[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63103043A - Ti or ti-alloy sheet - Google Patents

Ti or ti-alloy sheet

Info

Publication number
JPS63103043A
JPS63103043A JP24784486A JP24784486A JPS63103043A JP S63103043 A JPS63103043 A JP S63103043A JP 24784486 A JP24784486 A JP 24784486A JP 24784486 A JP24784486 A JP 24784486A JP S63103043 A JPS63103043 A JP S63103043A
Authority
JP
Japan
Prior art keywords
plate
content
occurrence
thickness
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24784486A
Other languages
Japanese (ja)
Inventor
Atsuyuki Miyamoto
宮本 淳之
Masaaki Teragaki
寺垣 正明
Takashi Nishimura
孝 西村
Yuji Koyama
佑二 児山
Mitsuo Taniguchi
谷口 三男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24784486A priority Critical patent/JPS63103043A/en
Publication of JPS63103043A publication Critical patent/JPS63103043A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To obtain a Ti or Ti-alloy sheet minimal in occurrence of oil canning and having superior formability, by repeating cold rolling and annealing so as to finish into a proper sheet thickness and also by specifying respective contents of Fe, O, N, and H. CONSTITUTION:The Ti or Ti-alloy sheet which is finished into 0.2-2.0mm thickness by the repetition of cold rolling and annealing has a composition in which >=300ppm Fe is contained and (Fe+O+N+H) is regulated to <=1,500ppm and further, preferably, Fe/(Fe+O+N+H) is regulated to >=about 0.5. In this way, the Ti or Ti-alloy material free from the occurrence of wavy surface discontinuity called oil canning at the time of forming, having superior formability, and applicable to building materials can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、主として建築物の屋根、外壁、内装パネル等
の建材用途に使用されるTiまたはTi合金板材に関し
、特に成形時にベコと呼ばれる波打ち状の表面欠陥が発
生しない様なTiまたはTi合金板材(以下単にTi板
材という)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to Ti or Ti alloy plate materials used mainly for construction materials such as roofs, external walls, and interior panels of buildings, and in particular, the present invention relates to Ti or Ti alloy plate materials used for construction materials such as roofs, external walls, and interior panels of buildings. This invention relates to a Ti or Ti alloy plate material (hereinafter simply referred to as a Ti plate material) that does not have surface defects such as the following.

[従来の技術] 工業用純Tiには強度レベルによって分類される3種類
のJIS規格品があり(JIS  H4600: 1〜
3種)、これらの強度レベルはFeや0の不純物元素含
有量を調整することによって決定されている。尚Fe及
び0以外の不純物元素としては量的には少ないがN、H
,C等が含まれる。
[Prior art] There are three types of JIS standard products for industrial pure Ti classified by strength level (JIS H4600: 1 to 1).
Type 3), these strength levels are determined by adjusting the content of impurity elements such as Fe and 0. Note that impurity elements other than Fe and 0 include N, H, although the quantity is small.
, C, etc. are included.

上記工業用純Tiのこれまでの最大の用途は熱交換器用
の薄肉チタン管であり、これにはJIS2種の純Tiが
使用されている。しかるに最近になってTiの新用途が
開発され純Tiを建材用として使用することが多くなっ
ており、この場合には軟質で現場曲げ加工等が容易なJ
IS1種の純Tiが使用されている。尚純Tiは一般に
コイルの形で供給されている。
The biggest use of the above-mentioned industrial pure Ti so far has been in thin-walled titanium tubes for heat exchangers, and JIS Class 2 pure Ti has been used for this. However, recently, new uses for Ti have been developed, and pure Ti is increasingly being used as a building material.
IS1 type pure Ti is used. Pure Ti is generally supplied in the form of a coil.

[発明が解決しようとする問題点] ところでJISI種Tiコイルを建材用例えば屋根や壁
材に使用する場合、コイルから引出したTi薄板を適用
部位に応じた形状に成形加工しなければならないが、そ
の時に本来平坦であるべき板戸に前述のベコと呼ばれる
表面欠陥が発生し、屋根や・壁の外観を著しく損なうこ
とが多いということが指摘されている。特に着色Tiの
場合には美観の優れるという折角の特色が失なわれ、商
品価値が一挙に下落する。ベコ発生の原因としては、成
形加工時において折曲げ部分が長手方向に縮み平坦部に
圧縮の内部応力を与えるからであると考えられている。
[Problems to be Solved by the Invention] By the way, when a JISI type Ti coil is used for building materials such as roofs and wall materials, the Ti thin plate pulled out from the coil must be formed into a shape according to the application area. It has been pointed out that at this time, the aforementioned surface defects called beko occur in the originally flat paneled doors, which often seriously impairs the appearance of roofs and walls. In particular, in the case of colored Ti, the long-awaited feature of excellent aesthetics is lost, and the product value drops all at once. The cause of the bulge is thought to be that the bent portion shrinks in the longitudinal direction during molding and applies compressive internal stress to the flat portion.

この様なベコは、プレス曲げ成形の場合よりもロール成
形を行なった場合の方がより顕著に発生する。
Such bending occurs more noticeably when roll forming is performed than when press bending is performed.

・ベコの発生を防止する手段として各種の方法が試みら
れ或は提案されているので以下説明すると、まず、■ロ
ール成形におけるパススケジュールを最適化するという
着想のもとで、軟鋼板等を用いた試験検討が数多く試み
られている。その具体的な改善策として、成形ロールの
段数を増加し、一段当たりの成形量を少なくするという
方法が挙げられる。しかしながら屋根施工の作業の様に
、現地で成形を行なうことが多い用途では、成形機の数
を増やすことによる総重量増加や必要スペースの増加は
作業性の面で大きな負担となり勿論設備コストの増大も
顕著なものがある。更にTi板は元々異方性が大きい為
に折曲げ部での長手方向縮みが大きく、軟鋼板やステン
レス鋼板に比べていっそうベコが発生し易い材料であり
、従来軟鋼板用として使用されてきた成形機でバススケ
ジュールを変更するといった上述の手段だけではチタン
板のベコ発生防止の木質的且つ有効な方法とはなり得な
かった。
・Various methods have been tried or proposed as a means to prevent the occurrence of bulges, so I will explain them below. First, based on the idea of optimizing the pass schedule in roll forming, Many tests have been attempted. As a specific improvement measure, there is a method of increasing the number of stages of forming rolls and reducing the amount of molding per stage. However, in applications where molding is often performed on-site, such as roof construction work, increasing the number of molding machines increases the total weight and required space, which is a big burden on workability and, of course, increases equipment costs. There are also some notable ones. Furthermore, since Ti plates originally have high anisotropy, they shrink in the longitudinal direction at bends, making them more prone to warping than mild steel plates or stainless steel plates, and have traditionally been used for mild steel plates. The above-mentioned method alone, such as changing the bus schedule in the molding machine, could not be a natural and effective method for preventing the occurrence of sagging on titanium plates.

一方、■素材の板厚を厚くしてベコの発生を抑制する方
法も考えられる。しかしながらTi板は材料コストが高
く、できる限り板を薄くすることが望まれている現状で
は実状に即した方法とは言えない。
On the other hand, it is also possible to consider a method (2) of increasing the thickness of the material to suppress the occurrence of bulges. However, the material cost of the Ti plate is high, and in the current situation where it is desired to make the plate as thin as possible, this method cannot be said to be suitable for the actual situation.

そこで本発明者等は、■Ti薄板の材質を改善すること
によってベコの発生を抑えようという方針を立て研究を
重ねた。本発明はこうした研究の結果完成されたもので
あって、ベコの発生を招くことがない優れた材質のTi
板材を提供することを目的とするものである。
Therefore, the inventors of the present invention have conducted repeated research with the idea of suppressing the occurrence of bulges by improving the material of the Ti thin plate. The present invention was completed as a result of such research, and is made of Ti, which is an excellent material that does not cause bulges.
The purpose is to provide plate materials.

[問題点を解決する為の手段] 上記目的を達成した本発明のTi板材は、冷間圧延と焼
鈍を任意に繰り返して厚さ0.2〜2.0mmに仕上げ
たT′iまたはTi合金板材であって、Fe含有量が3
00 ppm以上で且つ[Fe+O+N+H3量が15
0099111以下である点に要旨が存在するものであ
る。
[Means for Solving the Problems] The Ti plate material of the present invention that achieves the above object is a T'i or Ti alloy finished to a thickness of 0.2 to 2.0 mm by arbitrarily repeating cold rolling and annealing. A plate material with an Fe content of 3
00 ppm or more and [Fe+O+N+H3 amount is 15
The gist lies in the fact that it is less than 0099111.

[作用] ベコ発生のメカニズムは、前述の通り成形加工時に折曲
げ部が長手方向に縮んで平坦部に圧縮の残留応力が負荷
される為であると考えられる。この様なベコ発生のメカ
ニズムを考慮に入れ、ベコ発生の防止にはどの様な機械
的特性を有する材料が有効であるかを検討した結果下記
の知見を得た。
[Effect] The mechanism of the occurrence of bulge is thought to be that, as mentioned above, the bent portion shrinks in the longitudinal direction during molding, and compressive residual stress is applied to the flat portion. Taking into account the mechanism of the formation of bulges, we investigated what kind of mechanical properties of materials are effective in preventing the formation of bulges, and as a result, we obtained the following knowledge.

即ち第1図に示す様なA、82種類の応力−歪特性を有
する材料を比較した場合、A材(従来材)は比較的低い
応力から塑性変形が始まり、徐々に歪軟化して応力が上
昇するが、B材(狙いとする特性を示す改善材)は弾性
限界が比較的高く、塑性変形初期の歪軟化の程度がAに
比べて小さい。従ってB材の如く歪軟化が小さい材料を
成形加工した場合は、曲げ加工部に変形が集中して平坦
部にまで影響が及ぶということがなく、平坦部における
ベコの発生を抑えることができるのではないかと考えら
れた。
In other words, when comparing materials A with 82 types of stress-strain characteristics as shown in Figure 1, material A (conventional material) begins to undergo plastic deformation at a relatively low stress, and gradually softens and reduces stress. However, material B (an improved material exhibiting the targeted properties) has a relatively high elastic limit and the degree of strain softening at the initial stage of plastic deformation is smaller than that of material A. Therefore, when forming a material with low strain softening like material B, the deformation will not concentrate on the bent part and affect the flat part, and the occurrence of bulge in the flat part can be suppressed. It was thought that it might be.

そこで本発明では、上記B材の様な応力−歪特性を有す
る材料を得る為に材料中の不純物元素殊にFeに着目し
た。即ちFeは純Ttの不純物元素の中では結晶粒径に
対する影響が最も顕著であり、且つNやOに比べて強度
を上昇させる割合が低い元素であり、上記特性の材料を
得る上で有効な手段となり得る元素と考えられる。そこ
で上記指針の当否を確認する目的でFe量の異なる各種
Ti板を作って成形加工試験を実施した結果、前記構成
に示されるところの本発明Ti板材を完成したのである
Therefore, in the present invention, in order to obtain a material having stress-strain characteristics like the above-mentioned material B, we focused on impurity elements in the material, particularly Fe. In other words, Fe has the most remarkable effect on the crystal grain size among the impurity elements of pure Tt, and is an element that increases the strength at a lower rate than N and O, making it an effective element in obtaining materials with the above characteristics. It is considered to be an element that can be used as a means. Therefore, in order to confirm the validity of the above guideline, various Ti plates with different amounts of Fe were made and forming tests were conducted, and as a result, the Ti plate material of the present invention as shown in the above structure was completed.

即ち第2図はTi板材中のFe含有量とベコ高さくHp
:第7図で定義)の関係を示す実験結果グラフ、又第3
図Fe含有量と平均結晶粒径の関係を示T実験結果グラ
フであり、第2図に示す様にFe含有量が300 pp
m以上になるとベコの発生が抑制されている。又第3図
に示す様にFe含有量が300 ppm以上では材料の
平均結晶粒径が約40μm以下となフており、且つ結晶
粒径の分布は比較的均一であり、成形後の試料のミクロ
組織には双晶変形の形跡が殆んどみられなかった。
In other words, Figure 2 shows the relationship between the Fe content in the Ti plate and the height Hp.
: Experimental result graph showing the relationship (defined in Figure 7), and
Figure 2 is a graph showing the relationship between Fe content and average grain size.As shown in Figure 2, the Fe content is 300 ppp.
m or more, the occurrence of becos is suppressed. Furthermore, as shown in Figure 3, when the Fe content is 300 ppm or more, the average crystal grain size of the material is approximately 40 μm or less, and the distribution of crystal grain size is relatively uniform, and the shape of the sample after molding is There was almost no evidence of twinning deformation in the microstructure.

これに対してFe含有量が300 ppm未満では平均
結晶粒径が大きく、且つ混粒程度が著しくなり、特に大
きな結晶粒内には成形時に発生した双晶が多くみられた
。この様な変形初期における双晶の発生が応力−歪曲線
の弾性限を低下させ、第1図の従来材(A材)で示され
る様な応力−歪曲線を与えるものと考えられる。上記理
由から本発明ではTi板材中のFe含有量を300 p
l)111以上とする必要がある。
On the other hand, when the Fe content was less than 300 ppm, the average crystal grain size was large and the degree of mixed grains became significant, and in particular, many twins generated during molding were observed in the large crystal grains. It is thought that the occurrence of such twins at the initial stage of deformation lowers the elastic limit of the stress-strain curve, giving the stress-strain curve as shown in the conventional material (material A) in FIG. For the above reasons, in the present invention, the Fe content in the Ti plate is set to 300 p.
l) Must be 111 or more.

一方成形加工時のベコ発生を防止する観点からはFe量
が多い程望ましいが、Ti板材を建材として使用する場
合あまり強度が高過ぎると成形加工性が悪化して現場施
工が困難になり、屋根施工における雨漏り等の原因とな
る。建材用Ti板材として必要とされる成形加工性を、
肉厚0.4 mmの瓦棒屋根並びに肉厚o、3mmの一
文字葺きを例にとって調べたところ0.2%耐力を35
 kg/mm”以下とする必要のあることが分かった。
On the other hand, from the viewpoint of preventing the occurrence of bulges during forming, it is desirable to have a large amount of Fe, but when using Ti plates as building materials, if the strength is too high, the formability will deteriorate, making on-site construction difficult, and roofing This may cause rain leaks during construction. We have achieved the formability required for Ti plate materials for building materials.
When examining the example of a tile stick roof with a wall thickness of 0.4 mm and a single roof with a wall thickness of 3 mm, the 0.2% yield strength was 35.
It was found that it was necessary to keep the weight below 100 kg/mm.

そこで、Feを含めた不純物元素のうち強度上昇に与え
る影響の大きな不純物元素即ちFe、O,N、Hについ
てその合計量と0.2%耐力の関係を調べて第4図に示
す結果を得た。第4図から理解される様に(Fe+O+
N+H)量が1500ppmを超えると0.2%耐力は
35 kg/mm2を超えており、この結果から本発明
では(Fe+O+N+H)量を1500ppm以下とす
る必要がある。尚上記不純物(Fe、O,N、H)中に
占めるFeの割合については特に制限はないが、要求特
性を満足する上で0よりもFeの添加が望ましいことか
ら従来材[0/ (F e + O+ N + H)が
0.5以上コとは異なり[Fe量 (Fe+O+N+H
)コを0.5以上とすることが推奨される。
Therefore, we investigated the relationship between the total amount of impurity elements including Fe, O, N, and H and 0.2% yield strength, and obtained the results shown in Figure 4. Ta. As understood from Fig. 4 (Fe+O+
When the amount of N+H) exceeds 1500 ppm, the 0.2% yield strength exceeds 35 kg/mm2, and from this result, in the present invention, the amount of (Fe+O+N+H) needs to be 1500 ppm or less. There is no particular restriction on the proportion of Fe in the impurities (Fe, O, N, H), but since it is more desirable to add Fe than 0 in order to satisfy the required properties, conventional materials [0/(F e + O+ N + H) is 0.5 or more, unlike [Fe amount (Fe+O+N+H
) is recommended to be 0.5 or more.

本発明においては上記の如く成分組成を調整することに
より成形加工性が良く、ベコの発生のないTi板材を得
ることができる。面前に述べた様にTi板は材料コスト
が高くできる限り板厚を薄くすることが望まれており、
一方建材として必要な剛性を確保する面からは板厚をあ
まり薄くすることはできない。こうした理由から建材用
Ti板の厚さには自ずと望ましい範囲があり、具体的に
は冷間圧延、焼鈍を繰返すことにより板厚を0.2〜2
 、0mmに調整したTi板が使用される。本発明はか
かる板厚のTi板材において特にその有用性を発揮する
ものである。又上記では主として純Ti板材について説
明したが、必要により適宜合金元素を添加したTi合金
板についても本発明は同様に実施することができる。
In the present invention, by adjusting the component composition as described above, it is possible to obtain a Ti plate material that has good moldability and is free from bulges. As mentioned before, Ti plates have high material costs and it is desirable to make the plate thickness as thin as possible.
On the other hand, from the perspective of ensuring the necessary rigidity as a building material, it is not possible to make the plate thickness too thin. For these reasons, there is naturally a desirable thickness range for the thickness of Ti plates for building materials, and specifically, the thickness can be increased from 0.2 to 2 by repeating cold rolling and annealing.
, a Ti plate adjusted to 0 mm is used. The present invention is particularly useful for Ti plates having such thicknesses. Furthermore, although the description has been made above mainly regarding pure Ti plate materials, the present invention can be implemented in the same manner with respect to Ti alloy plates to which alloying elements are appropriately added as necessary.

[実施例] 実施例I Feおよびその他の不純物元素含有量を変化させた材質
調整材を材料とし、冷間圧延及び焼鈍を繰り返して通常
の工業用純Tiコイルの製造工程に従って純Ti板材を
得た。次いで該純Ti板材をロール成形して、第5図に
示す様な瓦棒屋根の溝板を製作した。尚成形機はカラー
鉄板を瓦棒屋根材に成形する為の市販機を使用した。得
られた溝板について非接触の変位計を用いて第6図に示
す方法で平坦部長さ方向のプロフィルを測定し、第7図
の定義に従ってベコ高さくHp)を求めた。こうして得
たHpとFe含有量の関係をグラフ化すると第2図に示
す通りとなり、前記でも述べた様にFe量が300 p
pm以上ではFe量の増加と共にHpが減少し、300
 ppm以上のFeの添加はベコの発生を抑制する効果
を持つことが分かった。成形品を目視観察するとHpが
4 mm/m以下になるとベコがそれ程目立たなくなり
、1(pが2 mm/m以下では外観上ベコは殆んど見
えなくなった。従ってHpは2 mm/m以下とするこ
とが望ましく、Fe含有量は400 ppm以上とする
ことが推奨される。又上記供試材について成形後の平均
結晶粒径とFe含有量の関係をグラフ化したところ第3
図に示す通りとなった。Fe含有量は平均結晶粒径と密
接な関係にあり、Fe量を300 ppm以占とすると
平均結晶粒径は40μm以下となることが分かった。そ
してFe量が300 ppm以上で平均結晶粒径が40
μm以下の試験材では引張試験における応力−歪曲線の
形状が第1図のB材(材質改善材)の示す傾向を持つこ
とが分かった。
[Example] Example I A pure Ti plate material was obtained by repeating cold rolling and annealing using a material with a modified content of Fe and other impurity elements in accordance with the normal manufacturing process for industrial pure Ti coils. Ta. Next, the pure Ti plate material was roll-formed to produce a groove plate for a tile rod roof as shown in FIG. The forming machine used was a commercially available machine for forming colored iron plates into tile rod roofing material. The profile of the obtained groove plate in the longitudinal direction of the flat part was measured using a non-contact displacement meter according to the method shown in FIG. 6, and the profile height (Hp) was determined according to the definition shown in FIG. The relationship between Hp and Fe content obtained in this way is graphed as shown in Figure 2, and as mentioned above, the Fe content is 300 p.
Above pm, Hp decreases as the amount of Fe increases, and 300
It was found that the addition of Fe in an amount of ppm or more has the effect of suppressing the occurrence of bulge. Visual observation of the molded product shows that when Hp is 4 mm/m or less, the beak becomes less noticeable, and when p is 2 mm/m or less, the beak is almost invisible in appearance.Therefore, Hp is 2 mm/m or less. It is desirable that the Fe content be 400 ppm or more.Also, when the relationship between the average crystal grain size after molding and the Fe content for the above sample material was graphed, it was found that
The result is as shown in the figure. It was found that the Fe content has a close relationship with the average crystal grain size, and when the Fe content is 300 ppm or more, the average crystal grain size becomes 40 μm or less. And when the amount of Fe is 300 ppm or more, the average grain size is 40
It was found that the shape of the stress-strain curve in the tensile test for the test materials of μm or less had the tendency shown in material B (improved material) in FIG.

実施例2 従来の純Ti板ではFe含有量に比べて0含有量の方が
多くなっている。これはFeに比べて0の方が強度調整
効果が大きいという理由だけではなく、Feを多く添加
し過ぎると耐食性の劣化や高温での水素吸収が助長され
るからと言われている。しかし建材用Ti板に関しては
使用環境から考えてこのような問題を懸念する必要はな
いので特別にFe量を多くした供試材(第1表の供試材
IL)を準備した。この供試材の成形試験を行なった結
果はHpはOmm/mと0.4 mu/mであり、Fe
量の増加がベコ防止に極めて効果的であることが確認さ
れた。尚今回の実験では特にベコの発生し易いロール成
形によりベコ防止の効果を確認したが、プレス曲げ成形
やプレス成形においても条件次第でベコが発生する為こ
の様な成形にも本発明Ti板を使用することが有効であ
る。
Example 2 In a conventional pure Ti plate, the 0 content is higher than the Fe content. It is said that this is not only because 0 has a greater strength adjustment effect than Fe, but also because adding too much Fe promotes deterioration of corrosion resistance and hydrogen absorption at high temperatures. However, since there is no need to worry about such problems regarding Ti plates for building materials considering the environment in which they are used, a sample material with a specially increased amount of Fe (sample material IL in Table 1) was prepared. The results of a molding test for this sample material were that Hp was Omm/m and 0.4 mu/m, and Fe
It was confirmed that increasing the amount is extremely effective in preventing beko. In this experiment, we confirmed the effect of preventing bulges in roll forming, where bulges are particularly likely to occur, but bulges can also occur depending on the conditions in press bending and press forming, so the Ti plate of the present invention was also used in such forming. It is effective to use

[発明の効果] 本発明は以上の様に構成されており、板厚の薄い建材用
Ti板材にあってベコ発生が少なく成形加工性が良好な
Ti板材を提供することができた。
[Effects of the Invention] The present invention is configured as described above, and has been able to provide a thin Ti plate for building materials with less occurrence of bulge and good moldability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来材と材質改善材の応力−歪特性を示すグラ
フ、第2図はHpとFe含有量の関係を示すグラフ、第
3図は平均結晶粒径とFe含有量の関係を示すグラフ、
第4図は0.2%耐力と(Fe+O+N+H)含有量の
関係を示すグラフ、第5図(a) 、 (b)は瓦棒屋
根の溝板形状を示す側面図及び正面図、第6図は成形体
平坦面におけるプロフィルの調査状況を示す斜視説明図
、第7図は成形体平坦面のプロフィルを模式的に表わし
た説明図である。
Figure 1 is a graph showing the stress-strain characteristics of conventional material and improved material, Figure 2 is a graph showing the relationship between Hp and Fe content, and Figure 3 is a graph showing the relationship between average grain size and Fe content. graph,
Figure 4 is a graph showing the relationship between 0.2% yield strength and (Fe+O+N+H) content, Figures 5 (a) and (b) are side and front views showing the groove plate shape of a tile rod roof, and Figure 6. 7 is an explanatory perspective view showing the investigation status of the profile on the flat surface of the molded product, and FIG. 7 is an explanatory diagram schematically showing the profile on the flat surface of the molded product.

Claims (1)

【特許請求の範囲】[Claims] 冷間圧延と焼鈍を任意に繰り返して厚さ0.2〜2.0
mmに仕上げたTiまたはTi合金板材であって、Fe
含有量が300ppm以上で且つ[Fe+0+N+H]
量が1500ppm以下であることを特徴とするTiま
たはTi合金板材。
Repeat cold rolling and annealing to a thickness of 0.2 to 2.0
Ti or Ti alloy plate material finished in mm, Fe
The content is 300 ppm or more and [Fe+0+N+H]
A Ti or Ti alloy plate material having an amount of 1500 ppm or less.
JP24784486A 1986-10-18 1986-10-18 Ti or ti-alloy sheet Pending JPS63103043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24784486A JPS63103043A (en) 1986-10-18 1986-10-18 Ti or ti-alloy sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24784486A JPS63103043A (en) 1986-10-18 1986-10-18 Ti or ti-alloy sheet

Publications (1)

Publication Number Publication Date
JPS63103043A true JPS63103043A (en) 1988-05-07

Family

ID=17169506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24784486A Pending JPS63103043A (en) 1986-10-18 1986-10-18 Ti or ti-alloy sheet

Country Status (1)

Country Link
JP (1) JPS63103043A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242729A (en) * 1975-10-01 1977-04-02 Ricoh Co Ltd Auto-bias development in the electrophotographic copying machine
JPS6360247A (en) * 1986-08-29 1988-03-16 Olympus Optical Co Ltd Titanium material for forming

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242729A (en) * 1975-10-01 1977-04-02 Ricoh Co Ltd Auto-bias development in the electrophotographic copying machine
JPS6360247A (en) * 1986-08-29 1988-03-16 Olympus Optical Co Ltd Titanium material for forming

Similar Documents

Publication Publication Date Title
US5587027A (en) Method of manufacturing canning steel sheet with non-aging property and superior workability
EP1990430B1 (en) High-strength hot rolled steel plate and manufacturing method thereof
JPH07268461A (en) Production of ferritic stainless steel strip reduced in inplane anisotropy
KR100259402B1 (en) Method for making a steel sheet suitable as a material for can making
JP3845113B2 (en) Thick steel plate with excellent brittle crack propagation stopping property and low temperature toughness and its manufacturing method
WO1984001585A1 (en) Process for manufacturing cold-rolled steel for deep drawing
MX2011000449A (en) Cold-rolled steel sheet, process for production of same, and backlight chassis.
JP5176599B2 (en) Ultra-thin cold-rolled steel sheet for building materials and manufacturing method thereof
JPS63103043A (en) Ti or ti-alloy sheet
JP2009052108A (en) Extra-low carbon and extremely thin cold rolled steel sheet for building material, and method for producing the same
JPS641546B2 (en)
JPH10110238A (en) Steel sheet for welded can body having high yield strength and its production
JP5747250B2 (en) High-strength steel material excellent in strength, ductility and impact energy absorption ability, and method for producing the same
JP3709709B2 (en) Ferritic stainless steel with excellent formability and manufacturing method thereof
JPH10130734A (en) Production of austenitic stainless steel sheet for roll forming
JPH0542486B2 (en)
JPH06158162A (en) Production of ferritic stainless steel excellent in workability
JPH04143235A (en) High strength alpha type titanium alloy excellent in formability
JPH0959717A (en) Production of ferritic stainless steel strip excellent in press formability, ridging resistance, and surface characteristic
JPH06271943A (en) Production of ferritic stainless steel sheet excellent in formability and ridging resistance and furthermore small in anisotropy
JP3134919B2 (en) Method for producing hot-dip coated steel sheet with excellent roll formability
JP4437863B2 (en) Manufacturing method of steel sheet for steel house with excellent fire resistance
JPH0142329B2 (en)
JPH0196362A (en) Pure titanium thin plate
JP2719910B2 (en) Method for producing soft hot rolled steel sheet with excellent press formability