JPS6299661A - Piston for heat-insulated engine - Google Patents
Piston for heat-insulated engineInfo
- Publication number
- JPS6299661A JPS6299661A JP60238384A JP23838485A JPS6299661A JP S6299661 A JPS6299661 A JP S6299661A JP 60238384 A JP60238384 A JP 60238384A JP 23838485 A JP23838485 A JP 23838485A JP S6299661 A JPS6299661 A JP S6299661A
- Authority
- JP
- Japan
- Prior art keywords
- piston
- wall structure
- heat
- wall
- heat insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B47/00—Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
- F02B47/02—Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being water or steam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F3/00—Pistons
- F02F3/0015—Multi-part pistons
- F02F3/003—Multi-part pistons the parts being connected by casting, brazing, welding or clamping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F7/00—Casings, e.g. crankcases or frames
- F02F7/0085—Materials for constructing engines or their parts
- F02F7/0087—Ceramic materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は水噴射による吸気充填効率を向上する断熱エン
ジンに適したピストンに関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a piston suitable for an adiabatic engine that improves intake air filling efficiency by water injection.
[従来の技術]
シリンダヘッド、ピストン冠部、シリンダの一部などに
セラミックス材を使用して燃焼室の断熱を図り、高温の
排気をターボ過給機へ供給することにより、ターボ過給
機の出力増大を図るとともに、エンジンの全体としての
熱効率を高める断熱エンジンは既に種々のものが提案さ
れているが、この断熱化により燃焼空回りの温度が大幅
に上昇するのひ、吸気充1lJt98率が低下し、却っ
て燃焼状態が悪化するという問題がある。ぞこで、燃焼
温度を下げるために、従来例えば実開昭58−1636
34号公報に開示される技術がある。この従来技術では
、燃料噴射終期に燃焼室へ水を噴射してシリンダ内部の
最高燃焼温度を低下させるものであり、これにより排気
中のNOX成分を低減することができる。[Prior art] Ceramic materials are used in the cylinder head, piston crown, and part of the cylinder to insulate the combustion chamber, and high-temperature exhaust gas is supplied to the turbocharger, thereby increasing the efficiency of the turbocharger. Various types of adiabatic engines have already been proposed that aim to increase output and improve the overall thermal efficiency of the engine, but this adiabaticization significantly increases the temperature of the combustion chamber and reduces the intake air charging rate of 1lJt98. However, there is a problem in that the combustion condition worsens. Therefore, in order to lower the combustion temperature, conventional methods such as Utility Model Application No. 58-1636
There is a technique disclosed in Publication No. 34. In this prior art, water is injected into the combustion chamber at the end of fuel injection to lower the maximum combustion temperature inside the cylinder, thereby reducing NOx components in the exhaust gas.
しかし、これは燃焼温度の上昇を抑えるものに止まり、
吸気行程まで引き続きシリンダ内部の温度を低下させる
には十分とは言えない。すなわち、燃焼行程に続く排気
行程において燃焼ガスによりシリンダ内部が再加熱され
ることとなるので、吸気行程において吸気がシリンダへ
吸入されると瞬詩に加熱膨張し、吸気密度が減じ、吸気
充填効率が低下づる。また、エンジンの熱発生時に燃料
の予こ合気が蓄積されず、高温の壁面で発火し易くなり
、等容燃焼明間が減少し、性能が低下する。However, this only suppresses the rise in combustion temperature;
It cannot be said that this is sufficient to continue to lower the temperature inside the cylinder until the intake stroke. In other words, in the exhaust stroke that follows the combustion stroke, the inside of the cylinder is reheated by the combustion gas, so when the intake air is drawn into the cylinder in the intake stroke, it heats up and expands instantly, reducing the intake air density and reducing the intake air filling efficiency. is decreasing. In addition, when the engine generates heat, preheated air of the fuel is not accumulated, making it easy to ignite on the high-temperature wall surface, reducing the isovolumic combustion light, and reducing performance.
そこで、排気行程の終期にシリンダ内部を冷N1するこ
とにより1.*<吸気行程において吸気温度の上昇を抑
えれば、吸気充填効率を向上し得るが木が噴射されるビ
スl〜ン冠部およびヘッドライナの壁面が急激に6傾さ
れると、非常に大きな熱応力が発生し、破1!’Itす
る恐れがある。Therefore, by cooling the inside of the cylinder with N1 at the end of the exhaust stroke, 1. *<If the rise in intake air temperature is suppressed during the intake stroke, intake air filling efficiency can be improved, but if the top of the engine and the wall of the headliner where the wood is injected are steeply tilted, a very large Thermal stress occurs and failure 1! 'It's possible.
[発明が解決しようとする問題点]
そこで、本発明の目的は特に水噴射による熱応力に対し
て十分な強度を有するピストン冠部を備えた断熱エンジ
ン用ピストンを提供することにある。[Problems to be Solved by the Invention] Therefore, an object of the present invention is to provide a piston for an adiabatic engine having a piston crown having sufficient strength particularly against thermal stress caused by water injection.
r問題点をW?決するための手段]
上記目的を達成するために、本発明の構成は金属製のピ
ストン本体の上面に、耐熱金属からなる燃焼室を備えた
薄肉中空の外壁構造体を重ね合せるとともに、中空部に
断熱充填材を充填したちのである。r Problems W? Means for Determining] In order to achieve the above object, the present invention has a structure in which a thin hollow outer wall structure including a combustion chamber made of a heat-resistant metal is superimposed on the upper surface of a metal piston body, and a It is filled with insulation filler.
[作用〕
機械的強度と耐熱性を有する金属板から成形した外壁構
造体14aによりピストン冠部14の外形が形成され、
この外壁構造体14aの内部に断熱効果のある多孔質セ
ラミックス、コージライト成形体、チタン酎カリウム粉
末などの断熱充填材を加圧充填し、通常の金属からなる
ピストン本体と結合されるので、外壁構造体14aのも
つ機械的強度と耐熱性から水噴射による熱1j撃に対し
て十分耐える。この熱衝撃は外壁構造体14aで受は止
められ、断熱充填材30により燃焼熱の放出が抑えられ
るとともに、ビス1−ン本体9が保護される。[Function] The outer shape of the piston crown 14 is formed by the outer wall structure 14a formed from a metal plate having mechanical strength and heat resistance.
The outer wall structure 14a is pressurized with a heat insulating filler such as porous ceramics, cordierite molded body, titanium liquor potassium powder, etc., which has a heat insulating effect, and is combined with the piston body made of ordinary metal. Due to the mechanical strength and heat resistance of the structure 14a, it can sufficiently withstand the heat attack caused by water jet. This thermal shock is absorbed by the outer wall structure 14a, and the heat insulating filler 30 suppresses the release of combustion heat and protects the screw main body 9.
[発明の実施例]
本発明を*隔測に塁づいて説明する。まず断熱エンジン
の概要を説明すると、第1図に示すように、鋳鉄製のシ
リンダボディ8の円筒部8aには、好ましくはせラミッ
クス製のシリンダライナ31が嵌合されるとともに、シ
リンダボディ8の上端部に形成した大径の円筒部8bに
ガスケット12゜13を介して逆カップ形のセラミック
ス製のへラドライナ6が嵌合される。このヘッドライナ
6の上壁6aに、ガスケット5を介して鋳鉄製のシリン
ダヘッド4が重ね合され、シリンダボディ8のフランジ
と図示してないヘッドボルトにより結合される。このよ
うにして、ヘッドライナ6の周壁とシリンダボディ8と
の間に断熱空気層7が、また上壁6aとシリンダヘッド
4との間に断熱空気層23がそれぞれ形成される。ヘッ
ドライナ6の下端部はシリンダライナ31の上端部と突
き合される。[Embodiments of the Invention] The present invention will be explained based on remote measurement. First, to explain the outline of an adiabatic engine, as shown in FIG. An inverted cup-shaped ceramic helad liner 6 is fitted into a large-diameter cylindrical portion 8b formed at the upper end of the cylinder through a gasket 12-13. A cast iron cylinder head 4 is superimposed on the upper wall 6a of the headliner 6 via a gasket 5, and is connected to a flange of a cylinder body 8 by head bolts (not shown). In this way, a heat insulating air layer 7 is formed between the peripheral wall of the headliner 6 and the cylinder body 8, and a heat insulating air layer 23 is formed between the upper wall 6a and the cylinder head 4. The lower end of the headliner 6 is butted against the upper end of the cylinder liner 31.
シリンダヘッド4には排気温度の低下を防ぐために、セ
ラミックスをコーテイングするかまたは間に断熱空気層
を有する二重金属ライナ22を一体に鋳込んでなる(吸
)排気通路1つが形成される。そして、この(吸)排気
通路19はヘッドライナ6の上壁6aに設けた(吸)排
気弁25により開閉される(吸)排気ボートと接続され
る。In order to prevent a drop in exhaust gas temperature, the cylinder head 4 is formed with one (intake) and exhaust passage made of a double metal liner 22 coated with ceramics or integrally cast with a heat insulating air layer therebetween. This (intake) exhaust passage 19 is connected to an (intake) exhaust boat that is opened and closed by an (intake) exhaust valve 25 provided on the upper wall 6a of the headliner 6.
(吸)排気弁25はシリンダヘッド4の弁ガイド26に
摺動可能に支持される。なお、〈吸)排気弁25は説明
を簡単にするために重ね合せて示す。The (intake) exhaust valve 25 is slidably supported by a valve guide 26 of the cylinder head 4. Note that the <suction/exhaust valves 25 are shown in an overlapping manner to simplify the explanation.
ピストン29はピストンリング11を装着された金属製
のピストン本体9の上面が山形に突出され、この突出面
に後述するピストン冠部14が重ね合され、ボルト16
とナツト15により結合される。ピストン本体9にピス
トンピン10によりコネクティングロッド33が連結さ
れる。The piston 29 has an upper surface of a metal piston body 9 fitted with a piston ring 11 projected in a chevron shape, and a piston crown portion 14 (described later) is superimposed on this projected surface, and the bolt 16
and are connected by a nut 15. A connecting rod 33 is connected to the piston body 9 by a piston pin 10.
シリンダヘッド4には燃料噴射ノズル24が支持され、
この先端部はへラドライナ6の上壁6aに支持される。A fuel injection nozzle 24 is supported on the cylinder head 4,
This tip portion is supported by the upper wall 6a of the helad liner 6.
同様に、水噴射ノズル27がシリンダヘッド4に支持さ
れ、この先端部が上壁6aから燃焼室へ突出される。燃
料噴射ノズル24h)らは公知の燃料噴射ポンプ20か
ら噴射管21を経て燃料が燃焼室へ噴射される。また、
水噴射ノズル27からは送水ポンプ2から噴射管3を経
て水が燃焼室、待にビス1−ン冠部14の上面J5よび
ヘッドライナ6の上壁6aの下面へ噴射されるようにな
っている。Similarly, a water injection nozzle 27 is supported by the cylinder head 4, and its tip protrudes from the upper wall 6a into the combustion chamber. Fuel is injected from the fuel injection nozzle 24h) into the combustion chamber through the injection pipe 21 from the well-known fuel injection pump 20. Also,
Water is injected from the water injection nozzle 27 through the water pump 2, the injection pipe 3, the combustion chamber, the upper surface J5 of the screw crown 14, and the lower surface of the upper wall 6a of the headliner 6. There is.
本発明によれば、ピストン冠部14はピストン本体9の
上面側を除く外面すなわちくぼみ17を有する頂壁と円
筒形の周壁を一体に備えた薄肉中空の外壁構造体14a
と、この外壁構造体14Hの内部へ充填され、かつピス
トン本体つと結合さる断熱充填材30とから構成される
。外壁構造体14aは高い機械的強度と耐熱性を有する
金属板からプレス成形されるかまたは&8造される。材
料としてはインコロイ、インコネル、ワスパロイなどの
耐熱合金が用いられる。外壁構造体14aを鋳造する場
合には、ボルト16を一体に鋳造することが好ましい。According to the present invention, the piston crown 14 is a thin hollow outer wall structure 14a that integrally includes a top wall having a recess 17 and a cylindrical peripheral wall.
and a heat insulating filler 30 filled into the inside of this outer wall structure 14H and coupled to the piston body. The outer wall structure 14a is press-formed or molded from a metal plate having high mechanical strength and heat resistance. As the material, heat-resistant alloys such as Incoloy, Inconel, and Waspaloy are used. When casting the outer wall structure 14a, it is preferable to cast the bolts 16 integrally.
断熱充填材30としては、断熱効果の優れた多孔質セラ
ミックス成形体、低熱伝導率を有するセラミックスであ
るコージライト成形体または低熱伝導率を有するチタン
酸カリウム粉末が用いられ′1.コージライトのような
成形体の場合は、外壁構造体14aと適当な手段により
結合される。As the heat insulating filler 30, a porous ceramic molded body having an excellent heat insulating effect, a cordierite molded body which is a ceramic having low thermal conductivity, or a potassium titanate powder having low thermal conductivity is used.'1. In the case of a molded body such as cordierite, it is bonded to the outer wall structure 14a by suitable means.
多孔質セラミックスとしては低熱伝導率の多孔質窒化硅
素が好ましく、インコロイ合金板から成形した外壁構造
体14aの内部に多孔質窒化硅素を充填し、加熱加圧し
て接4する。インコロイ合金と窒化硅素とはほぼ熱伝導
率が等しいので、両者の間の熱変形が避けられる。Porous silicon nitride, which has a low thermal conductivity, is preferably used as the porous ceramic, and porous silicon nitride is filled into the inside of the outer wall structure 14a formed from an Incoloy alloy plate, and the porous silicon nitride is bonded by heating and pressing. Since the Incoloy alloy and silicon nitride have approximately the same thermal conductivity, thermal deformation between the two can be avoided.
また、多孔質窒化硅素から所定形状に予め断熱充填材3
oを成形し、これをインコネル合金からなる外壁構造体
14aと結合する場合には、窒化硅素からなる断熱充填
材30の表面にメタライズ法により酸化銅被膜を形成し
、これをインコネル合金からなる外壁構造体14aの内
部へ銀ろうを挟んで嵌合し、加熱加圧して接着される。In addition, a heat insulating filler 3 is prepared from porous silicon nitride into a predetermined shape.
When molding o and joining it to the outer wall structure 14a made of Inconel alloy, a copper oxide coating is formed on the surface of the heat insulating filler 30 made of silicon nitride by a metallization method, and this is bonded to the outer wall structure 14a made of Inconel alloy. It is fitted inside the structure 14a with silver solder interposed therebetween, and is bonded by heating and pressurizing.
チタン酸カリウム粉末の場合には、チタン酸カリウムと
バインダにより加圧成形し、これを外壁構造体14aの
内部に充填し、ピストン本体9と組み合せて加圧し、こ
の状態でボルト16とナツト15により外壁構造体14
aとビスl〜ン本体9とを結合する。In the case of potassium titanate powder, it is press-molded with potassium titanate and a binder, filled inside the outer wall structure 14a, combined with the piston body 9 and pressurized, and in this state is tightened with the bolt 16 and nut 15. Outer wall structure 14
a and the screw main body 9 are connected.
次に、本発明による断熱エンジン用ピストンの作動につ
いて説明する。燃焼行程において燃料噴射ノズル24か
ら噴射された燃料は、セラミックス製のへラドライナ6
と断熱性を有するピストン冠部14とで囲まれる燃焼室
で燃焼が行われ、こ−の燃焼熱の外部への放出が阻止さ
れる。燃料噴射時期は通常のエンジンとほぼ同様である
。Next, the operation of the piston for an adiabatic engine according to the present invention will be explained. The fuel injected from the fuel injection nozzle 24 during the combustion stroke is passed through the ceramic helad liner 6.
Combustion takes place in a combustion chamber surrounded by the piston crown 14 having heat insulating properties, and the release of this combustion heat to the outside is prevented. The fuel injection timing is almost the same as a normal engine.
燃焼行程に続く排気行程の終期すなわちピストン29が
上死点に達する直前に水噴射ノズル27から水が燃焼室
へ噴射される。したがって、ピストン冠部14の外壁構
造体14aの上面およびヘッドライナ6の周面および下
面に水が噴射され、これらの壁面温度が約100℃はど
低下されるとともに、噴射された水は水蒸気となる。こ
うして、少Hの水の噴射により、燃焼室の壁面温度が瞬
時に低下する。Water is injected from the water injection nozzle 27 into the combustion chamber at the end of the exhaust stroke following the combustion stroke, that is, just before the piston 29 reaches top dead center. Therefore, water is injected onto the upper surface of the outer wall structure 14a of the piston crown 14 and the peripheral surface and lower surface of the headliner 6, and the temperature of these walls is reduced by about 100° C., and the injected water is converted into water vapor. Become. In this way, the wall temperature of the combustion chamber is instantly lowered by the injection of water with a small amount of H.
水噴射前は第2図に線aで示すような温度分布となって
いるが、ヘッドライナ6について見れば、水がlIn0
Aされると、第3図にsobで示すように、壁面温度が
低下するだ各フで、壁部の内部温度は表面温度よりも高
くなっている。この時期に吸気行程が始まり、吸気通路
から吸気がシリンダへ吸入される。この時、前述のよう
にヘッドライナ6の壁面温度が低下しているので、シリ
ンダへ吸入された空気の温度上昇と膨張が抑えられ、そ
れだけ密度の高い多量の吸気が吸入される。続く圧縮1
う程では壁面温度は第4図に線Cで示すように壁面温度
がヘッドライナ6のもつ熱容量により回復され、吸気温
度が上昇され、圧縮仕事を助ける。したがって、水噴射
により排気行程終了時、シリンダの壁面温度が一時的に
低下づるだけで、この熱は水蒸気として吸収され、ヘッ
ドライナ6の壁面を通じて外部へ放出される熱量は、水
噴射をしない場合と比べて殆ど変らない。また、水噴射
は排気行程の終了時に行われるものであるから、排気の
大部分は高温の状態でターボ過給機へ供給される。Before the water injection, the temperature distribution is as shown by line a in Fig. 2, but if we look at the headliner 6, we can see that the water is lIn0
A, as shown by sob in FIG. 3, the internal temperature of the wall becomes higher than the surface temperature at each step as the wall surface temperature decreases. At this time, the intake stroke begins, and intake air is drawn into the cylinder from the intake passage. At this time, since the wall surface temperature of the headliner 6 has decreased as described above, the temperature rise and expansion of the air taken into the cylinder are suppressed, and a large amount of intake air with a correspondingly higher density is taken in. Continued compression 1
In the process, the wall surface temperature is recovered by the heat capacity of the headliner 6, as shown by line C in FIG. 4, and the intake air temperature is increased, which helps the compression work. Therefore, at the end of the exhaust stroke due to water injection, the cylinder wall temperature only temporarily decreases, and this heat is absorbed as water vapor, and the amount of heat released to the outside through the wall of the headliner 6 is the same as that without water injection. There is almost no difference compared to Furthermore, since the water injection is performed at the end of the exhaust stroke, most of the exhaust gas is supplied to the turbocharger in a high temperature state.
したがって、第5図に実線で示すエンジンの4ノイクル
において、圧縮行程で燃焼室の壁面からの熱エネルギの
吸収による吸気温度の上昇分だけ吸気温度Tが高くなり
、再熱サイクルが付加されたものと等測的になり、仕事
量が増加し熱効率が向上される。Therefore, in the 4-noise engine shown by the solid line in Figure 5, the intake air temperature T increases by the amount of increase in intake air temperature due to absorption of heat energy from the wall of the combustion chamber during the compression stroke, and a reheat cycle is added. The amount of work increases and thermal efficiency improves.
吸入空気は圧縮行程において燃焼至の壁面から熱エネル
ギを受けて温度が1袢するので、エンドOビが増大する
とともに、吸気温度の上昇により燃料の燃焼速度が速く
なり、燃費の向上とエンジンの出力増加を得られる。During the compression stroke, the intake air receives thermal energy from the combustion wall and its temperature rises by 1.5 degrees, which increases the end Obi and increases the intake air temperature, which increases the fuel combustion speed, improving fuel efficiency and engine performance. You can get an increase in output.
本発明によれば上述のように、ピストン冠部が超耐熱合
金からなる薄肉の外壁構造体の中空部に、熱伝導率が小
さく断熱効果の優れた成形体または粉末からなる断熱充
填材を結合して構成され、このピストン冠部を通常の金
属からなるビス(−ン本体にボルトとナツトにより結合
したものであるから、排気行程終了付近でシリンダへ水
を噴射する口とにより、シリンダ内部の温度を低下させ
吸気充填効率を高める場合に、水に接する外壁構造体は
急激な温度低下による熱衝撃に対し′C十分な強度を発
揮するとともに、この外壁構造体の温度低下だけに留ま
り、断熱充填材の温度は殆ど変化せf、燃焼熱の外部放
散を阻止する。According to the present invention, as described above, a heat insulating filler made of a molded body or powder with low thermal conductivity and excellent heat insulation effect is bonded to the hollow part of the thin outer wall structure whose piston crown is made of a super heat-resistant alloy. The piston crown is connected to the main body made of ordinary metal with bolts and nuts, so the inside of the cylinder is When lowering the temperature and increasing the intake air filling efficiency, the outer wall structure in contact with water exhibits sufficient strength against thermal shock caused by a sudden temperature drop, and the temperature drop is limited to the outer wall structure, resulting in insulation. The temperature of the filler material changes little, preventing combustion heat from dissipating to the outside.
そして、水を噴射をしない場合に比べて、シリンダ内部
の温度りく水噴射によりサイクルを通じて低くなるので
、外壁構造体の酸化腐蝕に対しても十分な耐久性を発揮
する。Furthermore, the temperature inside the cylinder decreases throughout the cycle due to the water injection compared to a case where water is not injected, so that sufficient durability is exhibited against oxidative corrosion of the outer wall structure.
[発明の効果〕
本発明によれば、ピストン冠部を全体としてセラミック
スにより形成したものに比へて耐熱衝撃性が大幅に向上
され、実用上信頼性の高い断熱エンジンを得ることかで
きる。一般の断熱エンジンでは、ピストン冠部の表面に
超耐熱合金を使用しても、高温のために表面が酸化腐蝕
してしまうが、水を噴射することにより表面温度が抑え
られる。[Effects of the Invention] According to the present invention, the thermal shock resistance is greatly improved compared to a piston crown formed entirely of ceramics, and an adiabatic engine with high practical reliability can be obtained. In a typical adiabatic engine, even if a super heat-resistant alloy is used for the surface of the piston crown, the surface will oxidize and corrode due to high temperatures, but by injecting water, the surface temperature can be suppressed.
第1図は本発明に係る断熱エンジン用ピストンを備えた
断熱ディーゼルエンジンの正面断面図、第2〜4図は燃
焼!およびシリンダ壁面の排気行程、水噴射後および吸
気行程における温度分布をそれぞれ表す説明図、第5図
は同断熱ディーゼルエンジンのT−s線図である。
4ニジリンダヘツド 6:へラドライナ 8ニジリンダ
ボデイ 14.ピストン冠部 14a:外壁構造体 3
0:断熱充填材 31ニジリンダライフ−Fig. 1 is a front cross-sectional view of an adiabatic diesel engine equipped with an adiabatic engine piston according to the present invention, and Figs. 2 to 4 are combustion! FIG. 5 is a T-s diagram of the adiabatic diesel engine. FIG. 5 is a T-s diagram of the adiabatic diesel engine. 4 Nijilinda head 6: Helad liner 8 Nijilinda body 14. Piston crown 14a: Outer wall structure 3
0: Heat insulation filler 31 Niji Linda Life
Claims (3)
る燃焼室を備えた薄肉中空の外壁構造体を重ね合せると
ともに、中空部に断熱充填材を充填したことを特徴とす
る断熱エンジン用ピストン。(1) A piston for an insulated engine, characterized in that a thin hollow outer wall structure with a combustion chamber made of heat-resistant metal is superimposed on the upper surface of a metal piston body, and the hollow part is filled with an insulating filler. .
る特許請求の範囲(1)に記載の断熱エンジン用ピスト
ン。(2) The piston for an adiabatic engine according to claim (1), wherein the outer wall structure is formed from an Incoloy alloy plate.
内面に酸化銅被膜を形成し、前記中空部に多孔質窒化硅
素成形体からなる断熱充填材をろう付けした特許請求の
範囲(1)に記載の断熱エンジン用ピストン。(3) According to claim (1), a copper oxide coating is formed on the inner surface of the outer wall structure formed from an Incoloy alloy plate, and a heat insulating filler made of a porous silicon nitride molded body is brazed to the hollow part. Piston for the insulated engine described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60238384A JPS6299661A (en) | 1985-10-24 | 1985-10-24 | Piston for heat-insulated engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60238384A JPS6299661A (en) | 1985-10-24 | 1985-10-24 | Piston for heat-insulated engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6299661A true JPS6299661A (en) | 1987-05-09 |
Family
ID=17029387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60238384A Pending JPS6299661A (en) | 1985-10-24 | 1985-10-24 | Piston for heat-insulated engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6299661A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6769732B2 (en) | 2000-03-28 | 2004-08-03 | Hitachi Construction Machinery Co., Ltd. | Cabin for construction machinery |
-
1985
- 1985-10-24 JP JP60238384A patent/JPS6299661A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6769732B2 (en) | 2000-03-28 | 2004-08-03 | Hitachi Construction Machinery Co., Ltd. | Cabin for construction machinery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3044454A (en) | Combustion chambers of compression ignition internal combustion engines | |
US20090071434A1 (en) | Low heat rejection high efficiency internal combustion engine | |
JP6010944B2 (en) | Compression self-ignition engine | |
US3082752A (en) | Lined engine members and methods of making the same or the like | |
US5097807A (en) | Combustion chamber for diesel engines | |
JPH11193721A (en) | Direct injection type spark-ignition engine | |
WO2000014396A1 (en) | Adiabatic internal combustion engine | |
JPS61142320A (en) | Combustion chamber of diesel engine | |
EP0430419B1 (en) | Heat-insulating engine with swirl chamber | |
JPS6055699B2 (en) | Engine parts with contact surfaces | |
JPS6299661A (en) | Piston for heat-insulated engine | |
JP5978677B2 (en) | Compression self-ignition engine | |
JPH0357298B2 (en) | ||
JPS6027820B2 (en) | Method for manufacturing combustion chamber components for internal combustion engines | |
JP3019529B2 (en) | Piston with combustion chamber | |
JP5978678B2 (en) | Compression self-ignition engine | |
JPS6299618A (en) | Heat insulating type diesel-engine | |
JPH04356344A (en) | Cast-in composite body of ceramics and metal | |
JPS6128822B2 (en) | ||
JPS62157218A (en) | Heat insulated internal combustion engine | |
JPH0322533Y2 (en) | ||
JPS60184921A (en) | Heat-insulated diesel engine | |
JPS6299617A (en) | Heat-insulating type diesel-engine | |
JPH0134777Y2 (en) | ||
RU2015361C1 (en) | Combustion chamber of internal combustion engine |