JPS63104297A - Semiconductor memory device - Google Patents
Semiconductor memory deviceInfo
- Publication number
- JPS63104297A JPS63104297A JP61252352A JP25235286A JPS63104297A JP S63104297 A JPS63104297 A JP S63104297A JP 61252352 A JP61252352 A JP 61252352A JP 25235286 A JP25235286 A JP 25235286A JP S63104297 A JPS63104297 A JP S63104297A
- Authority
- JP
- Japan
- Prior art keywords
- bit lines
- parasitic capacitance
- bit line
- cells
- semiconductor memory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 12
- 230000003071 parasitic effect Effects 0.000 abstract description 15
- 238000012360 testing method Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 102220546769 E3 ubiquitin-protein ligase TRIM56_C21A_mutation Human genes 0.000 description 1
- 102220546772 E3 ubiquitin-protein ligase TRIM56_C24A_mutation Human genes 0.000 description 1
- 101000649938 Mus musculus Vacuolar protein sorting-associated protein 28 homolog Proteins 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000000276 sedentary effect Effects 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔座業上の利用分野〕
本発明は高密度半導体記憶装置に関し、特に折り返し型
ビット線配列方式の半導体装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Sedentary Application] The present invention relates to a high-density semiconductor memory device, and more particularly to a semiconductor device using a folded bit line arrangement method.
折り返し型ビット線配列方式の従来例として第2図のよ
うな配列が挙げらnる0こ′nは一般的DRAMとして
知らnる半導体記憶装置のメモリセルアレイ部全模式的
に示したものである。ここではワード線4本とビット線
対4組で構成さnる4X4=16のメモリセルアレイで
示している。この半導体記憶装置の動作上概説する。簡
単のためNMO8回路で説明する。ワード線W21が選
択さnる場合、B21のレベルはプリチャージ状態のL
oWレベルからHIGHレベル5v単一電源のDRAM
の場合、Ovから5VKf化する。このときB21に連
なるメモリセルM211.M221゜M2B5.M24
1はそnぞnビット線B21.B22゜B23.B24
に接続さnる蓄積さnていた情報がビット線に伝達さn
る〇一方ビット線B21 。An example of a conventional folded bit line arrangement is the arrangement shown in Figure 2, which schematically shows the entire memory cell array section of a semiconductor memory device known as a general DRAM. . Here, a 4×4=16 memory cell array consisting of four word lines and four bit line pairs is shown. The operation of this semiconductor memory device will be outlined. For the sake of simplicity, an explanation will be given using an NMO8 circuit. When the word line W21 is selected, the level of B21 is L in the precharged state.
DRAM from oW level to HIGH level 5v single power supply
In this case, change from Ov to 5VKf. At this time, memory cell M211. connected to B21. M221°M2B5. M24
1 is the n bit line B21. B22°B23. B24
The stored information is transmitted to the bit line connected to the bit line.
〇On the other hand, bit line B21.
B22 、 B23 、 B24は第2図では省略
しであるダミーセルに接続さnる。ビット線情報に続い
てセンスアンプ821 、822 、823 、 S2
4に=りそnぞn感矧増幅さnるo M211 、 M
221.M2B5゜M241の蓄積さnていた情報がH
IGHであった場合B21 、 B22 、 B23
、 B24はプリチャージ状態のままHIGH?!−維
持し、 B21 、 B22 、 B23 。B22, B23, and B24 are connected to dummy cells that are omitted in FIG. 2. Following the bit line information, sense amplifiers 821, 822, 823, S2
To 4 = the feeling is amplified. M211, M
221. M2B5゜M241's accumulated information is H
If it is IGH, B21, B22, B23
, Is B24 HIGH in the precharged state? ! - Maintain, B21, B22, B23.
百ニブリチャージ状態の)(IGHからLOWへ変化す
る。256K 、 IMega等の高密度、尚速のDR
AMではチップ面積増大を防ぐためビット線間隔メモリ
セル間隔等が小さくなり、線間寄生容量の影響が次第に
大きくなっている。100 nib recharge state) (changes from IGH to LOW.256K, high density, fast DR such as IMega
In AM, bit line spacing, memory cell spacing, etc. are becoming smaller in order to prevent an increase in chip area, and the influence of parasitic capacitance between lines is gradually increasing.
特にビット線は微小雑音?感知増幅する必要があり、か
つ電位変化も大きいのでビット線間寄生容量への配慮が
必要である。Does the bit line in particular have minute noise? Since it is necessary to sense and amplify the sense and the potential change is large, consideration must be given to parasitic capacitance between bit lines.
第2図の従来例の場合、 M211 、M221 、M
2B5 。In the case of the conventional example shown in Fig. 2, M211, M221, M
2B5.
M241の蓄積情報が全部HIGHのときと、IVi2
11゜M2B5にHIG)l 、 M221 、 M2
41がLowのときとでμビット線相互の影r′Xの受
は方が異なる。When all the accumulated information of M241 is HIGH and when IVi2
11゜HIG to M2B5)l, M221, M2
The effect of the mutual shadow r'X on the μ bit lines differs depending on when 41 is Low.
前者の場合、ビット線B21 、 B22 、 B2
3 。In the former case, bit lines B21, B22, B2
3.
B 24 u HIGHカC) Low Ki化j
ル九メHIGHのまま維持さnるB21.B22.B2
3.B24 amのビット線の影響7受けることになる
。特に822に関してみると、321 、B22 両方
からの影響全党けることになる。C21A、C21B、
・・・・・・C24A汀ビツト線間寄生容禁を図示した
ものである。B 24 u HIGH C) Low Ki conversion j
B21 remains HIGH. B22. B2
3. It will be affected by the B24 am bit line. Especially when looking at 822, all parties will be influenced by both 321 and B22. C21A, C21B,
. . . This is a diagram illustrating the parasitic tolerance between C24A bit lines.
一方後者の場合、ビット線B21 、822 、B2
3 。On the other hand, in the latter case, bit lines B21, 822, B2
3.
B24がHIGHからLowKi化し、HIGHのまま
維持さnるB21 、 B22 、 B23 、 B2
4 U隣のビット線の影響?受けることになる。B22
に関してみると821からの影響は受けるがB22から
の影響はないことになる。即ち、メモリセルの蓄積情報
のパターンに工ってビット線へのビット線間ノイズ量が
異なり、半導体記憶回路の動作マージンに差が生じるこ
とになる0
〔発明が解決しょうとする問題点〕
上述しt従来のメモリセルアレイ方式はメモリセルの蓄
積情報パター7に工りそnk具備して成る半導体記憶回
路の動作マージンに差が生じるため、半導体製品の特性
機能上テストする場合、少くとも2つのパターンでテス
トしなけnばならない。メモリセルの配置とビット線の
配置等との間に他にもパターンが生じた場合常にその2
倍のテスト七する必要が生じる。高密度高速の半導体記
憶装置では寄生容重の影響は大きくなる傾向にあ夕、ま
fClつのテストパターンでの測定時間も64に、25
6に、IMega と少くとも4倍、16倍となってい
く。従って、従来ビット線方式の場合テスト時間が長く
なる欠点金有していると考えらnる0
〔問題点全解決するための手段〕
本発明の半導体記憶装置は第1のセンスアンプに楓する
一対のビットiに(2n−1)個のLじnを入nて2n
個の部分にして配置し、隣微のセンスアンプに属する一
対のビットar(n−1)個の工じr′Lk入扛てn個
の部分にして配置したメモリセルアレイを有している。B24 changes from HIGH to LowKi and remains HIGH B21 , B22 , B23 , B2
4 Is it the influence of the bit line next to U? I will receive it. B22
Regarding this, it is influenced by 821, but not by B22. In other words, the amount of noise between the bit lines differs depending on the pattern of information stored in the memory cells, resulting in a difference in the operating margin of the semiconductor memory circuit. [Problems to be Solved by the Invention] As mentioned above. However, in the conventional memory cell array method, there is a difference in the operating margin of the semiconductor memory circuit which is formed into the storage information pattern 7 of the memory cell, so when testing the characteristics and functions of the semiconductor product, at least two Must be tested with a pattern. If there is another pattern between the memory cell arrangement and the bit line arrangement, etc., always use the second pattern.
It becomes necessary to test seven times. In high-density, high-speed semiconductor memory devices, the influence of parasitic capacitance tends to increase, and the measurement time for one test pattern also increases from 64 to 25.
6 and IMega, it will be at least 4 times and 16 times more. Therefore, it is considered that the conventional bit line method has the disadvantage that the test time is long. Enter (2n-1) L times n into a pair of bits i, and 2n
The memory cell array has a memory cell array in which a pair of bits ar (n-1) belonging to adjacent sense amplifiers are inputted into n parts.
ここでnは自然数である0
〔実施例〕
次に本発明について図面を参照して説明するO第1図に
本発明の1%施例のメモリセルアレイの概念図である0
4本のワード線と4個のセンスアンプビット線対4組で
構成さnる4X4=16のメモリセルアレイとしている
0この実施例の特ahセンスアンプ812及び814に
属するビット線が真中で工じnでいることである。この
場合ビット線Bllと 812とのビット線間寄生容量
C41Bと、Bll 、 B12 とのビット線間
寄生容量C11Cと上回程度にすることができる。同様
にCl2BとCl2C,C13BとC13Cとtそnぞ
n同程度にすることができる。Here, n is a natural number 0 [Example] Next, the present invention will be explained with reference to the drawings.
The bit lines belonging to the special ah sense amplifiers 812 and 814 of this embodiment are constructed in the middle. It is about being n. In this case, the inter-bit line parasitic capacitance C41B between the bit lines Bll and 812 can be made to be approximately larger than the inter-bit line parasitic capacitance C11C between the bit lines Bll and B12. Similarly, Cl2B and Cl2C, and C13B and C13C, can be set to the same degree.
さて、ワード線W11が選択さn、メモリセルMill
、M121.M131.M141の蓄積情報が感知増幅
さnる場合を考えるo Mill、 M121− M2
B5、M141の蓄積情報が全てHIGiiのときとM
ill、M2B5がHIG)I、 M121.M141
がLOWのときとで端のビット線r除いてビット線間の
線間寄生容量に二るノイズの影qVC差はない。Now, word line W11 is selected, memory cell Mill
, M121. M131. Consider the case where the accumulated information of M141 is sensed and amplified.
When all the accumulated information of B5 and M141 is HIGii and M
ill, M2B5 is HIG) I, M121. M141
When qVC is LOW, there is no difference in the influence of noise qVC in the line-to-line parasitic capacitance between the bit lines except for the bit line r at the end.
Mill 、 M121 、 M2B5 、 M141
の蓄積情報が全部RIG)iである場合、ビット線Bl
l 、 B12 。Mill, M121, M2B5, M141
If the accumulated information of is all RIG)i, the bit line Bl
l, B12.
813 、B14が)IIG)iからLOWK変化し、
Bll。813, B14 changes from)IIG)i to LOWK,
Bll.
B12 、 B13 、 B14がHIGliの11m
持さnるので、ビット線B12に関して言えば寄生容量
C1113に介しテBll Cり影4tlt受1’j、
Cl2Ak介t、テB12の影IJケ受ける。またB1
2に関しては寄生谷童C■C?介してBllの影響ケ受
ける。ビット線間寄生容なり、センスアンプ512i2
Nのノイズの影#勿受けることになる。B12, B13, B14 are HIGli's 11m
As for the bit line B12, the parasitic capacitance C1113 causes
Cl2Ak Intermediate, TeB12's shadow IJke received. Also B1
As for 2, Parasitic Yado C■C? It is influenced by Bll through. Parasitic capacitance between bit lines, sense amplifier 512i2
Of course, you will be affected by the noise of N.
一方Mill、M131はHIGH、M121.M14
1ULowrSる場合、ビy )線Bll 、 B12
、 B13 。On the other hand, Mill, M131 is HIGH, M121. M14
When 1ULowrS, By) line Bll, B12
, B13.
B14 がHIGHからLOWに変化し、Bll、
B12゜B13 、 B14がHIGHのまま維持さn
る。ピット線訂2はC11B’?介してBllから影響
を受け、ビット線B12はC11Ct−介してBllか
ら、そしてCl2Ak介してB12から影4!1を受け
る。即ち、センスアン7’812にやは92Nのノイズ
の影#に受けることになる。B14 changes from HIGH to LOW, Bll,
B12°B13, B14 remain HIGH n
Ru. Is pit line revision 2 C11B'? bit line B12 receives a shadow 4!1 from Bll via C11Ct- and from B12 via Cl2Ak. In other words, the sense antenna 7'812 is affected by the noise # of 92N.
以上説明した工うに本発明はビット線ケエじnt入nて
配置することにエフ、メモリセルの蓄積情報パターンが
変わってもビット線間寄生容量によるセンスアンプへの
ノイズが変化しない工うにすることができる。こna高
密度化する半導体記憶装置の特性機能をテストする測定
時間の増大金抑制する効果がある。In accordance with the above-described method, the present invention is to arrange the bit lines in the same manner, and to make the noise to the sense amplifier due to the parasitic capacitance between the bit lines not change even if the storage information pattern of the memory cell changes. Can be done. This has the effect of suppressing the increase in measurement time required to test the characteristic functions of semiconductor memory devices, which are becoming increasingly dense.
第1図は本発明の第1の実施例であるメモリセルアレイ
の概念図、第2図は従来のメモリセルアレイの概念内で
ある。
Bll、 Bll 、 B12. B12 ・・・・
・・、 B24 、 B24はビット線、CIIA 、
CIIB 、 CI IC、・・・・・・、 C24
Aはビット線間寄生容量、Mill 、 M121.・
・・・・・、 M241 。
MHメモリセル、811.S12.・・・・・・、52
4flセンスアンプ。
代理人 弁理士 内 原 晋75,1箔1図
箔2 図FIG. 1 is a conceptual diagram of a memory cell array according to a first embodiment of the present invention, and FIG. 2 is a conceptual diagram of a conventional memory cell array. Bll, Bll, B12. B12...
..., B24, B24 is the bit line, CIIA,
CIIB, CI IC,..., C24
A is the parasitic capacitance between bit lines, Mill, M121.・
..., M241. MH memory cell, 811. S12. ......, 52
4fl sense amplifier. Agent: Patent Attorney Susumu Uchihara 75, 1 leaf 1 figure 2 foils
Claims (1)
記憶装置において、nを自然数としたとき第1のセンス
アンプに属する一対のビット線に(2n−1)個のよじ
れを入れて2n個の部分にして配置し、隣接のアンスア
ンプに属する一対のビット線を(n−1)個のよじれを
入れてn個の部分にして配置したことを特徴とする半導
体記憶装置。In a semiconductor memory device equipped with a bit line folded sense amplifier, where n is a natural number, (2n-1) twists are added to a pair of bit lines belonging to the first sense amplifier to form 2n parts. 1. A semiconductor memory device characterized in that a pair of bit lines belonging to adjacent amplifiers are arranged in n parts with (n-1) twists.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61252352A JPS63104297A (en) | 1986-10-22 | 1986-10-22 | Semiconductor memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61252352A JPS63104297A (en) | 1986-10-22 | 1986-10-22 | Semiconductor memory device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63104297A true JPS63104297A (en) | 1988-05-09 |
Family
ID=17236094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61252352A Pending JPS63104297A (en) | 1986-10-22 | 1986-10-22 | Semiconductor memory device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63104297A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5089992A (en) * | 1988-06-30 | 1992-02-18 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device and a data path using the same |
US7221577B2 (en) * | 2002-03-19 | 2007-05-22 | Broadcom Corporation | Bus twisting scheme for distributed coupling and low power |
-
1986
- 1986-10-22 JP JP61252352A patent/JPS63104297A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5089992A (en) * | 1988-06-30 | 1992-02-18 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device and a data path using the same |
US7221577B2 (en) * | 2002-03-19 | 2007-05-22 | Broadcom Corporation | Bus twisting scheme for distributed coupling and low power |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100537256B1 (en) | Semiconductor memory device | |
CN1627438B (en) | Semiconductor integrated circuit device | |
US20210343333A1 (en) | Memory with symmetric read current profile | |
IT8224991A1 (en) | INTEGRATED CIRCUIT DEVICE WITH DYNAMIC RAM | |
US6854078B2 (en) | Multi-bit test circuit | |
US6480408B1 (en) | Twisted global column decoder | |
US5973953A (en) | Semiconductor memory device having improved bit line structure | |
US5926420A (en) | Merged Memory and Logic (MML) integrated circuits including data path width reducing circuits and methods | |
US6115321A (en) | Synchronous dynamic random access memory with four-bit data prefetch | |
US8004909B2 (en) | Data bus power-reduced semiconductor storage apparatus | |
GB2337824A (en) | A semiconductor memory device with a parallel bit test circuit built therein | |
US6158036A (en) | Merged memory and logic (MML) integrated circuits including built-in test circuits and methods | |
US4290120A (en) | Circuit arrangement for reading out and regenerating items of information stored in one-transistor storage elements | |
JPS63104297A (en) | Semiconductor memory device | |
KR100261217B1 (en) | Cell array control apparatus of semiconductor memory device | |
CN100359596C (en) | Semiconductor memory having enhanced testing power | |
JP2001256789A (en) | Semiconductor integrated circuit | |
US6496441B2 (en) | Semiconductor memory device with improved data propagation characteristics of a data bus | |
US6021081A (en) | Semiconductor memory device having strobe buffer and output buffer | |
JP3231931B2 (en) | Semiconductor storage device | |
US5680355A (en) | Semiconductor storage apparatus | |
US6999375B2 (en) | Synchronous semiconductor device and method of preventing coupling between data buses | |
US4757523A (en) | High speed testing of integrated circuit | |
JP3284281B2 (en) | Semiconductor storage device | |
JP2003510753A (en) | Architecture to reduce coupling noise between bit lines |