比較例、3は従来例である。
FIG. 4 is a characteristic diagram showing the relationship between the pulse rate and pullout torque of the permanent magnet rotor type motor. In the figure, 1 is an example of the present invention, 2 is a comparative example, and 3 is a conventional example.

図から明らかなように本発明例、すなわち少なくとも円
筒磁石磁極部を構成する板状Fe−B−2粒子が磁気的
手段によって整列したまま樹脂組成物で固定化された永
久磁石モータは、ランダムに分布せしめた板状Fe−B
−2粒子を樹脂組成物で固定化せしめた比較例、或は半
径方向へ磁気異方化せしめた希土類コバルト粒子を樹脂
組成物で固定化せしめた従来例の永久磁石を搭載した永
久磁石型モータに比べて優れた性能を発現するのである
As is clear from the figure, in the example of the present invention, that is, in the permanent magnet motor in which plate-shaped Fe-B-2 particles constituting at least the magnetic pole portion of a cylindrical magnet are fixed with a resin composition while being aligned by magnetic means, Distributed plate-like Fe-B
- A permanent magnet motor equipped with a comparative example in which two particles are immobilized with a resin composition, or a conventional example in which rare earth cobalt particles with magnetic anisotropy in the radial direction are immobilized in a resin composition. It exhibits superior performance compared to .

発明の効果 以上のように本発明は2極以上多極着磁せしめた永久磁
石を用いる永久磁石回転子型、或は永久磁石界磁型モー
タの小型・高性能化に極めて有利である。
Effects of the Invention As described above, the present invention is extremely advantageous in miniaturizing and increasing the performance of a permanent magnet rotor type motor or a permanent magnet field type motor using a permanent magnet magnetized with two or more multipoles.

【図面の簡単な説明】 第1図は本発明にかかる板状Fe−B−R粒子の粒子構
造を示す顕微鏡写真、第2図(a)は同板状Fe−B−
R粒子の整列固定化の様相を示す顕微鏡写真、(b)は
ランダムに固定化した様相を示す顕微鏡写真、第3図は
永久磁石型モータの構造を示す分解斜視図、第4図はパ
ルスレートとプルアウト・トルクの関係を示す特性図で
ある。 代理人の氏名 弁理士 中尾敏男 ほか1名竿 1 図 ′ド)い川 第 2 )く ゛1)uカ1 1品シ用 第3図
[Brief Description of the Drawings] Fig. 1 is a micrograph showing the particle structure of plate-like Fe-B-R particles according to the present invention, and Fig. 2 (a) is a photomicrograph showing the particle structure of plate-like Fe-B-R particles according to the present invention.
A micrograph showing the arrangement and immobilization of R particles, (b) a microphotograph showing the random immobilization, Fig. 3 is an exploded perspective view showing the structure of a permanent magnet motor, and Fig. 4 shows the pulse rate. FIG. 3 is a characteristic diagram showing the relationship between pullout torque and pullout torque. Name of agent: Patent attorney Toshio Nakao and one other person

Claims (1)

【特許請求の範囲】[Claims] 少なくとも永久磁石磁極部を構成する板状Fe−B−R
(RはNdまたは/およびPr)粒子が磁気的手段によ
って整列したまま樹脂組成物で固定された永久磁石型モ
ータ。
Plate Fe-B-R constituting at least the permanent magnet magnetic pole part
(R is Nd or/and Pr) A permanent magnet type motor in which particles are fixed with a resin composition while being aligned by magnetic means.
JP61153130A 1986-02-24 1986-06-30 Permanent magnet type motor Pending JPS6311050A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61153130A JPS6311050A (en) 1986-06-30 1986-06-30 Permanent magnet type motor
US06/937,424 US4689163A (en) 1986-02-24 1986-12-03 Resin-bonded magnet comprising a specific type of ferromagnetic powder dispersed in a specific type of resin binder
DE3642228A DE3642228C2 (en) 1986-02-24 1986-12-10 Resin bonded magnet comprising a specific type of ferromagnetic powder dispersed in a specific type of resin binder
FR878700277A FR2595001B1 (en) 1986-02-24 1987-01-13 RESIN BINDER MAGNET COMPRISING A PARTICULAR TYPE OF FERROMAGNETIC POWDER DISPERSED IN A PARTICULAR TYPE OF RESIN BINDER
KR1019870001418A KR900003477B1 (en) 1986-02-24 1987-02-20 Resin-bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61153130A JPS6311050A (en) 1986-06-30 1986-06-30 Permanent magnet type motor

Publications (1)

Publication Number Publication Date
JPS6311050A true JPS6311050A (en) 1988-01-18

Family

ID=15555642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61153130A Pending JPS6311050A (en) 1986-02-24 1986-06-30 Permanent magnet type motor

Country Status (1)

Country Link
JP (1) JPS6311050A (en)

Similar Documents

Publication Publication Date Title
EP1308970B1 (en) Radial anisotropic sintered magnet production method
KR900003477B1 (en) Resin-bonded magnet
JPH062930B2 (en) Rare earth permanent magnet
EP1713098B1 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
US20070151629A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cyclinder multi-pole magnet
JP2000060080A (en) Permanent-magnet motor and other device applied thereon
JPH066776B2 (en) Rare earth permanent magnet
US8044547B2 (en) Radial-direction gap type magnet motor
JP2911017B2 (en) Manufacturing method of radial anisotropic rare earth sintered magnet
US5190684A (en) Rare earth containing resin-bonded magnet and its production
JP2001217112A (en) R-t-b sintered magnet
JP2001076925A (en) Permanent magnet having flat plate multipolar anisotropy and actuator
JP4033112B2 (en) Self-organized hybrid rare earth bonded magnet, method for manufacturing the same, and motor
JPS6311050A (en) Permanent magnet type motor
JPS62196057A (en) Permanent magnet-type motor
JPH066775B2 (en) Rare earth permanent magnet
JPH08322175A (en) Permanent magnet stepping motor
JP4370877B2 (en) Method for orienting permanent magnet powder and method for producing permanent magnet
JP2005287181A (en) Permanent magnet rotary machine, metal mold, magnetic field molding machine and permanent magnet and manufacturing method for the same
JP2001185412A (en) Anisotropic bonded magnet
JPH05144621A (en) Rare earth element-bonded magnet
US12119170B2 (en) Method for producing a magnetic powder
JP2839264B2 (en) permanent magnet
JPH09131006A (en) Magnet rotor for rotating electric machine
JP2638995B2 (en) Permanent magnet structure