[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63105264A - Ignition timing control device for electronic controlled fuel injection type internal combustion engine - Google Patents

Ignition timing control device for electronic controlled fuel injection type internal combustion engine

Info

Publication number
JPS63105264A
JPS63105264A JP24737686A JP24737686A JPS63105264A JP S63105264 A JPS63105264 A JP S63105264A JP 24737686 A JP24737686 A JP 24737686A JP 24737686 A JP24737686 A JP 24737686A JP S63105264 A JPS63105264 A JP S63105264A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
ignition timing
control
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24737686A
Other languages
Japanese (ja)
Inventor
Shinpei Nakaniwa
伸平 中庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP24737686A priority Critical patent/JPS63105264A/en
Publication of JPS63105264A publication Critical patent/JPS63105264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To make it possible to prevent generation of torque variation, by performing ignition timing control when the desired air-fuel ratio at feedback control of air-fuel ratio is changed, according to the air-fuel ratio variation at this time. CONSTITUTION:When it is decided that present operating condition is in a thin air-fuel ratio control range, in a control unit 30, a spark advance correction value at thin air-fuel ratio control time, is referred according to real air-fuel ratio, calculated according to oxygen density in exhaust gas, which is detected by an oxygen sensor 20. After that, as air-fuel ratio becomes thinner through being advanced the control for the desired thin air-fuel ratio, the referred spark advance correction value is increased, the ignition timing is more advanced, and consequently, it is set at the engine demand ignition timing. Accordingly, if the operating condition has shifted from being under theoretical air-fuel ratio control to the thin air-fuel ratio control range, the ignition timing is not varied suddenly, and generation of torque variation at change of the desired air-fuel ratio, can be avoided.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は電子制御燃料噴射式内燃機関の点火時期制御装
置に関し、詳しくは空燃比フィードバック制御における
目標空燃比が切り換え設定される電子制御燃料噴射式内
燃機関における点火時期の制御技術に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an ignition timing control device for an electronically controlled fuel injection type internal combustion engine, and more specifically to an electronically controlled fuel injection system in which a target air-fuel ratio is switched and set in air-fuel ratio feedback control. This paper relates to ignition timing control technology in internal combustion engines.

〈従来の技術〉 電子制御燃料噴射式内燃機関と゛しては従来以下のよう
なものがある。
<Prior Art> There are the following conventional electronically controlled fuel injection internal combustion engines.

即ち、エアフローメータにより検出される吸入空気流1
iQとクランク角センサや点火コイル等によって検出さ
れる機関回転速度Nとから基本燃料噴射it’r p 
(”−K X Q/ N ; K ハ定数) ’!c’
tjW−シ、更に、機関温度等の機関運転状態に応じた
各種補正係数C0EFと空燃比フィードバンク補正係数
αとバッテリ電圧による補正分子sとを演算した後、前
記基本燃料噴射flTpをこれらにより輔正演算して、
最終的な燃料噴射量Ti(−’rpxcOEFXα+T
s)を設定する。
That is, the intake air flow 1 detected by the air flow meter
Basic fuel injection it'rp is determined from iQ and the engine rotational speed N detected by the crank angle sensor, ignition coil, etc.
(”-K X Q/N; K Ha constant) '!c'
Furthermore, after calculating various correction coefficients C0EF according to engine operating conditions such as engine temperature, air-fuel ratio feedbank correction coefficient α, and correction numerator s according to battery voltage, the basic fuel injection flTp is adjusted by these. Do a positive operation,
Final fuel injection amount Ti(-'rpxcOEFXα+T
s).

そして、設定された燃料噴射lTiに相当するパルス巾
の噴射パルス信号を電磁式燃料噴射弁に出力することに
より、機関に所定量の燃料を噴射供給するようにしてい
た(特開昭59−203828号公報等参照)。
Then, by outputting an injection pulse signal with a pulse width corresponding to the set fuel injection lTi to the electromagnetic fuel injection valve, a predetermined amount of fuel was injected and supplied to the engine (Japanese Patent Laid-Open No. 59-203828 (Refer to the publication number, etc.)

尚、前記空燃比フィードバック補正係数αは、02セン
サによって検出される排気中の酸素濃度から求められる
実際の空燃比を目標空燃比(通常は理論空燃比)に制御
するために、燃料噴射量Tiを増減補正するものである
The air-fuel ratio feedback correction coefficient α is determined based on the fuel injection amount Ti in order to control the actual air-fuel ratio determined from the oxygen concentration in the exhaust gas detected by the 02 sensor to the target air-fuel ratio (usually the stoichiometric air-fuel ratio). This is to correct the increase or decrease.

また、かかる電子制御燃料噴射式内燃機関における点火
時期制御としては、例えば以下のようなものがある(特
開昭59−49369号公報参照)。
Furthermore, examples of ignition timing control in such an electronically controlled fuel injection type internal combustion engine include the following (see Japanese Patent Laid-Open No. 59-49369).

即ち、点火時期を制御するコントロールユニット内のメ
モリーに、機関の運転状態、具体的には機関回転速度N
と基本燃料噴射量’rpとに見合った点火時期の制御値
(点火進角値)を予め記憶させておき、これらの記憶デ
ータの中からそのときの機関回転速度Nと基本燃料噴射
ff1Tpに見合った点火時期の制御値を検索し、その
値から点火時期を制御゛するようにしていた。
That is, the operating state of the engine, specifically the engine rotational speed N, is stored in the memory in the control unit that controls the ignition timing.
Ignition timing control values (ignition advance angle values) commensurate with and basic fuel injection amount 'rp are stored in advance, and from these stored data, a control value commensurate with engine speed N and basic fuel injection ff1Tp at that time is stored. The ignition timing control value was searched and the ignition timing was controlled from that value.

(発明が解決しようとする問題点〉 ところで、近年燃費向上や排気の浄化等を目的として、
機関の低速低負荷定常運転状態において、理論空燃比よ
りも実際の空燃比が薄くなるように空燃比制御するよう
にしたものがある。即ち、高出力を必要とせず希薄燃焼
させても良い所定の低速低負荷定常運転状態であること
が判定されると、通常状態で目標空燃比を理論空燃比と
して実際の空燃比が略理論空燃比となるように設定され
る燃料噴射量を、目標空燃比を切り換えて実際の空燃比
が所定希薄空燃比となるように減量設定して燃料噴射制
御するものであり、これにより燃料消費量を少なくする
と共に、排気中の有害成分を低減しようとするものであ
る。
(Problems to be solved by the invention) In recent years, with the aim of improving fuel efficiency and purifying exhaust gas,
Some engines control the air-fuel ratio so that the actual air-fuel ratio is thinner than the stoichiometric air-fuel ratio when the engine is in a steady state of low-speed, low-load operation. In other words, if it is determined that the operating state is a predetermined low-speed, low-load steady-state operating state that does not require high output and allows lean burn, the actual air-fuel ratio will be approximately equal to the stoichiometric air-fuel ratio, assuming that the target air-fuel ratio is the stoichiometric air-fuel ratio in the normal state. The fuel injection amount is controlled by changing the target air-fuel ratio so that the actual air-fuel ratio becomes a predetermined lean air-fuel ratio. This aims to reduce harmful components in exhaust gas.

よ記のように、空燃比を理論空燃比よりも所定値だけ薄
くなるように制御するときには、第4図に示すように、
理論空燃比制御時よりも点火時期を進角させて点火制御
しないと、トルク変動が発生したりする慣れがある。こ
のため、従来では、理論空燃比制御時に対応した点火時
期の制御値マツプと、希薄空燃比制御時に対応したマツ
プとの2つのマツプを記憶させるようにして、希薄空燃
比制御を行う条件が揃ったときには希薄空燃比時用の点
火時期マツプを用いるようにしていた。
As shown in Figure 4, when controlling the air-fuel ratio so that it is thinner than the stoichiometric air-fuel ratio by a predetermined value,
If ignition control is not performed by advancing the ignition timing compared to the stoichiometric air-fuel ratio control, torque fluctuations may occur. For this reason, in the past, two maps were stored: an ignition timing control value map corresponding to stoichiometric air-fuel ratio control and a map corresponding to lean air-fuel ratio control, so that the conditions for performing lean air-fuel ratio control were met. In some cases, an ignition timing map for lean air-fuel ratios was used.

しかしながら、希薄空燃比制御の条件が揃ったときに直
ちに希薄空燃比制御時用の点火時期マツプを用いて点火
制御すると、実際の空燃比はまだ目標の希薄空燃比にな
っていないにも関わらず、目標希薄空燃比に対応した点
火時期制御がなされることになってしまう。このため、
従来では、第5図に示すように目標空燃比の切り換え時
即ち点火時期マツプの切り換え時に、点火時期の急激変
化によるトルク変動によってサージングが発生するとい
う問題があった。
However, if the ignition timing map for lean air-fuel ratio control is used to immediately control ignition when the conditions for lean air-fuel ratio control are met, the actual air-fuel ratio may not reach the target lean air-fuel ratio yet. , the ignition timing will be controlled in accordance with the target lean air-fuel ratio. For this reason,
Conventionally, as shown in FIG. 5, when switching the target air-fuel ratio, that is, when switching the ignition timing map, there has been a problem in that surging occurs due to torque fluctuations due to sudden changes in the ignition timing.

本発明は上記問題点に鑑みなされたものであり、空燃比
フィードバック制御における目標空燃比が切り換えられ
たときに、そのときの空燃比変化に応じた点火時期制御
を行ってトルク変動の発生を未然に防止することを目的
とする。
The present invention has been made in view of the above problems, and when the target air-fuel ratio in air-fuel ratio feedback control is switched, ignition timing control is performed in accordance with the air-fuel ratio change at that time to prevent torque fluctuations from occurring. The purpose is to prevent

く問題点を解決するための手段〉 そのため本発明では、第1図に示すように、機関の吸入
混合気の空燃比を検出する空燃比検出手段と、これによ
り検出された実際の空燃比を所定の目標空燃比になるよ
うに燃料噴射量をフィードバック制御する燃料噴射量制
御手段と、を備え、前記目標空燃比が機関運転状態に応
じて理論空燃比と理論空燃比よりも薄い希薄空燃比とに
切り換え設定されるように構成された電子制御燃料噴射
式内燃機関において、機関運転状態に応じて基本点火時
期を設定する基本点火時期設定手段と、前記目標空燃比
の切り換え時に実際の空燃比変化に応じて点火時期の補
正値を設定する点火時期補正値設定手段と、前記目標空
燃比の切り換え時に前記基本点火時期を前記補正値で補
正して点火時期を設定する点火時期補正設定手段と、設
定された点火時期に基づいて点火を制御する点火制御手
段と、を備えて点火時期制御装置を構成するようにした
Means for Solving Problems> Therefore, in the present invention, as shown in FIG. fuel injection amount control means for feedback controlling the fuel injection amount so as to reach a predetermined target air-fuel ratio; the target air-fuel ratio is a stoichiometric air-fuel ratio and a lean air-fuel ratio thinner than the stoichiometric air-fuel ratio according to engine operating conditions; In an electronically controlled fuel injection internal combustion engine configured to switch and set the target air-fuel ratio, there is provided a basic ignition timing setting means for setting the basic ignition timing according to the engine operating state; ignition timing correction value setting means for setting a correction value of ignition timing according to the change; and ignition timing correction setting means for setting ignition timing by correcting the basic ignition timing with the correction value when switching the target air-fuel ratio. , and ignition control means for controlling ignition based on the set ignition timing.

く作用〉 かかる構成によると、例えば目標空燃比が理論空燃比に
設定されていて実際の空燃比が略理論空燃比に制御され
ている状態か、ら目標空燃比を所定希薄空燃比に切り換
えたときには、空燃比フィードバック制御によって実際
の空燃比が前記所定希薄空燃比に徐々に近似するように
なるが、このときの点火時期を点火時期補正設定手段に
よりこの実際の空燃比変化に応じて徐々に進角させるこ
とができる。従って、目標空燃比が切り換えられても、
その目標空燃比に対応した点火時期制御が直ちに開始さ
れることがなく、実際の空燃比に対応した点火制御がな
されて点火時期の変化を滑らかにすることができる。
According to this configuration, for example, when the target air-fuel ratio is set to the stoichiometric air-fuel ratio and the actual air-fuel ratio is controlled to approximately the stoichiometric air-fuel ratio, the target air-fuel ratio is switched to the predetermined lean air-fuel ratio. Sometimes, the actual air-fuel ratio gradually approaches the predetermined lean air-fuel ratio by air-fuel ratio feedback control, but the ignition timing at this time is gradually adjusted by the ignition timing correction setting means according to the change in the actual air-fuel ratio. It can be advanced. Therefore, even if the target air-fuel ratio is switched,
Ignition timing control corresponding to the target air-fuel ratio is not started immediately, but ignition control corresponding to the actual air-fuel ratio is performed, and changes in ignition timing can be made smooth.

〈実施例〉 以下に本発明の一実施例を図面に基づいて説明する。<Example> An embodiment of the present invention will be described below based on the drawings.

第2図に本発明にかかる点火時期制御装置を備えた電子
制御燃料噴射式内燃機関の一実施例のハードウェア構成
を示しである。
FIG. 2 shows the hardware configuration of an embodiment of an electronically controlled fuel injection type internal combustion engine equipped with an ignition timing control device according to the present invention.

機関1にはエアクリーナ2.吸気ダクト3.スロットル
チャンバ4及び吸気マニホールド5を介して空気が吸入
される。
Engine 1 has air cleaner 2. Intake duct 3. Air is drawn in via the throttle chamber 4 and the intake manifold 5.

吸気ダクト3には、エアフローメータ6が設けられてい
て、吸入空気流i1Qに対応する電圧信号を出力する。
An air flow meter 6 is provided in the intake duct 3 and outputs a voltage signal corresponding to the intake air flow i1Q.

スロットルチャンバ4には、図示しないアクセルペダル
と連動するスロットル弁7が設けられていて、吸入空気
流!iQを制御する。スロットル弁7には、その開度θ
を検出するスロットル弁開度センサ8が付設されている
。排気マニホールド21には、空燃比検出手段としての
酸素センサ20 (排気中の酸素濃度によって理論空燃
比を含む広範囲の空燃比を検出するものであり、例えば
特願昭60−167440号等)が設けられていて、排
気中の酸素濃度に対応した信号をコントロールユニット
30に出力し、コントロールユニット30は入力された
酸素濃度に基づき実際の空燃比を求める。
The throttle chamber 4 is provided with a throttle valve 7 that operates in conjunction with an accelerator pedal (not shown) to control the intake air flow! Control iQ. The throttle valve 7 has its opening degree θ
A throttle valve opening sensor 8 is attached to detect the opening of the throttle valve. The exhaust manifold 21 is provided with an oxygen sensor 20 (which detects a wide range of air-fuel ratios including the stoichiometric air-fuel ratio depending on the oxygen concentration in the exhaust gas, for example, Japanese Patent Application No. 167440/1986) as an air-fuel ratio detection means. A signal corresponding to the oxygen concentration in the exhaust gas is output to the control unit 30, and the control unit 30 determines the actual air-fuel ratio based on the input oxygen concentration.

吸気マニホールド5には、各気筒毎に燃料噴射弁9が設
けられていて、燃料噴射量制御手段としてのマイクロコ
ンピュータを内蔵したコントロールユニット30からの
駆動パルス信号により開弁じ、図示しない燃料ポンプか
ら圧送されプレッシャレギュレータにより所定圧力に制
御された燃料を吸気マニホールド5内に噴射供給する。
The intake manifold 5 is provided with a fuel injection valve 9 for each cylinder, and the valve is opened by a drive pulse signal from a control unit 30 containing a microcomputer as a fuel injection amount control means, and the fuel injection valve 9 is pressurized from a fuel pump (not shown). The pressure is controlled to a predetermined pressure by a pressure regulator, and the fuel is injected into the intake manifold 5.

即ち、コントロールユニット30は、エアフローメータ
6によって検出される吸入空気流量Qと後述するクラン
ク角センサ14によって検出される機関回転速度Nとに
よって基本燃料噴射fiTp(−KXQ/NiKは定数
)を演算し、更に、機関温度等の機関運転状態に応じた
各種補正係数C0EFと空燃比フィードバック補正係数
αとパンテリ電圧による補正分子sとを演算した後、前
記基本燃料噴射量Tpをこれらにより補正演算して、最
終的な燃料噴射1tTi  (”−TpXCOEFXα
+Ts)を設定する。そして、前記燃料噴射lTiに相
当する駆動パルス信号を燃料噴射弁9に出力することに
より、所定量の燃料を噴射供給するものである。
That is, the control unit 30 calculates the basic fuel injection fiTp (-KXQ/NiK is a constant) based on the intake air flow rate Q detected by the air flow meter 6 and the engine rotation speed N detected by the crank angle sensor 14, which will be described later. Furthermore, after calculating various correction coefficients C0EF according to engine operating conditions such as engine temperature, air-fuel ratio feedback correction coefficient α, and correction numerator s based on Panteri voltage, the basic fuel injection amount Tp is corrected and calculated using these. , final fuel injection 1tTi (”-TpXCOEFXα
+Ts). A predetermined amount of fuel is injected and supplied by outputting a drive pulse signal corresponding to the fuel injection lTi to the fuel injection valve 9.

ここで、空燃比フィードバック補正係数αは、酸素セン
サ20によって検出される実際の空燃比を、所定の目標
空燃比に制御するためのものであり、所定の低速低負荷
運転領域の定常運転状態においてはこの目標空燃比が理
論空燃比よりも所定値だけ薄く設定され、それ以外の運
転状態においては目標空燃比は理論空燃比に設定される
Here, the air-fuel ratio feedback correction coefficient α is for controlling the actual air-fuel ratio detected by the oxygen sensor 20 to a predetermined target air-fuel ratio, and is for controlling the actual air-fuel ratio detected by the oxygen sensor 20 to a predetermined target air-fuel ratio. This target air-fuel ratio is set to be thinner than the stoichiometric air-fuel ratio by a predetermined value, and in other operating conditions, the target air-fuel ratio is set to the stoichiometric air-fuel ratio.

一方、機関lの各気筒には、点火栓lOが設けられてい
て、これらには点火コイル11にて発生する高電圧がデ
ィストリビュータ12を介して順次印加され、これによ
り火花点火して混合気を着火燃焼させる。点火コイル1
1は、それに付設されたパワートランジスタ13を介し
て高電圧の発生時期を制御される。従って、点火時期の
制御は、パワートランジスタ13の0N−OFF時期を
コントロールユニット30からの点火時期制御信号で制
御することにより行う。このように、本実施例における
点火制御手段とは、点火栓10.点火コイル11.ディ
ストリビュータ12及びコントロフルユニット3oで構
成されるものである。
On the other hand, each cylinder of the engine l is provided with an ignition plug lO, to which the high voltage generated by the ignition coil 11 is sequentially applied via the distributor 12, thereby igniting the spark and igniting the air-fuel mixture. Ignite and burn. ignition coil 1
1, the generation timing of the high voltage is controlled via a power transistor 13 attached thereto. Therefore, the ignition timing is controlled by controlling the ON-OFF timing of the power transistor 13 using an ignition timing control signal from the control unit 30. In this way, the ignition control means in this embodiment is the ignition plug 10. Ignition coil 11. It is composed of a distributor 12 and a control full unit 3o.

ディストリビュータ12には、光電式クランク角センサ
14が内蔵されている。光電式クランク角センサ14は
、ディストリビュークシャフト15と一体に回転するシ
グナルディスクプレート16と検出部17とによりなる
。シグナルディスクプレート16には、360個のポジ
ション信号(1°信号)用スリット18と、4気筒の場
合4個のリファレンス信号(180°信号)用スリット
19とが形成されており、4個のリファレンス信号用ス
リット19のうち1個は魚1気筒の判別用でもある。
A photoelectric crank angle sensor 14 is built into the distributor 12 . The photoelectric crank angle sensor 14 includes a signal disk plate 16 that rotates together with the distributor shaft 15 and a detection section 17. The signal disc plate 16 is formed with 360 slits 18 for position signals (1° signal) and 4 slits 19 for reference signals (180° signal) in the case of a 4-cylinder engine. One of the signal slits 19 is also used to identify one cylinder of fish.

検出部17は、これらのスリ7)18.19を検出し、
ポジション信号と気筒判別信号を含むリファレンス信号
とを出力する。ここで、リファレンス信号の周期を測定
することにより機関回転速度Nを算出することが可能で
ある。従って、クランク角センサ14はクランク角のみ
ならず機関回転速度Nの検出を行う。
The detection unit 17 detects these pickpockets 7) 18 and 19,
A reference signal including a position signal and a cylinder discrimination signal is output. Here, it is possible to calculate the engine rotation speed N by measuring the period of the reference signal. Therefore, the crank angle sensor 14 detects not only the crank angle but also the engine rotation speed N.

次に基本点火時期設定手段1点火時期補正値設定手段2
点火時期補正設定手段を兼ねるコントロールユニット3
0による点火時期(点火進角)制御について第3図のフ
ローチャートに基づいて説明する。
Next, basic ignition timing setting means 1 ignition timing correction value setting means 2
Control unit 3 that also serves as ignition timing correction setting means
The ignition timing (ignition advance) control based on 0 will be explained based on the flowchart of FIG.

ステップ(図中では「S」としてあり、以下同様とする
)1では、各センサ6、 8.14.20によって検出
された吸入空気流i1Q、スロットル弁開度θ1機関回
転速度N及び排気中の酸素濃度を入力する。
In step 1 (indicated as "S" in the figure, the same applies hereinafter), the intake air flow i1Q, throttle valve opening θ1, engine rotation speed N, and exhaust gas detected by each sensor 6, 8, 14, 20 are calculated. Enter the oxygen concentration.

ステップ2では、ステップ1で入力した吸入空気流i1
Q及び機関回転速度Nとに基づいて基本燃料噴射ITp
 (−KXQ/N; Kは定数)を演算する。
In step 2, the intake air flow i1 input in step 1 is
Basic fuel injection ITp based on Q and engine speed N
(-KXQ/N; K is a constant).

ステップ3では、ステップ2で演算した基本燃料噴射量
Tpとステップ1で入力した機関回転速度Nとに基づい
て点火時期(点火進角)のデータを検索する。即ち、コ
ントロールユニット30に内蔵されたマイクロコンピュ
ータには、基本燃料噴射1tTpと機関回転速度Nに対
応させてそのときの運転状態に見合った点火時期のデー
タが予め設定記憶されており、この点火時期のデータの
中からそのときの最適点火時期を検索するものである。
In step 3, data on ignition timing (ignition advance angle) is searched based on the basic fuel injection amount Tp calculated in step 2 and the engine rotational speed N input in step 1. That is, the microcomputer built into the control unit 30 has preset and stored data on ignition timing that corresponds to the basic fuel injection 1tTp and the engine rotational speed N and is appropriate for the operating state at that time. The optimum ignition timing at that time is searched from among the data.

尚、前記点火時期データは、実際の空燃比が略理論空燃
比に制御されている状態における最適点火時期を予め実
験によって求めたものであり、実際の空燃比が理論空燃
比に制御されていない状態においては、最適な点火時期
となるものではなく、実際の空燃比が薄くなるほどより
進角させる必要がある(第4図参照)。
It should be noted that the above ignition timing data is obtained by experimenting in advance to find the optimal ignition timing in a state where the actual air-fuel ratio is controlled to approximately the stoichiometric air-fuel ratio, and the actual air-fuel ratio is not controlled to the stoichiometric air-fuel ratio. Under these conditions, the ignition timing is not optimal, and the leaner the actual air-fuel ratio, the more it is necessary to advance the ignition timing (see Figure 4).

ステップ4では、現在の機関運転状態が定常運転状態で
あるか否かを判定する。具体的には、例えばスロットル
弁開度センサ8によって検出されるスロットル弁7の開
度θの前回値と今回値とを比較して開度変化率Δθを求
め、この開度変化率Δθが所定以下であるときに機関1
が定常運転状態であると判定する。尚、定常運転状態の
判定は、前記スロットル弁開度変化率Δθの他、基本燃
料噴射量変化率ΔTpや機関回転速度変化率ΔN等によ
って行うようにしても良い。
In step 4, it is determined whether the current engine operating state is a steady operating state. Specifically, for example, the previous value and current value of the opening θ of the throttle valve 7 detected by the throttle valve opening sensor 8 are compared to determine the opening change rate Δθ, and this opening change rate Δθ is determined as a predetermined value. Engine 1 when
is determined to be in a steady operating state. Note that the determination of the steady operating state may be made based on the basic fuel injection amount change rate ΔTp, the engine rotational speed change rate ΔN, etc., in addition to the throttle valve opening change rate Δθ.

ステップ4で機関1が定常運転状態であると判定された
ときには、次のステップ5で現在の運転状態が空燃比フ
ィードバック制御の目標空燃比を理論空燃比よりも所定
値だけ薄く設定すべき状態(希薄空燃比制御領域)であ
るか否かを判定する。
When it is determined in step 4 that the engine 1 is in a steady operating state, in the next step 5, the current operating state is a state in which the target air-fuel ratio of air-fuel ratio feedback control should be set thinner than the stoichiometric air-fuel ratio by a predetermined value ( (lean air-fuel ratio control region).

具体的には、ステップ2で演算した基本燃料噴射量Tp
とステップ1で入力した機関回転速度Nとが共に所定値
以下で、所定の低速低負荷運転領域であるときに、希薄
空燃比制御ll 9M域であると判定する。
Specifically, the basic fuel injection amount Tp calculated in step 2
When the engine rotational speed N input in step 1 is both below a predetermined value and is in a predetermined low-speed, low-load operating region, it is determined that the lean air-fuel ratio control ll9M region is in effect.

ステップ5で、現在の運転状態が希薄空燃比側?11 
pI域であることが判定されたときには、ステップ6で
希薄空燃比制御時における進角補正値を、酸素センサ2
0によって検出される排気中の酸素濃度に基づいて求め
られる実際の空燃比に基づき検索する。この進角補正値
は、フローチャート中に示したように空燃比が薄くなる
ほど大きくなるように予めコントロールユニット30内
のマイクロコンピュータに記憶設定される(フローチャ
ート中のグラフにおいて横軸の左端付近が理論空燃比と
なる)、これは、実際の空燃比が薄くなるほど点火時期
を進角させないと、第4図に示したようにトルク変動が
発生するという問題が発生するためである。
In step 5, is the current operating state on the lean air-fuel ratio side? 11
When it is determined that the current is in the pI range, in step 6, the advance angle correction value during lean air-fuel ratio control is set to the oxygen sensor 2.
The search is performed based on the actual air-fuel ratio determined based on the oxygen concentration in the exhaust gas detected by 0. This advance angle correction value is stored and set in advance in the microcomputer in the control unit 30 so that it becomes larger as the air-fuel ratio becomes thinner, as shown in the flowchart. This is because if the ignition timing is not advanced as the actual air-fuel ratio becomes leaner, torque fluctuations will occur as shown in FIG. 4.

ステップ6で点火時期の進角補正値を検索すると、次の
ステップ7でこの進角補正値に基づきステップ3で検索
した点火時期データを進角補正して設定する。従って、
現在の運転状態が希薄空燃比制御領域であっても実際の
空燃比が理論空燃比に近ければ、ステップ6で検索され
る進角補正値は小さくステップ7で設定される点火時期
は、ステップ3での検索結果と略同−となる、その後目
標希薄空燃比への制御が進んで空燃比が薄くなるに連れ
て、ステップ6で検索される進角補正値が大きくなって
点火時期がより進角され、第5図に示すような機関要求
点火時期に設定されることになる。即ち、窒素酸化物の
発生許容限界及びノッキング発生限界以下の進角で然も
トルク変動を来さない点火時期(第4図中で斜線で囲ま
れた三日月状の空白部分の点火時期)になるように、空
燃比変化に応じて点火制御がなされるものである。
When the advance angle correction value of the ignition timing is retrieved in step 6, in the next step 7, the ignition timing data retrieved in step 3 is advanced and set based on this advance angle correction value. Therefore,
Even if the current operating state is in the lean air-fuel ratio control region, if the actual air-fuel ratio is close to the stoichiometric air-fuel ratio, the advance angle correction value searched in step 6 will be small and the ignition timing set in step 7 will be set in step 3. As the control to the target lean air-fuel ratio progresses and the air-fuel ratio becomes leaner, the advance angle correction value searched in step 6 becomes larger and the ignition timing becomes more advanced. The ignition timing is set to the engine required ignition timing as shown in FIG. In other words, the ignition timing is such that the advance angle is below the permissible limit for nitrogen oxide generation and the knocking generation limit, but does not cause torque fluctuation (the ignition timing shown in the crescent-shaped blank area surrounded by diagonal lines in Fig. 4). As such, ignition control is performed according to changes in the air-fuel ratio.

従って、理論空燃比制御がなされている状態から希薄空
燃比制御領域に移行しても、点火時期が急激に変化する
ことがなく、目標空燃比切り替え時におけるトルク変動
の発生を回避できる。
Therefore, even when the state is shifted from the stoichiometric air-fuel ratio control to the lean air-fuel ratio control region, the ignition timing does not change suddenly, and torque fluctuations can be avoided when switching the target air-fuel ratio.

ステップ7で点火時期の進角補正設定がなされると、こ
の補正された点火時期に基づきステップ8で点火処理を
行う。
When the advance angle correction setting of the ignition timing is made in step 7, ignition processing is performed in step 8 based on the corrected ignition timing.

一方、ステップ4で機関1が定常運転状態でないと判定
されたとき、若しくは、ステップ5で希薄空燃比制′a
領域でないと判定されたときには、ステップ6.7の進
角補正をジャンプしてステップ8へ進み、ステップ3で
検索した点火時期データに基づいて点火処理を行う。
On the other hand, when it is determined in step 4 that the engine 1 is not in a steady operating state, or in step 5, the lean air-fuel ratio control 'a
If it is determined that it is not in the range, the advance angle correction in step 6.7 is skipped and the process proceeds to step 8, where ignition processing is performed based on the ignition timing data retrieved in step 3.

尚、本実施例においては、空燃比に対応させて進角補正
値を記憶させるようにしたが、希薄空燃比制御の条件が
揃ったときからの経過時間に対応させて進角補正値を記
憶させるようにしても良い。
In this embodiment, the advance angle correction value is stored in correspondence with the air-fuel ratio, but the advance angle correction value is also stored in correspondence with the elapsed time from when the conditions for lean air-fuel ratio control are met. You may also let them do so.

即ち、希薄空燃比制御の条件が揃ってから実際の空燃比
が目標希薄空燃比に近似するまでの間における空燃比変
化を予め実験によって求めておき、この時間に対する空
燃比変化に対応するように進角補正値を前記経過時間に
対応させて設定すれば良い。
That is, the change in air-fuel ratio from when the conditions for lean air-fuel ratio control are met until the actual air-fuel ratio approximates the target lean air-fuel ratio is determined in advance through experiments, and the air-fuel ratio is adjusted to correspond to the change in air-fuel ratio over this time. The advance angle correction value may be set in correspondence with the elapsed time.

また、目標希薄空燃比になるまでは、本実施例に示した
ように実際の空燃比若しくは前述の経過時間に応じて点
火時期を設定するようにして、目標希薄空燃比に達した
ら、従来用いていた希薄空燃比制御時用の点火時期マツ
プ(基本燃料噴射量Tpと機関回転速度Nに対応させる
)によって点火時期を制御するようにしても良い。
In addition, until the target lean air-fuel ratio is reached, the ignition timing is set according to the actual air-fuel ratio or the elapsed time described above as shown in this example, and when the target lean air-fuel ratio is reached, the ignition timing is The ignition timing may be controlled using an ignition timing map (corresponding to the basic fuel injection amount Tp and engine rotational speed N) for lean air-fuel ratio control.

更に、本実施例では、目標空燃比が理論空燃比から希薄
空燃比に切り換えられたときにのみ、空燃比変化に応じ
た点火時期制御を行うようにしたが、これは、希薄空燃
比から理論空燃比若しくは理論空燃比よりも濃い出力混
合比への目標空燃比の切り換え時は加減速状態であるた
め、元々トルク変動が大きく点火時期の急激な変化によ
るトルク変動の影響をあまり受けないことによる。従っ
て、希薄空燃比から理論空燃比への目標空燃比の切り換
え時に、本実施例と同様にして点火制′4′Bを行うよ
うにしても良い。
Furthermore, in this embodiment, the ignition timing control is performed in accordance with the air-fuel ratio change only when the target air-fuel ratio is switched from the stoichiometric air-fuel ratio to the lean air-fuel ratio. This is because when switching the target air-fuel ratio to an output mixture ratio richer than the air-fuel ratio or the stoichiometric air-fuel ratio, it is in an acceleration/deceleration state, so the torque fluctuations are large to begin with and are not affected by torque fluctuations caused by sudden changes in ignition timing. . Therefore, when switching the target air-fuel ratio from the lean air-fuel ratio to the stoichiometric air-fuel ratio, ignition control '4'B may be performed in the same manner as in this embodiment.

(発明の効果) 以上説明したように本発明によると、目標空燃比の切り
換え時に点火時期が実際の空燃比変化に応じて設定され
るようにしたことにより、目標空燃比の切り換え時にト
ルク変動が発生することを回避できるという効果がある
(Effects of the Invention) As explained above, according to the present invention, the ignition timing is set according to the actual air-fuel ratio change when changing the target air-fuel ratio, thereby reducing torque fluctuations when changing the target air-fuel ratio. This has the effect of preventing it from occurring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成ブロック図、第2図は本発明の一
実施例を示すシステム概略図、第3図は同上実施例にお
ける点火時期制御を示すフローチャート、第4図は空燃
比と適正点火時期との関係を示すグラフ、第5図は従来
の問題点を説明するためのタイムチャートである。 ■・・・機関  6・・・エアフローメータ  10・
・・点火栓  11・・・点火コイル  12・・・デ
ィストリビュータ  14・・・クランク角センサ  
2o・・・酸素センサ  30・・・コントロールユニ
ット特許出願人 日本電子機器株式会社 代理人 弁理士 笹 島  冨二雄 第4図 tL−1fル −簿・ 第5図
Fig. 1 is a block diagram of the configuration of the present invention, Fig. 2 is a system schematic diagram showing an embodiment of the present invention, Fig. 3 is a flowchart showing ignition timing control in the same embodiment, and Fig. 4 shows the air-fuel ratio and appropriate A graph showing the relationship with ignition timing, and FIG. 5 is a time chart for explaining conventional problems. ■... Engine 6... Air flow meter 10.
... Spark plug 11 ... Ignition coil 12 ... Distributor 14 ... Crank angle sensor
2o...Oxygen sensor 30...Control unit Patent applicant Japan Electronics Co., Ltd. Agent Patent attorney Fujio SasashimaFigure 4 tL-1f Ru -Book/Figure 5

Claims (1)

【特許請求の範囲】[Claims] 機関の吸入混合気の空燃比を検出する空燃比検出手段と
、検出された実際の空燃比を所定の目標空燃比になるよ
うに燃料噴射量をフィードバック制御する燃料噴射量制
御手段と、を備え、前記目標空燃比が機関運転状態に応
じて理論空燃比と理論空燃比よりも薄い希薄空燃比とに
切り換え設定されるように構成された電子制御燃料噴射
式内燃機関において、機関運転状態に応じて基本点火時
期を設定する基本点火時期設定手段と、前記目標空燃比
の切り換え時に実際の空燃比変化に応じて点火時期の補
正値を設定する点火時期補正値設定手段と、前記目標空
燃比の切り換え時に前記基本点火時期を前記補正値で補
正して点火時期を設定する点火時期補正設定手段と、設
定された点火時期に基づいて点火を制御する点火制御手
段と、を備えてなる電子制御燃料噴射式内燃機関の点火
時期制御装置。
An air-fuel ratio detection means for detecting an air-fuel ratio of an intake air-fuel mixture of an engine; and a fuel injection amount control means for feedback-controlling a fuel injection amount so that the detected actual air-fuel ratio becomes a predetermined target air-fuel ratio. , in an electronically controlled fuel injection internal combustion engine configured such that the target air-fuel ratio is switched between a stoichiometric air-fuel ratio and a lean air-fuel ratio thinner than the stoichiometric air-fuel ratio according to an engine operating state; basic ignition timing setting means for setting a basic ignition timing according to the target air-fuel ratio; ignition timing correction value setting means for setting an ignition timing correction value according to an actual air-fuel ratio change when switching the target air-fuel ratio; An electronically controlled fuel comprising: ignition timing correction setting means for setting ignition timing by correcting the basic ignition timing with the correction value at the time of switching; and ignition control means for controlling ignition based on the set ignition timing. Ignition timing control device for injection-type internal combustion engines.
JP24737686A 1986-10-20 1986-10-20 Ignition timing control device for electronic controlled fuel injection type internal combustion engine Pending JPS63105264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24737686A JPS63105264A (en) 1986-10-20 1986-10-20 Ignition timing control device for electronic controlled fuel injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24737686A JPS63105264A (en) 1986-10-20 1986-10-20 Ignition timing control device for electronic controlled fuel injection type internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63105264A true JPS63105264A (en) 1988-05-10

Family

ID=17162504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24737686A Pending JPS63105264A (en) 1986-10-20 1986-10-20 Ignition timing control device for electronic controlled fuel injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63105264A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04128535A (en) * 1990-09-19 1992-04-30 Hitachi Ltd Electronically controlled fuel injection of internal combustion engine
WO1998012423A1 (en) * 1996-09-20 1998-03-26 Hitachi, Ltd. Engine control device
US6325046B1 (en) * 1998-10-21 2001-12-04 Sanshin Kogyo Kabushiki Kaisha Engine control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192947A (en) * 1982-05-04 1983-11-10 Nippon Denso Co Ltd Controlling method of internal-combustion engine
JPS5932671A (en) * 1982-08-17 1984-02-22 Toyota Motor Corp Ignition timing control device for internal-combustion engine
JPS60237141A (en) * 1984-05-07 1985-11-26 Toyota Motor Corp Ignition-timing control for internal-combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192947A (en) * 1982-05-04 1983-11-10 Nippon Denso Co Ltd Controlling method of internal-combustion engine
JPS5932671A (en) * 1982-08-17 1984-02-22 Toyota Motor Corp Ignition timing control device for internal-combustion engine
JPS60237141A (en) * 1984-05-07 1985-11-26 Toyota Motor Corp Ignition-timing control for internal-combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04128535A (en) * 1990-09-19 1992-04-30 Hitachi Ltd Electronically controlled fuel injection of internal combustion engine
WO1998012423A1 (en) * 1996-09-20 1998-03-26 Hitachi, Ltd. Engine control device
US6325046B1 (en) * 1998-10-21 2001-12-04 Sanshin Kogyo Kabushiki Kaisha Engine control system

Similar Documents

Publication Publication Date Title
US4391253A (en) Electronically controlling, fuel injection method
JPH03271544A (en) Control device of internal combustion engine
JPS6165038A (en) Air-fuel ratio control system
JP3314294B2 (en) Control device for internal combustion engine
US4494512A (en) Method of controlling a fuel supplying apparatus for internal combustion engines
JPS63105264A (en) Ignition timing control device for electronic controlled fuel injection type internal combustion engine
US5517968A (en) Automobile engine control system
JPH0689686B2 (en) Air-fuel ratio controller for engine
JPH057546B2 (en)
JP2600824B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0577867B2 (en)
JP2996676B2 (en) Air-fuel ratio control method for internal combustion engine
JPH09242654A (en) Ignition timing controller for engine
JP2940916B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6388276A (en) Engine ignition timing control device
JP2750777B2 (en) Electronic control fuel supply device for internal combustion engine
JPS6198970A (en) Ignition timing control method of internal-combustion engine
JPH041182B2 (en)
JPS63111249A (en) Interrupt injection control device for electronical controlled gasoline injection type internal combustion engine
JPH01151748A (en) Electronic control fuel injection device for internal combustion engine
JPS62240444A (en) Device for controlling interruptingly increasing quantity at the time of accelerating electronically controlled fuel injection type internal combustion engine
JPS63189656A (en) Fuel control device for engine
JPH09287503A (en) Air-fuel ratio controller for internal combustion engine equipped with evaporative fuel treatment device
JPH07259663A (en) Evaporated fuel processing control device of internal combustion engine
JPS639659A (en) Load detector for internal combustion engine