[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6298208A - Surface roughness measuring instrument using electron beam - Google Patents

Surface roughness measuring instrument using electron beam

Info

Publication number
JPS6298208A
JPS6298208A JP60238887A JP23888785A JPS6298208A JP S6298208 A JPS6298208 A JP S6298208A JP 60238887 A JP60238887 A JP 60238887A JP 23888785 A JP23888785 A JP 23888785A JP S6298208 A JPS6298208 A JP S6298208A
Authority
JP
Japan
Prior art keywords
sample
electron
electron beam
tilt angle
found
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60238887A
Other languages
Japanese (ja)
Inventor
Satoru Sekine
哲 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP60238887A priority Critical patent/JPS6298208A/en
Publication of JPS6298208A publication Critical patent/JPS6298208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To measure the depth of projections and recesses of the surface of a sample quantitatively in the middle of an analysis of the sample by irradiating the sample with an electron beam and detecting its reflected electron. CONSTITUTION:The electron beam 1 is scanned by a deflecting coil 2 to illuminate the sample 3. Its reflected electron (e) is detected by reflected beam detectors 4a and 4b which are arranged symmetrically about the optical axis Z and their outputs are amplified by 5a and 5b and inputted to a tilt angle computing element 6. The angle distribution of the electron (e) depends upon the angle of incidence of the electron beam 1 on the surface of the sample 3. For the purpose, a specific calibration curve is found previously and then the tilt angle of the sample is detected by detecting the intensity of the reflected electron. Then, the output of the computing element 6 is integrated 7 to find the height coordinate. Here, the position coordinates of an adjacent point at fine position from an optional position on the sample 3 are found from measured values of the quantity of height variation and the tilt angle at the optional position and the coordinates of a next position are found similarly. This operation is repeated and the relation between the coordinate signal from a deflecting signal generator 9 and the height coordinate position from an integrating computing element 7 is displayed 8, so that surface roughness of the sample 3 is found quantitatively.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は試料に電子線を照射することにより試料表面に
形成される凹凸を定量的に測定して所謂試料の断面プロ
フィルの測定を可能にした装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention makes it possible to quantitatively measure the unevenness formed on the sample surface by irradiating the sample with an electron beam, thereby making it possible to measure the so-called cross-sectional profile of the sample. This relates to a device that has been used.

[従来の技術] 例えばスキャニングオージェマイクロプローブ(SAM
)では、試料の深さ方向の組成を分析するために、試料
表面にイオンビームを断続的又は連続的に照射して試料
表面を削り取り、一方で電子線を試料に照射してオージ
ェ電子強度の測定を行なっている。
[Prior art] For example, scanning Auger microprobe (SAM)
), in order to analyze the composition in the depth direction of a sample, the sample surface is intermittently or continuously irradiated with an ion beam to scrape the sample surface, while the sample is irradiated with an electron beam to measure the Auger electron intensity. Taking measurements.

このような装置では、試料表面へのイオンビーム照射に
よって試料表面に形成される凹凸所謂クレータの深さを
定量的に把握するため、試料表面に一定時間イオンビー
ムを照射し、その後真空にされた試料室を大気圧にして
試料を取り出し、試料表面がどの程度削り取られたか(
所謂スパッタされたか)を触針式の表面粗さ計、或いは
干渉顕微鏡等を使用して計測している。従って、例えば
シリコンウェハ上に複数の元素が積層された試料等を分
析する場合は、試料表面に一定時間イオンビームを照射
し、そのイオンビーム照射時間と前もって調べておいた
スパッタ速度のデータから試料表面のスパッタ吊を計弾
じて試料を構成している層の厚さの分析等を行っている
In such a device, in order to quantitatively understand the depth of the unevenness (so-called crater) formed on the sample surface by ion beam irradiation, the sample surface is irradiated with the ion beam for a certain period of time, and then the sample is evacuated. Bring the sample chamber to atmospheric pressure, take out the sample, and check how much of the sample surface has been removed (
The so-called sputtering is measured using a stylus-type surface roughness meter, an interference microscope, or the like. Therefore, when analyzing a sample in which multiple elements are layered on a silicon wafer, for example, the surface of the sample is irradiated with an ion beam for a certain period of time, and the ion beam irradiation time and sputtering speed data that has been investigated in advance are used to analyze the sample. The thickness of the layers that make up the sample is analyzed by measuring the amount of sputtering on the surface.

[発明が解決しようとする問題点] このような従来装置においては、試料を試料室から取り
出して計測するため、試料が外気によって汚染されると
共に試料の同一分析点をイオンビームで照射することは
極めて困難となり、従って、分析途中で試料表面よりの
スパッタ量を知ることはできない。又、上記の試料を分
析する場合には、試料にイオンビームを一定の条件(例
えば加速電圧一定)で照射し、イオンビーム照射時間と
スパッタ速度よりスパッタ量を計算して層の厚さを換算
している。そのため、試料を構成する各元素によっては
単位時間におけるスパッタ量が異なるため、単位時間に
おけるスパッタ量を一定として換算すると層の厚さを精
度良く求めることができない。
[Problems to be Solved by the Invention] In such a conventional apparatus, since the sample is taken out from the sample chamber and measured, the sample is contaminated by the outside air, and it is difficult to irradiate the same analysis point on the sample with an ion beam. This becomes extremely difficult, and therefore it is impossible to know the amount of spatter from the sample surface during the analysis. In addition, when analyzing the above sample, irradiate the sample with an ion beam under certain conditions (for example, constant acceleration voltage), calculate the amount of sputtering from the ion beam irradiation time and sputtering speed, and convert the layer thickness. are doing. Therefore, since the amount of sputtering per unit time varies depending on each element constituting the sample, it is not possible to accurately determine the thickness of the layer when converting the amount of sputtering per unit time as a constant.

本発明は以上の欠点を解決して、試料の分析途中で試料
表面の凹凸の深さを定量的に測定できる装置を提供する
ことを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks and provide an apparatus that can quantitatively measure the depth of irregularities on a sample surface during sample analysis.

[問題点を解決するための手段] 本問題点を解決するための本発明の構成は、電子線を試
料上に照射する手段、該電子線を試料上で走査する手段
、該電子線の照射により試料より散乱する反射電子を検
出する前記電子線の光軸に対称に配置された少なくとも
2個の検出器、該谷検出器から得られた信号に基づいて
前記試料表面の傾斜角を演算する傾斜角演算器、該傾斜
角演算器の後段に配置された積分演算器、該積分演算器
よりの信号に基づいて試料表面の凹凸を定量的に表示又
は記録する手段とを備えたことを特徴としている。
[Means for solving the problem] The configuration of the present invention for solving the problem includes a means for irradiating an electron beam onto a sample, a means for scanning the electron beam on the sample, and a means for irradiating the electron beam. at least two detectors arranged symmetrically with respect to the optical axis of the electron beam for detecting reflected electrons scattered from the sample, and calculating an inclination angle of the sample surface based on the signal obtained from the valley detector. It is characterized by comprising a tilt angle calculator, an integral calculator placed after the tilt angle calculator, and means for quantitatively displaying or recording the unevenness of the sample surface based on the signal from the integral calculator. It is said that

[実施例] 以下本発明の実施例を添付図面に基づき詳述する。[Example] Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明の一実施例の構成図である。第1図にお
いて、1は図示外の電子銃より放射される電子線で、電
子線1は偏向コイル2で走査されて試料3を照射する。
FIG. 1 is a block diagram of an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an electron beam emitted from an electron gun (not shown).The electron beam 1 is scanned by a deflection coil 2 and irradiates a sample 3.

電子線1の照射により試料3より放出される反射電子e
は、電子線1の光軸2に対称に配置された2個の反射電
子検出器4a。
Reflected electron e emitted from the sample 3 by irradiation with the electron beam 1
are two backscattered electron detectors 4a arranged symmetrically with respect to the optical axis 2 of the electron beam 1.

4bで検出され、増幅器5a、5bによって増幅され、
試料の傾斜角を演算する傾斜角演算器6に入力される。
4b and amplified by amplifiers 5a and 5b,
It is input to a tilt angle calculator 6 that calculates the tilt angle of the sample.

傾斜角演算器6は反tJJ電子検出器4aで検出される
反射電子強度IA、反射電子検出器4bで検出される反
射電子強度trから試料傾斜角θXを求める。7は傾斜
角演算器6よりの信号を積分して高さ座標hxを求める
積分演算器である。8は偏向信号発生器9よりの偏向信
号(座標信号)Xと積分演算器8よりの高さ座標信号h
Xの関係を記録又は表示する表示装置である。
The tilt angle calculator 6 calculates the sample tilt angle θX from the backscattered electron intensity IA detected by the anti-tJJ electron detector 4a and the backscattered electron intensity tr detected by the backscattered electron detector 4b. Reference numeral 7 denotes an integral calculator that integrates the signal from the tilt angle calculator 6 to obtain the height coordinate hx. 8 is a deflection signal (coordinate signal) X from the deflection signal generator 9 and a height coordinate signal h from the integral calculator 8.
This is a display device that records or displays the relationship of X.

このような装置において、試料3に電子線1が照射され
た場合の試料3よりの反射電子eの角度分布は試料表面
に対する電子線の入射角度に依存する。つまり、第2図
(b)に示すように、試料表面に対して電子線1が垂直
に入射した場合は、反射電子検出器4a、4bが受ける
反射電子強度IQ(θo)、Ir(θ0)は IQ(θo)−1r<60) となって等しい。ここで第2図(a)に示すよう、試料
3を左にθ−だけ傾斜した場合は、第2図(a>に示す
ように反射電子検出W4a、4bが受ける反射電子強度
IIZ(θ−)、Ir(θ−)は、 [(θ−)>Ir(θ−) となる。逆に、試料3を右にθ+だけ傾斜した場合は、
第2図(C)に示すように反fJJ電子検出器4a、4
bが受ける反射電子強度112(θ十)。
In such an apparatus, the angular distribution of reflected electrons e from the sample 3 when the sample 3 is irradiated with the electron beam 1 depends on the incident angle of the electron beam with respect to the sample surface. In other words, as shown in FIG. 2(b), when the electron beam 1 is perpendicularly incident on the sample surface, the backscattered electron intensities IQ(θo) and Ir(θ0) received by the backscattered electron detectors 4a and 4b are are equal to IQ(θo)-1r<60). Here, as shown in FIG. 2(a), when the sample 3 is tilted to the left by θ-, the backscattered electron intensity IIZ(θ- ), Ir(θ-) becomes [(θ-)>Ir(θ-). Conversely, if sample 3 is tilted to the right by θ+,
As shown in FIG. 2(C), anti-fJJ electron detectors 4a, 4
The reflected electron intensity 112 (θ+) received by b.

Ir(θ+)は、 IQ(θ+)<Ir(θ+)となる。Ir(θ+) is IQ(θ+)<Ir(θ+).

以上の関係より、反則、電子検出器4a、4bの受ける
反射電子強度IQ、rrから、例えば比I込/(I[+
Ir))をf (IQ、Ir)と置くと、f(I之、I
r)は試料傾斜角θに対して第3図に示すような変化を
示し、この場合、0〜1の範囲の値をとる。従って、一
度試料傾斜角θから、f (II2.、  rr)の較
正曲線を求めておけば、反射電子強度I之、Irを検出
することにより、f (IQ、Ir)の較正曲線より試
料の傾斜角θを求めることができる。
From the above relationship, from the backscattered electron intensity IQ and rr received by the electron detectors 4a and 4b, for example, the ratio I included/(I[+
If we put Ir)) as f (IQ, Ir), then f(I之, I
r) shows a change as shown in FIG. 3 with respect to the sample inclination angle θ, and in this case takes a value in the range of 0 to 1. Therefore, once the calibration curve of f (II2., rr) is determined from the sample inclination angle θ, the calibration curve of f (IQ, Ir) can be determined by detecting the backscattered electron intensity I, Ir. The inclination angle θ can be determined.

ここで、試料の傾斜角θが求められれば、位置X、高さ
hの座標系において、tanθXは座標Xでの1次微分
係数d h/d xを与える。
Here, if the inclination angle θ of the sample is determined, tan θX gives the first-order differential coefficient d h/d x at the coordinate X in the coordinate system of position X and height h.

従って、 h(X)=fo’″tanθxdx によって試料表面の凹凸を定量的に求めることができる
Therefore, the unevenness of the sample surface can be quantitatively determined by h(X)=fo'''tanθxdx.

ここで、試料3が第4図に示すような凹凸を有する試料
の場合に、任意の位置(X+ 、’n+ )から微小距
離△Xだけ離れた高さの変化Δh、はΔh1=Δxta
nθ1 故に、 XI+1=XI+ΔX h、+、=h、  +Δxtanθ− となり、任意位置の座標値×1と、xlにおける傾斜角
θの計測値から、瞬点x1+1の座標を求めることがで
きる。再び、点X、+1における傾斜角θの計ヨ11値
から更にその瞬点X1ヤ2の座標を求め、このような操
作を繰りかえして、偏向信号発生器9よりの座標信号X
と積分演算器7の出力hxの関係を表示装置に表示すれ
ば試料表面の凹凸を定量的に求めることができる。
Here, if the sample 3 has irregularities as shown in Fig. 4, the change in height Δh at a minute distance ΔX from an arbitrary position (X+,'n+) is Δh1=Δxta.
nθ1 Therefore, XI+1=XI+ΔX h,+,=h,+Δxtanθ−, and the coordinates of the instantaneous point x1+1 can be obtained from the coordinate value x1 of an arbitrary position and the measured value of the inclination angle θ at xl. Again, the coordinates of the instantaneous point X1 and 2 are obtained from the total value of the inclination angle θ at point
By displaying the relationship between hx and the output hx of the integral calculator 7 on a display device, the unevenness of the sample surface can be determined quantitatively.

このような装置をスキャニングオージェマイクロプロー
ブに応用して、シリコンウェハ上のシリコンナイトライ
ド層の深さ方向の元素分布を分析した結果を第5図(a
)及び(b)に示す。第5図(a>はイオンビーム照射
時間jt、iz・・・・・・tnにおけるスパッタ量を
表示装置8に表示した例で、第5図(b)はスキャニン
グオージェマイクロプローブの表示装置に表示された深
さ方向濃度分布図である。第5図(a)、(b)から明
らかなように、イオンビーム照射時間i+、iz・・・
・・・inにおけるスパッタ量及び試料を構成する各元
素の相対濃度の深さ方向での変化の状態を知ることがで
きる。従って、例えば分析途中t2で試料表面のスパッ
タ闇を知りたい時は、試料表面へのイオンビーム照射を
停止して表示装置8にスパッタ量を表示すれば、例えば
200人スパッタされたことを知ることができ、この分
析例においては、シリコンウェハ上のシリコンナイトラ
イド層が400人で積層されていることが解る。
Figure 5 (a) shows the results of analyzing the elemental distribution in the depth direction of the silicon nitride layer on a silicon wafer by applying such a device to a scanning Auger microprobe.
) and (b). Fig. 5 (a) is an example in which the amount of sputtering at the ion beam irradiation time jt, iz...tn is displayed on the display device 8, and Fig. 5 (b) is displayed on the display device of the scanning Auger microprobe. FIG. 5 is a depth direction concentration distribution map obtained by ion beam irradiation time i+, iz...
. . . It is possible to know the state of change in the sputter amount in the depth direction and the relative concentration of each element constituting the sample. Therefore, for example, if you want to know the amount of sputtering on the sample surface at t2 during analysis, you can stop the ion beam irradiation to the sample surface and display the amount of sputtering on the display device 8, and you will know that, for example, 200 people have been sputtered. In this analysis example, it can be seen that the silicon nitride layer on the silicon wafer was laminated by 400 people.

このように、試料を試料室から取り出すことなく分析途
中で試料の分析結果を参照しながらスパッタ量を知るこ
とができると共に、従来装置のように多層膜においても
単位時間におけるスパッタ値を一定として分析していな
いため分析結果の向上が図られる。
In this way, it is possible to know the amount of spatter while referring to the sample analysis results during analysis without taking the sample out of the sample chamber, and it is also possible to analyze multilayer films by assuming a constant sputter value per unit time, unlike conventional equipment. This will improve the analysis results.

尚、上記実施例ではイオンビーム照射時間におけるスパ
ッタ量の表示とスキャニングオージェマイクロプローブ
による分析結果を別々に表示したが、1つの表示装置に
表示するようにしても良く。
In the above embodiment, the amount of sputtering during ion beam irradiation time and the analysis results by the scanning Auger microprobe are displayed separately, but they may be displayed on a single display device.

又、試料よりの反射電子を検出する検出器を4個配置し
、X、Y両方向の傾斜角を同時に測定し得るように構成
しても良い。
Alternatively, four detectors for detecting reflected electrons from the sample may be arranged so that the tilt angles in both the X and Y directions can be measured simultaneously.

[発明の効果] 以上詳述したように本発明に基づく装置においては、試
料の表面分析を行う場合に試料分析途中で試料をその都
度試料室外に取り出すことなく試料表面の凹凸の深さを
定量的に測定できる装置が提供される。
[Effects of the Invention] As detailed above, in the apparatus based on the present invention, when performing surface analysis of a sample, it is possible to quantify the depth of unevenness on the sample surface without taking the sample out of the sample chamber each time during sample analysis. Provided is a device that can perform measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図(a)、(
b)、(c)は試料傾斜による反射電子強度を説明する
ための図、第3図は試料傾斜角θに対する反射電子強度
の較正曲線、第4図は試料の凹凸を定量的に測定する場
合の説明図、第5図(a)、(b)は本装置をSAMに
用いた場合の表示例。 1:電子線、2:偏向コイル、3:試料、4a。 4b:反射電子検出器、5a、5b:増幅器、6:傾斜
角演算器、7:積分演算器、8:表示装置、9:偏向信
号発生器。
Figure 1 is a configuration diagram of an embodiment of the present invention, Figures 2 (a), (
b) and (c) are diagrams for explaining the backscattered electron intensity due to sample tilt, Figure 3 is a calibration curve of the backscattered electron intensity with respect to the sample tilt angle θ, and Figure 4 is for quantitatively measuring the unevenness of the sample. 5(a) and 5(b) are display examples when this device is used for SAM. 1: Electron beam, 2: Deflection coil, 3: Sample, 4a. 4b: backscattered electron detector, 5a, 5b: amplifier, 6: tilt angle calculator, 7: integral calculator, 8: display device, 9: deflection signal generator.

Claims (1)

【特許請求の範囲】[Claims] 電子線を試料上に照射する手段、該電子線を試料上で走
査する手段、該電子線の照射により試料より散乱する反
射電子を検出する前記電子線の光軸に対称に配置された
少なくとも2個の検出器、該各検出器から得られた信号
に基づいて前記試料表面の傾斜角を演算する傾斜角演算
器、該傾斜角演算器の後段に配置された積分演算器、該
積分演算器よりの信号に基づいて試料表面の凹凸を定量
的に表示又は記録する手段とを備えた電子線を用いた表
面粗さ測定装置。
a means for irradiating an electron beam onto a sample; a means for scanning the electron beam on the sample; a detector, a tilt angle calculator that calculates the tilt angle of the sample surface based on the signals obtained from each detector, an integral calculator disposed after the tilt angle calculator, and the integral calculator A surface roughness measuring device using an electron beam, comprising means for quantitatively displaying or recording the unevenness of a sample surface based on signals from the surface of the sample.
JP60238887A 1985-10-25 1985-10-25 Surface roughness measuring instrument using electron beam Pending JPS6298208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60238887A JPS6298208A (en) 1985-10-25 1985-10-25 Surface roughness measuring instrument using electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60238887A JPS6298208A (en) 1985-10-25 1985-10-25 Surface roughness measuring instrument using electron beam

Publications (1)

Publication Number Publication Date
JPS6298208A true JPS6298208A (en) 1987-05-07

Family

ID=17036738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60238887A Pending JPS6298208A (en) 1985-10-25 1985-10-25 Surface roughness measuring instrument using electron beam

Country Status (1)

Country Link
JP (1) JPS6298208A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631911A (en) * 1986-06-23 1988-01-06 Hitachi Ltd Electron beam apparatus
JPH01311212A (en) * 1988-06-09 1989-12-15 Tokyo Univ Aspherical shape measuring instrument for scanning electron microscope
JPH02199755A (en) * 1989-01-30 1990-08-08 Hitachi Ltd Observing method of sample surface and observing device
JP2010091354A (en) * 2008-10-07 2010-04-22 Nec Corp Non-destructive method for measuring warpage of single-crystal substrate and measuring device of the same
CN110646169A (en) * 2019-10-28 2020-01-03 沈阳仪表科学研究院有限公司 Method for measuring reflectivity of curved surface optical film element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631911A (en) * 1986-06-23 1988-01-06 Hitachi Ltd Electron beam apparatus
JPH01311212A (en) * 1988-06-09 1989-12-15 Tokyo Univ Aspherical shape measuring instrument for scanning electron microscope
JPH02199755A (en) * 1989-01-30 1990-08-08 Hitachi Ltd Observing method of sample surface and observing device
JP2010091354A (en) * 2008-10-07 2010-04-22 Nec Corp Non-destructive method for measuring warpage of single-crystal substrate and measuring device of the same
CN110646169A (en) * 2019-10-28 2020-01-03 沈阳仪表科学研究院有限公司 Method for measuring reflectivity of curved surface optical film element
CN110646169B (en) * 2019-10-28 2022-03-08 沈阳仪表科学研究院有限公司 Method for measuring reflectivity of curved surface optical film element

Similar Documents

Publication Publication Date Title
US7813470B2 (en) Three-dimensional contents determination method using transmitted x-ray
JP4517323B2 (en) Electron microanalyzer measurement data correction method
JP3889851B2 (en) Film thickness measurement method
JPS6298208A (en) Surface roughness measuring instrument using electron beam
JPH04276509A (en) Apparatus for measuring state of sample surface with electron beam
JPS639807A (en) Method and device for measuring film thickness
EP2577265B1 (en) Apparatus and method for locating the centre of a beam profile
Paluszyński et al. Measurements of the surface microroughness with the scanning electron microscope
EP2577266B1 (en) Apparatus and method for compensating for sample misalignment
JPH0349363B2 (en)
JPS6341185B2 (en)
RU2704390C2 (en) Method of three-dimensional reconstruction of surface of sample using images obtained using raster electronic microscope
JPH0616008B2 (en) Scattered light measuring device
Vavrik et al. Stratigraphy of a layered structure utilizing XRF and scattered photons
JPH04105010A (en) Method and device for shape and dimension measurement
JPH0749943B2 (en) Film thickness measurement method
JPH08338819A (en) Method and apparatus for x ray analysis
RU2657000C1 (en) Method of quantitative three-dimensional reconstruction of a sample surface in a scanning- electron microscope
Guangxing et al. Study on the sensitive element of ion beam etching depth
JPS6182150A (en) X-ray spectrochemical analysis device
JP2003207467A (en) X-ray analyzer
Wassink et al. Surface topographical and compositional characterization using backscattered electron methods
JPH01161648A (en) Solid measurement calibrating method for scanning electron microscope
JP3856500B2 (en) X-ray thin film thickness analysis method and analyzer
JPS631911A (en) Electron beam apparatus