[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6297384A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS6297384A
JPS6297384A JP23666685A JP23666685A JPS6297384A JP S6297384 A JPS6297384 A JP S6297384A JP 23666685 A JP23666685 A JP 23666685A JP 23666685 A JP23666685 A JP 23666685A JP S6297384 A JPS6297384 A JP S6297384A
Authority
JP
Japan
Prior art keywords
vicinity
ridges
end surface
laser device
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23666685A
Other languages
Japanese (ja)
Inventor
Takao Shibuya
隆夫 渋谷
Kunio Ito
国雄 伊藤
Takeshi Hamada
健 浜田
Yuichi Shimizu
裕一 清水
Masahiro Kume
雅博 粂
Noriyuki Yoshikawa
則之 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23666685A priority Critical patent/JPS6297384A/en
Publication of JPS6297384A publication Critical patent/JPS6297384A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the maximum optical output, by forming each layer including an active layer on a substrate, on which two parallel ridges, whose width becomes narrow in the vicinity of an end surface, are formed. CONSTITUTION:Widths WR of ridges 2a and 2b are different in the vicinity of the center (A-A') and in the vicinity of an end surface (B-B') in a laser chip. In this BTRS laser device, the smaller the width WR of the ridges 2a and 2b, the thinner the thickness of a grown film on the ridges. In liquid phase epitaxial growing, the slower the growing speed of an active layer 4, the larger the composition ratio of Al in a crystal and the larger the forbidden band width tends to become. Therefore, the film thickness dB of the active layer in the vicinity of the end surface of the laser chip becomes thinner than the film width dA in the vicinity of the center. As a result, the forbidden band width becomes large only in the vicinity of the end surface. Therefore, laser light emitted in the laser chip is not absorbed in the vicinity of the end surface, and end surface breakdown, which determines the maximum optical output of the laser device, is hard to occur.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体レーザ装置に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a semiconductor laser device.

従来の技術 近年、光デイスクファイルの書き込み用、あるいはレー
ザプリンター用などの広い分野での用途のために、基本
横モード発振をする高出力半導体レーザ装置の需要が高
まっている。この要求に答えるべく、本発明者らはすて
にBTRS (Burried Twin −Ridg
e 5ul)strate )構造の半導体レーザ装置
を提案した。その断面を第7図に示す。p型G a A
 s基板1上にメサ1aが形成され、その上へn型G 
a A s電流狭窄層2を成長させる。
2. Description of the Related Art In recent years, there has been an increasing demand for high-power semiconductor laser devices that emit fundamental transverse mode oscillation for use in a wide range of fields such as writing optical disk files and laser printers. In order to meet this demand, the present inventors have developed BTRS (Burried Twin-Rigging System).
We have proposed a semiconductor laser device with an e5ul)strate) structure. Its cross section is shown in FIG. p-type G a A
A mesa 1a is formed on an s-substrate 1, and an n-type G
a As current confinement layer 2 is grown.

電流狭 層2には2つの平行なリッジ2a、2bを形成
する。その上へp型Ga1−xAlxAs クラッド層
3.ノンドープGa1−アAlyAs  活性層4゜n
型Ga1.−、AlxAsクラッド層5.n型G a 
A B コンタクト層6を液相エピタキシャル成長法に
より成長させ、その後電極7.8を形成する。基板1か
ら注入された電流は、メサ1a上の2つのリッジ2a、
2t)の間だけを流れて、活性層4の発光領域にのみ効
率的に注入される。一方、結晶成長の異方性により、リ
ッジ2a、2b上の成長はリッジ2a 、2b側面に比
べて抑制されるため、リッジ2a、2b上では極めて薄
い活性層を形成することができる。この活性層の薄膜化
の結果、活性層内への光の閉じ込め係数が小さくなるた
めに、光はクラッド層へ大きくしみ出し、発光スポット
サイズは大きくなり、発光端面での光パワー密度を小さ
くすることができる。このように、電流注入の効率化、
活性層の薄膜化を行うことにより半導体レーザの高出力
化が可能である。一方、第1クラッド層3内にしみ出し
た光は溝部以外のリッジ2a、21)上では基板1に吸
収されるために、リッジ2a、2b間の溝部に閉じ込め
られ、ここで安定な基本横モード発振が得られる。
Two parallel ridges 2a and 2b are formed in the current narrowing layer 2. On top of that is a p-type Ga1-xAlxAs cladding layer 3. Non-doped Ga1-AlyAs active layer 4゜n
Type Ga1. -, AlxAs cladding layer5. n-type Ga
A B contact layer 6 is grown by liquid phase epitaxial growth, after which electrodes 7.8 are formed. The current injected from the substrate 1 flows through the two ridges 2a on the mesa 1a,
2t) and is efficiently injected only into the light emitting region of the active layer 4. On the other hand, due to the anisotropy of crystal growth, the growth on the ridges 2a, 2b is suppressed compared to the side surfaces of the ridges 2a, 2b, so an extremely thin active layer can be formed on the ridges 2a, 2b. As a result of this thinning of the active layer, the light confinement coefficient within the active layer becomes smaller, so the light seeps out into the cladding layer, increasing the light emitting spot size and reducing the optical power density at the light emitting end face. be able to. In this way, efficiency of current injection,
By making the active layer thinner, it is possible to increase the output power of a semiconductor laser. On the other hand, the light seeping into the first cladding layer 3 is absorbed by the substrate 1 on the ridges 2a, 21) other than the grooves, so it is confined in the grooves between the ridges 2a, 2b, where the basic horizontal Mode oscillation is obtained.

発明が解決しようとする問題点 しかしながら、上記のような構成では、出力を増して行
くに従って端面での光の吸収が増大し、ついには破壊を
生じてしまう。この破壊レベルが半導体レーザ装置の最
大光出力を決める最も大きな要因となっていた。
Problems to be Solved by the Invention However, with the above configuration, as the output increases, the absorption of light at the end face increases, eventually causing destruction. This level of destruction was the most important factor in determining the maximum optical output of a semiconductor laser device.

本発明は上記欠点に鑑み、BTR8構造の特性を生かし
つつ、従来のものに比べて端面近傍での光吸収が少なく
、より高出力を実現できる半導体レーザ装置を提供しよ
うとするものである。
In view of the above drawbacks, the present invention aims to provide a semiconductor laser device that takes advantage of the characteristics of the BTR8 structure, has less light absorption near the end facets, and can achieve higher output than conventional devices.

問題点を解決するための手段 上記問題点を解決するために、本発明の半導体レーザ装
置は、突起を有する基板上に、前記基板の導電型と反対
の導電型の層が形成され、前記反対導電型の層の表面よ
り前記突起部に達する溝が形成されるとともに、前記溝
の両側に平行な2つのリッジが端面近傍で幅が狭くなる
ように形成され、前記リッジを有する基板上に活性層を
含む各層が形成されて構成されている。
Means for Solving the Problems In order to solve the above problems, in the semiconductor laser device of the present invention, a layer having a conductivity type opposite to that of the substrate is formed on a substrate having a projection, and a layer having a conductivity type opposite to that of the substrate is formed. A groove is formed that reaches the protrusion from the surface of the conductive layer, and two parallel ridges are formed on both sides of the groove so that the width becomes narrower near the end surface, and an active layer is formed on the substrate having the ridge. Each layer including layers is formed and configured.

作  用 この構成によって、端面近傍での光吸収が少なくなり、
より高出力を実現することができる。
Effect: This configuration reduces light absorption near the end face.
Higher output can be achieved.

実施例 以下、本発明の一実施例について、図面を参照しながら
説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

p型G a A s基板1の(ioo)面上に<011
>方向にメサを形成する。メサの幅はBpm、高さは1
.7μmとした(第2図a)。この基板上に液相エピタ
キシャル成長法によりn型G a A s電流狭窄層2
をメサ上の膜厚が1.0μmとなるまで成長させた(第
2図b)。この後、エツチングにより、2つの平行なリ
ッジ2a、21)を形成した。リッジ2a 、2bの幅
は端面から10μm以内は5pmとし、それ以外の部分
では20μmとした。
<011 on the (ioo) plane of the p-type GaAs substrate 1
> forms a mesa in the direction. Mesa width is Bpm, height is 1
.. The diameter was set at 7 μm (Fig. 2a). An n-type GaAs current confinement layer 2 is formed on this substrate by liquid phase epitaxial growth.
was grown until the film thickness on the mesa was 1.0 μm (Figure 2b). Thereafter, two parallel ridges 2a, 21) were formed by etching. The width of the ridges 2a and 2b was 5 pm within 10 .mu.m from the end face, and 20 .mu.m elsewhere.

リッジ2a、2bの高さは1.5 )trnとし、リッ
ジ2a 、2bの溝の幅は4μmとした(第2図C)。
The height of the ridges 2a and 2b was set to 1.5) trn, and the width of the groove of the ridges 2a and 2b was set to 4 μm (FIG. 2C).

この基板上に液相エピタキシャル成長法により、第3層
n型Ga   AI   As  クラッド層3を0.
57   0.43 リッジ2a 、2b上の平坦部で0.2)tm  、第
2層ノンドープG a   Al!A s活性層4を同
じ0.92   0.08 場所で約0.05/1m、第3層n型Ga   AI 
  AsO,570,43 クラッド層5を同じ場所で1.577m、第4層n型G
 a A sコンタクト層6を同じ場所で4.0μmの
厚さになるように、連続成長を行った(第2図d)。
A third n-type Ga AI As cladding layer 3 was formed on this substrate by a liquid phase epitaxial growth method.
57 0.43 0.2)tm in the flat part on the ridges 2a and 2b, second layer non-doped G a Al! A s active layer 4 at the same 0.92 0.08 location, approximately 0.05/1 m, third layer n-type Ga AI
AsO,570,43 Cladding layer 5 is 1.577m at the same location, 4th layer n-type G
The a As contact layer 6 was continuously grown at the same location to a thickness of 4.0 μm (FIG. 2d).

その後、成長表面にn側電極用金属を蒸着し、合金処理
を行ってn側オーミック電極7を形成した。
Thereafter, a metal for an n-side electrode was deposited on the growth surface, and an alloying process was performed to form an n-side ohmic electrode 7.

基板側にはp側電極用金属を蒸着し、合金処理を行って
p側オーミック電極8を形成した(第2図d)。このウ
ェハーを骨間し、Siチップの上にマウントして完成す
る。
A p-side electrode metal was deposited on the substrate side and alloyed to form a p-side ohmic electrode 8 (FIG. 2d). This wafer is interbonded and mounted on a Si chip to complete the process.

以上のように構成された本実施例の半導体レーザ装置に
よれば端面近傍では、レーザ光の吸収のない、ウィンド
構造のBTRSレーザ装置が得られる理由を以下に説明
する。
The reason why the semiconductor laser device of this embodiment configured as described above allows a BTRS laser device with a window structure in which laser light is not absorbed near the end face to be obtained will be explained below.

第2図dのA−A’及びB−B/での断面図をそれぞれ
第1図a及びbに示す。レーザチップの中心付近(A−
A/)と端面近傍(B−B’)では、す。
Cross-sectional views along lines A-A' and B-B/ in FIG. 2d are shown in FIGS. 1a and b, respectively. Near the center of the laser chip (A-
A/) and near the end face (B-B').

ジ2a、2bの幅WRの異なるBTRSレーザ装置とな
っている。ところで、BTRSレーザ装置においては、
第3図に示すように、リッジ2a。
This is a BTRS laser device in which the widths WR of the beams 2a and 2b are different. By the way, in the BTRS laser device,
As shown in FIG. 3, the ridge 2a.

2bの幅WRが少い程、リッジ上での成長膜厚は薄くな
るという特徴がある。また液相エピタキシャル成長にお
いては、第4図に示すように、活性層の成長速度が遅い
ほど、結晶中のA4の組成比が大きくなり、禁制帯幅が
大きくなる傾向がある。
A feature is that the smaller the width WR of 2b, the thinner the grown film on the ridge becomes. Furthermore, in liquid phase epitaxial growth, as shown in FIG. 4, the slower the growth rate of the active layer, the greater the composition ratio of A4 in the crystal, which tends to increase the forbidden band width.

第3図及び第4図の結果より、第1図a、bに示すよう
に、レーザテップの端面近傍の活性層膜厚dBはレーザ
チップの中心付近の膜厚dAよりも薄くなり、その結果
、禁制帯幅は、端面近傍のみ大きくなる。その様子を第
5図に示す。同図から明らかなように、レーザチップ内
部で生じたレーザ光は、端面近傍では禁制帯幅が大きい
ために吸収を受けない(ウィンドウ効果)。そのため、
レーザ装置の最大光出力を決定する端面破壊が起こりに
〈<、非常に大きな光出力を得ることができる。事実、
本実施例に基づいて作製したウィンドウ型BTRSレー
ザ装置では、最大光出力200mWという高出力を実現
できた。
From the results in FIGS. 3 and 4, as shown in FIGS. 1a and 1b, the active layer film thickness dB near the end face of the laser tip is thinner than the film thickness dA near the center of the laser chip, and as a result, The forbidden band width increases only near the end face. The situation is shown in FIG. As is clear from the figure, the laser light generated inside the laser chip is not absorbed near the end face because the forbidden band width is large (window effect). Therefore,
Since end face destruction occurs which determines the maximum optical output of the laser device, a very large optical output can be obtained. fact,
The window type BTRS laser device manufactured based on this example was able to achieve a high output of a maximum optical output of 200 mW.

またここでは、実施例として、端面近傍でリッジは平行
に狭くなっている例を示したが、他の実施例として、第
6図a、l)のリッジの上面図に示したように、リッジ
の幅が徐々に狭くなっていても全く同様の効果をもたら
す。
In addition, as an example, an example in which the ridge is narrow in parallel near the end face has been shown, but as another example, as shown in the top view of the ridge in Fig. 6 a, l), the ridge is Even if the width is gradually narrowed, exactly the same effect is produced.

発明の効果 以上の如く、本発明の半導体レーザ装置では、端面近傍
で幅が狭くなっている2つの平行なリッジを形成した基
板上に活性層を含む各層を形成することにより、端面で
のレーザ装置光の吸収を減少させ、最大光出力を高める
ことができ、その実用的価値は大なるものがある。
Effects of the Invention As described above, in the semiconductor laser device of the present invention, each layer including the active layer is formed on a substrate in which two parallel ridges whose widths are narrow near the end facets are formed, so that laser irradiation at the end facets is achieved. It can reduce the absorption of device light and increase the maximum light output, and has great practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、l)は、それぞれ本発明の一実施例における
半導体レーザ装置の中心付近及び端面近傍における断面
図、第2図a+ b + c 、 dは本発明の一実施
例における半導体レーザ装置の製造工程における斜視図
、第3図はBTRSレーザ装置におけるリッジの幅とリ
ッジ上膜厚の関係を示す特性図、第4図は液相エピタキ
シャル成長における活性層の成長速度とその禁制帯幅の
関係を示す特性図、第6図は第1の実施例のウィンドウ
型BTRSレーザ装置の活性層の禁制帯幅の分布を示す
図、第6図a、l)は本発明の他の実施例におけるリッ
ジ上面図、第7図は従来のBTRS型レーザ装置の断面
図である。 1・・−・・・p型GaAs基板、2・・・・・n型G
 a A s電流狭窄層、3・・・・・・p型Ga1−
エA l xA sクラッド層、4・・・・・ノンドー
プGa1−アA l y A s活性層、6・・・・・
n型Ga1−エA l xA sクラッド層、6・・・
・・n型G a A sコンタクト層、7・・団・n型
オーミック電極、8・・・・・・p型オーミック電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名f−
P雪LGaA&基むぜえ      、5−−11雪=
crユl−χA乏χハSクフゾト漫第2図 /L:L 第2図 第3図 第5図 一一 ウィンドり傾−K                 
クイントー憚域第6図 第7図
Figures 1a and 1) are cross-sectional views near the center and near the end face of a semiconductor laser device according to an embodiment of the present invention, respectively, and Figures 2a+b+c and d are cross-sectional views of a semiconductor laser device according to an embodiment of the present invention. 3 is a characteristic diagram showing the relationship between the ridge width and the film thickness on the ridge in a BTRS laser device, and FIG. 4 is a relationship between the growth rate of the active layer and its forbidden band width in liquid phase epitaxial growth. FIG. 6 is a diagram showing the distribution of the forbidden band width of the active layer of the window type BTRS laser device of the first embodiment, and FIG. The top view and FIG. 7 are cross-sectional views of a conventional BTRS type laser device. 1...p-type GaAs substrate, 2...n-type G
a As current confinement layer, 3...p-type Ga1-
Air AlxAs cladding layer, 4...Non-doped Ga1-AlyAs active layer, 6...
n-type Ga1-AirA lxA s cladding layer, 6...
... n-type Ga As contact layer, 7... group n-type ohmic electrode, 8... p-type ohmic electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person f-
P Yuki LGaA & Kimusuee, 5--11 Yuki =
Figure 2 Figure 3 Figure 5 11 Wind tilt - K
Quinto Area Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 突起を有する基板上に、前記基板の導電型と反対の導電
型の層が形成され、前記反対導電型の層の表面より前記
突起部に達する溝が形成されることにより、前記溝の両
側に形成された平行な2つのリッジが端面近傍で幅が狭
くなるように形成され、前記2つのリッジを有する基板
上に活性層を含む各層が形成されていることを特徴とす
る半導体レーザ装置。
A layer of a conductivity type opposite to that of the substrate is formed on a substrate having a protrusion, and a groove is formed reaching the protrusion from the surface of the layer of the opposite conductivity type, so that a groove is formed on both sides of the groove. A semiconductor laser device characterized in that two parallel ridges are formed so that the width becomes narrower near the end face, and each layer including an active layer is formed on a substrate having the two ridges.
JP23666685A 1985-10-23 1985-10-23 Semiconductor laser device Pending JPS6297384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23666685A JPS6297384A (en) 1985-10-23 1985-10-23 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23666685A JPS6297384A (en) 1985-10-23 1985-10-23 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6297384A true JPS6297384A (en) 1987-05-06

Family

ID=17003988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23666685A Pending JPS6297384A (en) 1985-10-23 1985-10-23 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6297384A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180085A (en) * 1988-12-29 1990-07-12 Sharp Corp Semiconductor laser element and manufacture thereof
US5206185A (en) * 1988-12-29 1993-04-27 Sharp Kabushiki Kaisha Semiconductor laser device
JP2007333108A (en) * 2006-06-15 2007-12-27 Denso Corp Pipe joint and pipe joint device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60789A (en) * 1983-06-16 1985-01-05 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS60158685A (en) * 1984-01-27 1985-08-20 Matsushita Electric Ind Co Ltd Semiconductor laser device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60789A (en) * 1983-06-16 1985-01-05 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS60158685A (en) * 1984-01-27 1985-08-20 Matsushita Electric Ind Co Ltd Semiconductor laser device and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180085A (en) * 1988-12-29 1990-07-12 Sharp Corp Semiconductor laser element and manufacture thereof
US5054031A (en) * 1988-12-29 1991-10-01 Sharp Kabushiki Kaisha Semiconductor laser device
US5206185A (en) * 1988-12-29 1993-04-27 Sharp Kabushiki Kaisha Semiconductor laser device
JP2007333108A (en) * 2006-06-15 2007-12-27 Denso Corp Pipe joint and pipe joint device

Similar Documents

Publication Publication Date Title
JPH01175285A (en) Semiconductor laser device
JPS6297384A (en) Semiconductor laser device
EP0284684A2 (en) Inverted channel substrate planar semiconductor laser
JPS62296490A (en) Semiconductor laser device
JPH02116187A (en) Semiconductor laser
JPS6362292A (en) Semiconductor laser device and manufacture thereof
US5042044A (en) Semiconductor laser device, a semiconductor wafer
JPS60257583A (en) Semiconductor laser device
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPS62165389A (en) Semiconductor laser
JPS6239088A (en) Semiconductor laser
JPS6360583A (en) Semiconductor laser
JPH0564477B2 (en)
JPS622720B2 (en)
JPS6244439B2 (en)
JPS62179191A (en) Semiconductor laser
JPH0233988A (en) semiconductor laser
JPS6014486A (en) Semiconductor laser device
JPS6196790A (en) Semiconductor laser
JPH01140691A (en) Semiconductor laser
JPS60158684A (en) Semiconductor laser device and manufacture thereof
JPS62123790A (en) Semiconductor laser
JPS6360584A (en) Semiconductor laser
JPH01196892A (en) Semiconductor laser device
JPS6112090A (en) Manufacture of semiconductor laser element