[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63109221A - Combustion chamber for direct injection type diesel engine - Google Patents

Combustion chamber for direct injection type diesel engine

Info

Publication number
JPS63109221A
JPS63109221A JP25366786A JP25366786A JPS63109221A JP S63109221 A JPS63109221 A JP S63109221A JP 25366786 A JP25366786 A JP 25366786A JP 25366786 A JP25366786 A JP 25366786A JP S63109221 A JPS63109221 A JP S63109221A
Authority
JP
Japan
Prior art keywords
combustion chamber
fuel
opening diameter
air
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25366786A
Other languages
Japanese (ja)
Inventor
Naoki Yanagisawa
直樹 柳沢
Yoshihiko Sato
義彦 佐藤
Noriyuki Sakurai
則行 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP25366786A priority Critical patent/JPS63109221A/en
Publication of JPS63109221A publication Critical patent/JPS63109221A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To improve utilization factor of the air in a combustion chamber for restraining discharge of unburnt exhaust substance, by forming a combustion chamber on piston top for arranging a fuel injection nozzle that injects fuel into the combustion chamber and also forming the combustion chamber in a specified form. CONSTITUTION:On a piston top 2, is formed, a combustion chamber 4 whose opening diameter is enlarged gradually along a center axis direction. The peripheral side wall 4a and the bottom wall 4b of the combustion chamber 4 are connected to each other with a curved surface. A fuel injection nozzle 10, which injects fuel into the combustion chamber 4, is arranged and set. The combustion chamber 4 is formed in such wise that the inlet opening diameter (d) of the combustion chamber 4, the depth (H) of the combustion chamber 4 and the maximum opening diameter (D) of the combustion chamber 4 are set in a range of 0.6<=d/D<=0.8, 2.5<=D/H<=3.5. According to this, it is vanished that squish flow rushes out from the combustion chamber 4 to a cylinder. In such wise, utilization factor of the air in the combustion chamber can be improved and discharge of unburnt exhaust substance can be restrained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は燃焼室内に直接霧化燃料を供給する直噴式デ
ィーゼル機関の燃焼室に係り、特に燃焼室内の空気に流
動を与えて空気利用率を高め、所期の出力を得た上で排
気未燃物の減少及びスモーク濃度の低減を図った直噴式
ディーゼル機関の燃焼室に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to the combustion chamber of a direct injection diesel engine that supplies atomized fuel directly into the combustion chamber, and particularly improves the air utilization rate by giving flow to the air in the combustion chamber. The present invention relates to a combustion chamber of a direct injection diesel engine that aims to reduce unburned exhaust gas and smoke concentration while increasing the fuel efficiency and obtaining the desired output.

[従来の技術] ディーゼル機関の燃焼室として燃焼室の底部中央部を隆
起させたトロイダル形燃焼室が一般に知られているが、
このトロイダル燃焼室に於いては空気と霧化燃料とを混
合する空気流動が弱く、出力・スモークの上で良好な燃
焼が得られていなかった。
[Prior Art] A toroidal combustion chamber in which the bottom center of the combustion chamber is raised is generally known as the combustion chamber of a diesel engine.
In this toroidal combustion chamber, the air flow for mixing air and atomized fuel was weak, and good combustion was not obtained in terms of output and smoke.

そこで近来にあっては第4図に示すように水平断面が円
形で、開口上部の円周方向に沿った部分に半径方向内方
にリップ部aを突出して形成した燃焼室すや、第5図に
示すようにピストンCの軸芯方向に直交する水平断面が
四角形の燃焼室dを形成し、その燃焼室dの隅部に乱流
Tを生成しようとしたものが知られている。
Therefore, in recent years, as shown in Fig. 4, a combustion chamber with a circular horizontal cross section and a lip part a protruding radially inward at the circumferential portion of the upper part of the opening has been developed. As shown in the figure, a combustion chamber d whose horizontal cross section perpendicular to the axial direction of a piston C is square is formed, and a combustion chamber d is designed to generate turbulent flow T at a corner of the combustion chamber d.

しかし、四角形の燃焼室dではスキッシュ流■の積極的
な利用がなされておらず、またリップ部aをもつ燃焼室
すでは上記燃焼室すの乱流Tが利用できないことや第6
図に示すように、スキッシュ流■の旋回方向や旋回半径
Rの大きさが適当でないために、底壁e側に燃料溜qを
作ったり、燃焼室f上部に混合に利用できない空気ゾー
ンhが形成されたりするために、HCが多聞に排出され
易くなっていた。これとは逆に旋回半径Rを第7図に示
すように大きくとると、スキッシュ流Vの一部が燃焼室
す外へ飛び出すため、霧化燃料、空気。
However, in the square combustion chamber d, the squish flow (2) is not actively used, and in the combustion chamber with the lip part (a), the turbulent flow T of the combustion chamber (6) cannot be utilized.
As shown in the figure, because the swirling direction of the squish flow (■) and the radius of rotation (R) are not appropriate, a fuel reservoir q is created on the bottom wall e side, and an air zone h that cannot be used for mixing is created in the upper part of the combustion chamber f. HC is easily discharged in large quantities due to the formation of HC. On the other hand, if the turning radius R is set large as shown in FIG. 7, a part of the squish flow V will fly out of the combustion chamber, causing atomized fuel and air to flow out.

混合気の一部もまた燃焼室す外へ運び出され、結果とし
て出力低下、失火の原因となっていた。
Part of the air-fuel mixture was also carried out of the combustion chamber, resulting in a reduction in power and causing misfires.

この種の問題を解決しようとするものに西独特許出願公
開M 202631 a/46a2号明細書記載の燃焼
室構造が知られている。
A combustion chamber structure described in West German Patent Application No. M 202631 a/46a2 is known as an attempt to solve this type of problem.

第8図に示されるように、この燃焼室はピストン頂部j
を軸方向に沿って窪ませて、ピストンにの軸芯方向に直
交する水平断面が概略四角形の燃焼室iを形成すると共
に、その燃焼室iの周側壁jを半径方向外方へ緩やかに
窪ませ、さらに、燃焼室iの隅部mを除く開口上部に半
径方向内方へ突出されたリップ部nを形成すると共に、
このリップ部nが形成する入口開口を四角形状に形成し
て構成されたものである。
As shown in FIG. 8, this combustion chamber is located at the top of the piston.
is recessed along the axial direction to form a combustion chamber i whose horizontal cross section perpendicular to the axial direction of the piston is approximately square, and the peripheral side wall j of the combustion chamber i is gently recessed radially outward. Further, a lip portion n protruding radially inward is formed at the upper part of the opening excluding the corner m of the combustion chamber i,
The entrance opening formed by this lip part n is formed into a square shape.

[発明が解決しようとする問題点] 上記燃焼室は、燃焼室内にスワール流とスキッシュ流と
を創成し、燃料噴霧と空気との混合を高めて燃焼性能を
向上させようとするものであると考えられるが、スキッ
シュ流■の旋回方向及び旋回半径によっては上記したよ
うに燃料溜りを作ったりまたは、スキッシュ流の一部と
共に噴射燃料の一部、空気の一部、混合気の一部を燃焼
室外へ運ぶことになり好ましくない。
[Problems to be Solved by the Invention] The above-mentioned combustion chamber is intended to create a swirl flow and a squish flow within the combustion chamber to increase the mixing of fuel spray and air to improve combustion performance. It is conceivable that, depending on the swirling direction and radius of the squish flow, a fuel pool may be created as described above, or a portion of the injected fuel, air, and mixture may be combusted along with a portion of the squish flow. This is not desirable as it will have to be carried outside.

[問題点を解決するための手段] この発明は上記した種々の問題点を解決することを目的
とし、この発明はピストン頂部に軸芯方向に沿って開口
径が順次拡大された燃焼室を形成し、この燃焼室の周側
壁と底壁とを曲面で接続すると共に上記燃焼室内に燃料
を噴射する燃料噴射ノズルを配設し、燃焼室の入口部開
口径をd、燃焼室の深さをH1燃焼室の最大開口径をD
としたときにこの燃焼室の形状を次式に基づいて形成し
直噴式ディーゼル機関の燃焼室を構成するものである。
[Means for Solving the Problems] The present invention aims to solve the various problems described above, and the present invention forms a combustion chamber at the top of the piston, the opening diameter of which is sequentially enlarged along the axial direction. The circumferential side wall and bottom wall of this combustion chamber are connected by a curved surface, and a fuel injection nozzle for injecting fuel into the combustion chamber is arranged, and the inlet opening diameter of the combustion chamber is d, and the depth of the combustion chamber is The maximum opening diameter of the H1 combustion chamber is D
Then, the shape of this combustion chamber is formed based on the following equation to configure the combustion chamber of a direct injection diesel engine.

0.6≦d/D≦0.8 2.5≦D/H≦3.5 [作 用] 燃焼室入口部開口の開ロ径d、燃焼室の深さH及び燃焼
室の最大開口径りを 0.6≦d/D≦0.8 2.5≦D/H≦3.5 の範囲で設定し、燃焼室の底壁と周側壁とを曲面で接続
して燃焼室の形状を定めたので、燃焼室の開口上部から
燃焼室内へ押し込まれるスキッシュ流の旋回半径が、こ
の燃焼室からスキッシュ流がシリンダへ飛び出すことの
ない半径に設定されたことに″なる。またスキッシュ流
の流速は燃焼室に部分的な燃料溜りを生じさせることの
ない流速に設定されるから、燃焼室の空気利用率が向上
されて所期の出力を得た上で排気未燃物(HC,NOX
等)の排出を抑え、スモーク排出濃度を大巾に減少させ
ることができる。
0.6≦d/D≦0.8 2.5≦D/H≦3.5 [Function] Opening diameter d of the combustion chamber inlet opening, depth H of the combustion chamber, and maximum opening diameter of the combustion chamber The shape of the combustion chamber is determined by setting the angle in the range of 0.6≦d/D≦0.8 and 2.5≦D/H≦3.5, and connecting the bottom wall and peripheral side wall of the combustion chamber with a curved surface. This means that the turning radius of the squish flow that is pushed into the combustion chamber from the upper part of the opening of the combustion chamber is set to a radius that prevents the squish flow from jumping out from the combustion chamber into the cylinder. Also, the flow velocity of the squish flow is is set at a flow rate that does not cause partial fuel accumulation in the combustion chamber, so the air utilization rate in the combustion chamber is improved and the desired output is obtained, while unburned substances (HC, NOx, etc.) are removed from the exhaust gas.
etc.) and significantly reduce the smoke emission concentration.

[実施例] 以下にこの発明の直噴式ディーゼル機関の燃焼室の好適
一実施例を添付図面に基づいて説明する。
[Embodiment] A preferred embodiment of a combustion chamber of a direct injection diesel engine according to the present invention will be described below with reference to the accompanying drawings.

第1図に示されるようにピストン1のピストン頂部2に
は、頂面3を基準面として軸芯方向に沿って燃焼室4が
窪まされて形成されている。この燃焼室4の開口径は軸
芯方向に沿って順次拡径してあり、ピストン1の軸線を
通る垂直断面は概略台形を成し、またその垂直断面に対
するピストン1の水平断面は第2図に示すように四角形
を成して形成される。
As shown in FIG. 1, a combustion chamber 4 is recessed in the piston top 2 of the piston 1 along the axial direction with the top surface 3 as a reference plane. The opening diameter of this combustion chamber 4 increases gradually along the axial direction, and the vertical cross section of the piston 1 passing through the axis line roughly forms a trapezoid, and the horizontal cross section of the piston 1 with respect to the vertical cross section is shown in FIG. It is formed into a rectangular shape as shown in .

さてこの発明の直噴式ディーゼル機関の特長とするとこ
ろは、上記燃焼室4内に生成するスワール流、スキッシ
ュ流の強度及び方向を調節して適正な空気流動を生じさ
せ、燃焼性能を向上させることにある。
Now, the feature of the direct injection diesel engine of the present invention is that the intensity and direction of the swirl flow and squish flow generated in the combustion chamber 4 are adjusted to generate an appropriate air flow, thereby improving combustion performance. It is in.

したがって上記燃焼室4の各部が次のように構成される
Therefore, each part of the combustion chamber 4 is constructed as follows.

燃焼室4を軸芯方向に沿って順次拡径して形成すること
は、燃焼室4の上部に半径方向内方へ突出されたリップ
部5を形成することになるが、このリップ部5が形成す
る入口部開口6の開口径dは、スキッシュ流■の強度と
機関出力とに影響を与える。
Forming the combustion chamber 4 by sequentially expanding its diameter along the axial direction means forming a lip portion 5 projecting radially inward at the upper part of the combustion chamber 4. The opening diameter d of the inlet opening 6 to be formed affects the strength of the squish flow (2) and the engine output.

即ち、開口径dを小さくして入口部開口6を絞れば絞る
稈スキッシュ流■の強度は増加づ゛るが、絞ることによ
るピストン1のボンピングロスもまた増加する。ボンピ
ングロスを最小限度内に抑え且つ所期のスキッシュ流V
の強度を得るためには、まず入口部開口6の開口径をボ
ンピングロスを最小とする開口径dに設定した上で、ス
キッシュ流Vが燃焼室4内で旋回されやすく形成する必
要がある。
That is, if the opening diameter d is reduced to narrow the inlet opening 6, the strength of the culm squish flow (2) will increase, but the pumping loss of the piston 1 due to the narrowing will also increase. Keeping the bombing loss to a minimum and achieving the desired squish flow V
In order to obtain this strength, it is first necessary to set the opening diameter of the inlet opening 6 to an opening diameter d that minimizes the pumping loss, and then to form the squish flow V so that it can be easily swirled within the combustion chamber 4.

そこで、入口部間口6の開口径dと燃焼室4の底壁4b
側の最大開口径りとが式(1)に基づいて設定される。
Therefore, the opening diameter d of the inlet opening 6 and the bottom wall 4b of the combustion chamber 4 are
The maximum opening diameter on the side is set based on equation (1).

0.6≦d/D≦0,8     ・・・ (1)式(
1)により所期の強度をもつスキッシュ流■が燃焼室4
内へ押し込まれることになるが、押し込まれたスキッシ
ュ流■は、底壁4bによって分散し、分散されたスキッ
シュ流■の一部が燃焼室4の中心方向へ流れるスワール
流Sに乗ってそのスワール流Sを強め、残部は周側壁4
aと底壁4bとが接する曲面4Cに沿って反転する。こ
こで、曲面4Cの曲率半径R8の大小は燃焼室4の空気
利用率及び燃焼室4内へ供給された霧化燃料の壁面付着
に大きな彩管を与える。即ち第6図に示したように曲率
半径R8が小さすぎると、燃焼室4の上部に混合に利用
されない空気ゾーンが形成されること及び反転される部
分のスキッシュ流Vの流速が速められることになって、
曲面4C側へ燃料溜(霧化燃料が再度液状態となって一
部分に集まった状態を指す)を形成し、逆に曲率半径R
8が大きすぎると、第7図に示したように反転された部
分のスキッシュ流■がシリンダ側へ飛び出すことになり
、この結果、燃焼室4内の霧化燃料の一部及び混合気の
一部がシリンダ側へ運ばれ好ましくない。
0.6≦d/D≦0,8...Equation (1) (
1), the squish flow ■ with the desired strength flows into the combustion chamber 4.
However, the pushed squish flow ■ is dispersed by the bottom wall 4b, and a part of the dispersed squish flow ■ rides on the swirl flow S flowing toward the center of the combustion chamber 4 and becomes a swirl. The flow S is strengthened, and the remaining part is on the peripheral side wall 4.
It is reversed along the curved surface 4C where a and the bottom wall 4b are in contact. Here, the size of the radius of curvature R8 of the curved surface 4C gives a large effect on the air utilization rate of the combustion chamber 4 and the adhesion of the atomized fuel supplied to the combustion chamber 4 to the wall surface. That is, as shown in FIG. 6, if the radius of curvature R8 is too small, an air zone that is not used for mixing will be formed in the upper part of the combustion chamber 4, and the flow velocity of the squish flow V in the reversed portion will be increased. Become,
A fuel reservoir (referring to the state in which the atomized fuel becomes a liquid state and gathers in a part) is formed on the curved surface 4C side, and conversely, the radius of curvature R
If 8 is too large, the squish flow (2) of the reversed portion will jump out to the cylinder side as shown in Fig. 7, and as a result, part of the atomized fuel and part of the mixture in the combustion chamber This is undesirable as the parts are carried towards the cylinder side.

燃料溜の形成は燃料の蒸気化が困難になるから、IC,
スモークの排出量が増大し、またシリンダ側へ空気、混
合気、燃料蒸気の一部が運ばれることは失火を生じ易く
なる。
Since the formation of a fuel reservoir makes it difficult to vaporize the fuel, IC,
The amount of smoke emitted increases, and a portion of the air, air-fuel mixture, and fuel vapor is carried toward the cylinder, making misfires more likely to occur.

そこで燃焼室の深さをHとしたとき曲面R8は式(わに
基づいて定められる。
Therefore, when the depth of the combustion chamber is set to H, the curved surface R8 is determined based on the formula (W).

0.18≦R8ZH≦ 0 、32−(21これにより
、曲面4Cの曲率半径が、反転される部分のスキッシュ
流■の旋回半径を燃焼室4の入口部開口6側の空気ゾー
ンも撹拌し且つ曲面4Cに燃料溜を作ることのない半径
に設定することができる。即ち空気利用率が大巾に向上
する。
0.18≦R8ZH≦ 0, 32-(21 As a result, the radius of curvature of the curved surface 4C changes the radius of gyration of the squish flow ① in the reversed portion to also stir the air zone on the side of the inlet opening 6 of the combustion chamber 4, and It is possible to set the radius to such a value that no fuel pool is formed on the curved surface 4C.In other words, the air utilization rate is greatly improved.

ところで、底壁4bは押し込まれたスキッシュ流■の一
部が周側壁4a側へ、残部が燃焼室4の中心側へ移動し
やすく形成する必要がある。このため式(3)に基づい
て底壁4bの曲率半径R,が定められる。
Incidentally, the bottom wall 4b needs to be formed so that a part of the pushed squish flow (2) can easily move toward the peripheral wall 4a, and the remaining part can easily move toward the center of the combustion chamber 4. Therefore, the radius of curvature R of the bottom wall 4b is determined based on equation (3).

1.6≦R,≦2.2      ・・・ (3)ここ
で、曲面4Cと底壁4bとは滑らかに接続されるものと
する。
1.6≦R,≦2.2 (3) Here, it is assumed that the curved surface 4C and the bottom wall 4b are smoothly connected.

次に曲面4Cから周側壁4aに沿って反転されるスキッ
シュ流Vを剥離させて再び底壁4b側へ反転させるため
に、台形の斜辺となる部分の周側壁4aには一直線上の
平滑部4dが形成される。
Next, in order to separate the squish flow V that is reversed from the curved surface 4C along the peripheral wall 4a and reverse it again to the bottom wall 4b, the peripheral wall 4a of the part that becomes the oblique side of the trapezoid has a straight smooth part 4d. is formed.

このため平滑部4d近傍へ霧化燃料が噴射された場合に
あっても、この霧化燃料が周側壁4aに過度に付着され
ることを防止することができる。
Therefore, even if the atomized fuel is injected near the smooth portion 4d, it is possible to prevent the atomized fuel from excessively adhering to the circumferential wall 4a.

また、第2図に示すようにこの実施例に於ける燃焼室4
は水平断面を四角形として形成されて霧化燃料と空気と
の混合を促進する乱流Tを燃焼室4の円周方向の四隅に
生成されるようにしたものであるが、平滑面を接続して
各隅部7を形成すると、燃料溜が生じ易くなってHC,
スモーク発生の原因となる。そこで、四隅が曲面8にて
清らかに接続されるが、この曲面8の曲率半径R6は式
(4)%式% に基づいて設定される。
Furthermore, as shown in FIG. 2, the combustion chamber 4 in this embodiment
is formed with a rectangular horizontal cross section so that the turbulent flow T that promotes the mixing of the atomized fuel and air is generated at the four circumferential corners of the combustion chamber 4. If each corner 7 is formed with
This may cause smoke to occur. Therefore, the four corners are clearly connected by the curved surface 8, and the radius of curvature R6 of this curved surface 8 is set based on the formula (4).

0.35 D≦Rc≦ 0 、5 [)   ・(41
また、周側壁4aに沿って反転されたスキッシュ流■の
一部を完全に剥離させるため、及び燃焼室4内へスキッ
シュ流Vを押し込み易くするために、頂面3と周側壁4
aとを接続する部分、即ちリップ部5の先端は所定の半
径rにて円弧状に形成される。この半径rは式(5)に
基づいて形成される。
0.35 D≦Rc≦ 0, 5 [) ・(41
In addition, in order to completely separate a part of the squish flow (2) reversed along the circumferential wall 4a and to make it easier to push the squish flow V into the combustion chamber 4, the top surface 3 and the circumferential wall 4 are
The portion that connects the lip portion a, that is, the tip of the lip portion 5 is formed in an arc shape with a predetermined radius r. This radius r is formed based on equation (5).

0.2≦r/R8≦ 0.6    ・(51以上のよ
うに燃焼室4の各部の形状を定めることにより燃焼室4
内の空気の流動が混合及び燃焼に対して最適に設定され
るが、生成された空気流動に対して燃料分布を均一にす
るために、燃焼室4の深さHと最大開口径りは式[F]
)に基づいて形成される。
0.2≦r/R8≦0.6 (51 By determining the shape of each part of the combustion chamber 4 as described above, the combustion chamber 4
The depth H and maximum opening diameter of the combustion chamber 4 are determined by the formula: [F]
) is formed based on.

2.5≦D/l−1≦3.5     ・・・ [F]
)次いで燃焼室4の底壁4b側で且つ周側壁4aに臨ま
せて配設される燃料噴射ノズル10の噴射方向は式(7
)に基づいて設定される。
2.5≦D/l-1≦3.5 ... [F]
) Next, the injection direction of the fuel injection nozzle 10 disposed on the bottom wall 4b side of the combustion chamber 4 and facing the peripheral side wall 4a is determined by the equation (7).
) is set based on

0.78 ≦h/H≦ 0.83    ・・・  (
7)ここにhは燃焼室底壁4bの最深部を基準にしたと
きの高さを示す。
0.78 ≦h/H≦ 0.83 ... (
7) Here, h indicates the height based on the deepest part of the bottom wall 4b of the combustion chamber.

以下にこの発明の直噴式ディーゼル機関の燃焼室の作用
を添付図面に基づいて説明する。
The operation of the combustion chamber of the direct injection diesel engine of the present invention will be explained below based on the accompanying drawings.

ピストン1の圧縮行程終期において、燃焼室4内には、
流体慣性により円周方向に旋回しながら燃焼室4の中心
下方に向うスワール流が生成されているが、この時期に
、圧縮によって頂面3aの外周部分側から燃焼室4内へ
押し込まれるスキッシュ流■が生成される。
At the end of the compression stroke of the piston 1, inside the combustion chamber 4,
A swirl flow is generated that moves downward from the center of the combustion chamber 4 while swirling in the circumferential direction due to fluid inertia. At this time, a squish flow is pushed into the combustion chamber 4 from the outer peripheral side of the top surface 3a due to compression. ■ is generated.

このスキッシュ流Vは燃焼室4の底壁4bの曲率半径8
丁に従って、一部がスワール流Sに沿ってそのスワール
流Sを強化し、残部が曲面4Cの曲率半径R8に従って
反転される。反転された部分のスキッシュ流■は周側壁
4aの一部である平滑部4dによって徐々に剥離されリ
ップ部5の先端に接続される部分で完全に剥離される。
This squish flow V has a radius of curvature 8 of the bottom wall 4b of the combustion chamber 4.
According to this, a part strengthens the swirl flow S along the swirl flow S, and the remaining part is reversed according to the radius of curvature R8 of the curved surface 4C. The squish flow (2) in the inverted portion is gradually separated by the smooth portion 4d that is a part of the circumferential wall 4a, and is completely separated at the portion connected to the tip of the lip portion 5.

剥離されたスキッシュ流■は再び底壁4b側へ反転され
るため、これによって燃焼室4内の空気の全てが流動化
される。また、燃焼室4の隅部には乱流Tが生成されて
いるから、この部分での空気流動も確実に行なわれる。
Since the separated squish flow (2) is again reversed toward the bottom wall 4b, all of the air in the combustion chamber 4 is fluidized. Further, since turbulent flow T is generated at the corners of the combustion chamber 4, air flow in these parts is also ensured.

ピストン1の圧縮行程終期、即ち上死点近傍では燃料噴
射ノズルから負荷に応じた燃料が霧化されて噴射される
。この霧化燃料は燃焼室4の底壁4b側で且つ周側壁4
a、即ち平滑部4d近傍に向けて噴射される。噴射され
た霧化燃料の一部はスキッシュ流■を交差することによ
り蒸気化され、この蒸気化された霧化燃料がスキッシュ
流Vの分散に応じて、一部がスワール流Sに乗って燃焼
室4の中心側へ運ばれ、残部が反転される部分のスキッ
シュ流Vに乗って運ばれる。
At the end of the compression stroke of the piston 1, that is, near the top dead center, fuel corresponding to the load is atomized and injected from the fuel injection nozzle. This atomized fuel is distributed on the bottom wall 4b side of the combustion chamber 4 and on the peripheral side wall 4.
a, that is, it is injected toward the vicinity of the smooth portion 4d. A part of the injected atomized fuel is vaporized by crossing the squish flow ■, and depending on the dispersion of the squish flow V, a part of the injected atomized fuel rides on the swirl flow S and is combusted. It is carried to the center side of the chamber 4, and the remaining part is carried on the squish flow V of the part to be inverted.

一方、スキッシュ流■を貫通し周側壁4a側へ到達しよ
うとする霧化燃料の残部は、反転された部分のスキッシ
ュ流■に向流されためにここで完全に蒸気化されて再び
燃焼室4の底壁4bへ運ばれる。
On the other hand, the remaining part of the atomized fuel that is about to penetrate the squish flow (2) and reach the peripheral wall 4a side is completely vaporized here because it flows counter-currently to the reversed part of the squish flow (2) and reaches the combustion chamber 4a again. is carried to the bottom wall 4b.

したがってスキッシュ流v中に、蒸気化されたn化燃料
が採り込まれることになり、部分的に濃= 13− い混合気が生成される一方で、燃焼室4全体ではスワー
ル流Sにより均一な混合気の分散分布が図られることに
なり、濃い混合気の着火が燃焼室4の混合気に速やかに
伝播される。
Therefore, the vaporized n-fuel is introduced into the squish flow v, producing a partially rich mixture, while the entire combustion chamber 4 has a uniform swirl flow S. A dispersed distribution of the air-fuel mixture is achieved, and the ignition of the rich air-fuel mixture is quickly propagated to the air-fuel mixture in the combustion chamber 4.

ゆえに燃焼としては着火遅れが大巾に短縮されると共に
、所期の出力性能を保った上で、燃焼未燃物(HC,N
Ox )の排出を減少させスモークm度を低く抑えた燃
焼を得ることができる。
Therefore, in terms of combustion, the ignition delay is greatly shortened, and while maintaining the desired output performance, the combustion unburnt materials (HC, N
Combustion can be achieved with reduced smoke emissions and low smoke levels.

第3図には曲面8の曲率半径R6を式(4)に基づいて
形成した場合のHC排出濃度とスモーク排出濃痕が示さ
れており、同図によればHC排出濃度を420 [p、
 p、 mコル305’[p、p、m ]に、スモーク
排出濃度を最大で2[Bosch]以内に抑えることが
できる。
FIG. 3 shows the HC emission concentration and the smoke emission concentration when the radius of curvature R6 of the curved surface 8 is formed based on equation (4). According to the figure, the HC emission concentration is 420 [p,
p, m col 305' [p, p, m], the smoke emission concentration can be suppressed to within 2 [Bosch] at maximum.

尚、上記燃焼室4内に臨ませて燃料噴射ノズル10が配
設されるが、燃料噴射ノズルとしては燃焼室4の円周方
向に間隔をおいて霧化燃料を噴射するもの、先行して微
粒化された燃料噴霧を噴射した後遅れて主噴霧を噴射す
るように構成したもの、軽負荷では上記微粒化された燃
料噴霧を噴射し、軽負荷を越えると主噴霧も噴射するよ
うに構成されたものがある。これら種々の燃料噴射ノズ
ルを設ける場合にあって噴霧方向は、上記のスキッシュ
流Vを交差する方向、あるいは対向する方向に向けられ
る。その際に噴霧の貫徹力を充分に考慮し、燃焼室内の
混合気量を負荷に応じて生成できるように噴霧方向が定
められる。
Incidentally, a fuel injection nozzle 10 is disposed facing into the combustion chamber 4, and the fuel injection nozzle may be one that injects atomized fuel at intervals in the circumferential direction of the combustion chamber 4, or one that injects atomized fuel at intervals in the circumferential direction of the combustion chamber 4. It is configured to inject the main spray after injecting the atomized fuel spray, and the atomized fuel spray is injected at light loads, and the main spray is also injected when the load exceeds the light load. There are things that have been done. When these various fuel injection nozzles are provided, the spray direction is directed in a direction that intersects the above-mentioned squish flow V or in a direction that opposes it. At this time, the spray direction is determined so that the amount of air-fuel mixture in the combustion chamber can be generated in accordance with the load, with sufficient consideration given to the penetration force of the spray.

[発明の効果] 以上説明したことから明らかなように、この発明の直噴
式ディーゼル機関の燃焼室によれば次のごとき優れた効
果を発揮できる。
[Effects of the Invention] As is clear from the above explanation, the combustion chamber of the direct injection diesel engine of the present invention can exhibit the following excellent effects.

(1)  ピストン頂部に軸芯方向に沿って開口径が順
次拡大された燃焼室を形成し、この燃焼室の周側壁と底
壁とを曲面で接続すると共に上記燃焼室内に燃料を噴射
する燃料噴射ノズルを配設し、燃焼室の入ロ部開ロ径d
、燃焼室の深さH及び燃焼室の最大開口径りを 0.6≦d/D≦0.8 2.5≦D/H≦3.5 の範囲内で設定し燃焼室を形成したので、燃焼室からシ
リンダへスキッシュ流が飛び出すことがなくなり、これ
に伴って燃料噴霧及び空気を燃焼室に閉じ込めて有効に
撹拌できる。
(1) A fuel that forms a combustion chamber whose opening diameter is gradually enlarged along the axial direction at the top of the piston, connects the peripheral side wall and bottom wall of this combustion chamber with a curved surface, and injects fuel into the combustion chamber. The injection nozzle is arranged, and the opening diameter d of the entrance part of the combustion chamber is
The combustion chamber was formed by setting the depth H of the combustion chamber and the maximum opening diameter of the combustion chamber within the range of 0.6≦d/D≦0.8 and 2.5≦D/H≦3.5. , the squish flow does not jump out from the combustion chamber to the cylinder, and as a result, the fuel spray and air can be confined in the combustion chamber and agitated effectively.

(2)  空気利用のなされないゾーンが燃焼室に形成
されないので、燃焼を良くし排気未燃物(HC,NOx
 、スモーク等)の排出を低く抑えることができる。
(2) Since no zone is formed in the combustion chamber where no air is used, combustion is improved and unburned substances (HC, NOx,
, smoke, etc.) emissions can be kept low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の好適一実施例を示すピストンの縦断
面図、第2図は第1図の上面図、第3図はこの発明の実
施例のHC排出濃度とスモーク排出濃度を示す性能図、
第4図乃至第8図は従来の燃焼室を示す図である。 図中、1はピストン、2はピストン頂部、3は頂面、4
は燃焼室、4aは周側壁、4bは底壁、4Cは曲面、4
dは平滑部、5はリップ部、6は入口部開口、10は燃
料噴射ノズルである。
FIG. 1 is a longitudinal sectional view of a piston showing a preferred embodiment of the present invention, FIG. 2 is a top view of FIG. 1, and FIG. 3 is a performance showing the HC emission concentration and smoke emission concentration of the embodiment of the invention. figure,
FIGS. 4 to 8 are diagrams showing conventional combustion chambers. In the figure, 1 is the piston, 2 is the top of the piston, 3 is the top surface, 4
is a combustion chamber, 4a is a peripheral wall, 4b is a bottom wall, 4C is a curved surface, 4
d is a smooth portion, 5 is a lip portion, 6 is an inlet opening, and 10 is a fuel injection nozzle.

Claims (2)

【特許請求の範囲】[Claims] (1)ピストン頂部に軸芯方向に沿って開口径が順次拡
大された燃焼室を形成し、該燃焼室の周側壁と底壁とを
曲面で接続すると共に上記燃焼室内に燃料を噴射する燃
料噴射ノズルを配設し、上記燃焼室の形状を次式に基づ
いて形成したことを特徴とする直噴式ディーゼル機関の
燃焼室。 0.6≦d/D≦0.8
(1) A combustion chamber whose opening diameter is gradually enlarged along the axial direction is formed at the top of the piston, and the circumferential side wall and bottom wall of the combustion chamber are connected by a curved surface, and fuel is injected into the combustion chamber. A combustion chamber for a direct injection diesel engine, characterized in that an injection nozzle is provided and the combustion chamber has a shape based on the following formula. 0.6≦d/D≦0.8
2.5≦D/H≦3.5 式中、dは燃焼室入口部開口の開口径 Hは燃焼室の深さ Dは最大開口径 (2)上記燃焼室が、上記ピストンの軸芯方向に直交す
る垂直断面を略四角形に形成されると共に、上記周側壁
相互が曲面で接続され、上記底壁が軸方向に円弧状に窪
ませられて形成された上記特許請求の範囲第1項記載の
直噴式ディーゼル機関の燃焼室。
2.5≦D/H≦3.5 In the formula, d is the opening diameter of the combustion chamber inlet opening H is the depth of the combustion chamber D is the maximum opening diameter (2) The combustion chamber is located in the axial direction of the piston. Claim 1, wherein the perpendicular cross section perpendicular to is formed into a substantially quadrangular shape, the circumferential side walls are connected to each other by a curved surface, and the bottom wall is formed by being recessed in an arc shape in the axial direction. Combustion chamber of a direct injection diesel engine.
JP25366786A 1986-10-27 1986-10-27 Combustion chamber for direct injection type diesel engine Pending JPS63109221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25366786A JPS63109221A (en) 1986-10-27 1986-10-27 Combustion chamber for direct injection type diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25366786A JPS63109221A (en) 1986-10-27 1986-10-27 Combustion chamber for direct injection type diesel engine

Publications (1)

Publication Number Publication Date
JPS63109221A true JPS63109221A (en) 1988-05-13

Family

ID=17254502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25366786A Pending JPS63109221A (en) 1986-10-27 1986-10-27 Combustion chamber for direct injection type diesel engine

Country Status (1)

Country Link
JP (1) JPS63109221A (en)

Similar Documents

Publication Publication Date Title
JP2010101243A (en) Piston for diesel internal combustion engine
JP2010121483A (en) Combustion chamber structure of diesel engine
JPH10115223A (en) Combustion chamber structure for cylinder injection engine
JPH10131756A (en) Inner-cylinder injection type engine
JP2006112312A (en) Combustion chamber shape for direct injection type diesel engine
JPS63134813A (en) Combustion chamber of internal combustion engine
JP2002122024A (en) Combustion chamber or piston
JPS63109221A (en) Combustion chamber for direct injection type diesel engine
JPH0623540B2 (en) Pentorf type direct injection internal combustion engine
JP3185234B2 (en) Direct injection internal combustion engine
JP3538916B2 (en) Combustion chamber structure of direct injection engine
JPH08121171A (en) Combustion chamber for direct injection type diesel engine
JPS63105227A (en) Combustion chamber for direct injection type diesel engine
JP2560337B2 (en) Direct injection diesel engine
JPH05106443A (en) Combustion chamber of internal combustion engine
JP4075471B2 (en) In-cylinder direct injection internal combustion engine
JPS6325307Y2 (en)
JPS6325309Y2 (en)
JPS63105226A (en) Combustion chamber for direct injection type diesel engine
JPS6325308Y2 (en)
JPS62255523A (en) Pent roof type piston
JPS62255522A (en) Pent roof type piston
JPH0724585Y2 (en) Combustion chamber of direct injection diesel engine
JP2001115844A (en) Combustion chamber for direct injection diesel engine
JP2602529Y2 (en) Diesel engine combustion chamber structure