JPS6291405A - Ozonizer - Google Patents
OzonizerInfo
- Publication number
- JPS6291405A JPS6291405A JP22943585A JP22943585A JPS6291405A JP S6291405 A JPS6291405 A JP S6291405A JP 22943585 A JP22943585 A JP 22943585A JP 22943585 A JP22943585 A JP 22943585A JP S6291405 A JPS6291405 A JP S6291405A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- liquid
- electrode
- liq
- panel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
この発明は無声コロナ放電区域に空気又は酸素等のガス
を供給して、そのガスからオゾンガスを生成するための
、所謂オゾナイザに関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a so-called ozonizer for supplying a gas such as air or oxygen to a silent corona discharge area and producing ozone gas from the gas.
従来の技術
従来、この種のオゾナイザは、空気又は酸素ガスの通路
及び誘電体層を介して、一対の電極を設(J、各電極間
に高圧交流、電源を接続lノ“C5その間に無声コロナ
放電を発生させると共に、前記通路に空気又は酸素等の
カスを供給し、これをオゾンガスにするものである。Conventional technology Conventionally, this type of ozonizer has a pair of electrodes connected through an air or oxygen gas passage and a dielectric layer. In addition to generating a corona discharge, air or oxygen gas is supplied to the passage to convert it into ozone gas.
この際のオソン生成の電力効率は極めて低く僅か数パー
セントに通ない。即ち、消費電力の大部分は熱になって
、各電極、誘電体、及びガス等の温度を七y/−シ、こ
の温度■−昇によって、カスの密度を低下し、オゾンガ
スの発生効ヰくを低−トする。The power efficiency of osone generation at this time is extremely low, only a few percent. In other words, most of the power consumed becomes heat, which increases the temperature of each electrode, dielectric, gas, etc., and this temperature increase reduces the density of scum and increases the effectiveness of ozone gas generation. Lower the area.
これを防11−するため、今までは上記各電極を空気等
の冷却媒体で冷却している。In order to prevent this, until now each of the electrodes has been cooled with a cooling medium such as air.
発明が解決しようとする問題点
各電極を冷却液体で冷却すると、オゾナイザの性質ト、
高圧交流電源を使用するため、一般にその絶縁性を確保
することか困難である。Problems to be Solved by the Invention When each electrode is cooled with a cooling liquid, the properties of the ozonizer are
Since a high-voltage AC power source is used, it is generally difficult to ensure insulation.
その困難+[は冷却媒体として水を使用した場合、特に
著しい。The difficulty is particularly significant when water is used as the cooling medium.
本発明の目的は首記従来のオゾナイザに於いて、温度上
昇によるオゾンガスの発生幼牛の低ドな防止することで
あり、またその温度上昇を防1トするために水を冷却媒
体とした場合の、オゾナ、rザの電極の絶縁+[を確保
することである。The purpose of the present invention is to prevent the generation of ozone gas in young cattle due to temperature rise in the conventional ozonizer as described above, and to prevent the temperature rise by using water as a cooling medium. The main purpose is to ensure the insulation of the electrodes of ozona and rza.
問題点を解決するための1段
オゾン化区域の 使1に面状’%棒を企して液体冷媒室
を設け、又、他側に面状誘TjjH体を介して液体電極
を形成し、3面状電極と液体電極との間に高圧交流電源
を接続し、又液体冷媒室と絶縁外線J(管内の冷媒で形
成せる電気抵抗とを接続し、更にその電気抵抗を介して
、それを接地すると共に、首記液体電極を接地すること
を特徴と1−るものである。In order to solve the problem, a liquid refrigerant chamber was provided in one part of the first stage ozonation zone using a planar rod, and a liquid electrode was formed on the other side via a planar dielectric body. A high-voltage AC power source is connected between the three-sided electrode and the liquid electrode, and the liquid refrigerant chamber is connected to the insulated outer wire J (an electric resistance formed by the refrigerant in the tube), and the It is characterized in that it is grounded and the liquid electrode mentioned above is also grounded.
作 用
前記の高圧交流電源からの高圧交流を、面状電極と液体
電極との間に印加し、その両電極間にイr在するオゾン
化]メ域に無声コロナ放電を発ノ1させる。これと同時
に、そのオゾン化区域に空気又は酸素等の被オゾン化ガ
スを枡f令して、このガスに前記無声コロナ放電を作用
させ、これをオゾン化するものである。Operation: High-voltage alternating current from the above-mentioned high-voltage alternating current power supply is applied between the planar electrode and the liquid electrode to generate a silent corona discharge in the ozonized region existing between the two electrodes. At the same time, a gas to be ozonated, such as air or oxygen, is injected into the ozonization zone, and the silent corona discharge is applied to this gas, thereby ozonizing it.
この際、面状電極をそわと接している液体冷媒室内に供
給される液体によって冷却し、又液体電極は外側冷媒人
[−1から供給される液体自体を冷却することによって
冷却するものである。At this time, the planar electrode is cooled by the liquid supplied into the liquid refrigerant chamber that is in contact with it, and the liquid electrode is cooled by cooling the liquid itself supplied from the outer refrigerant [-1]. .
斯様にしてオゾン化区域を流れる被オゾン化ガスはその
内外向側から冷却され低温状態でオゾン化される。In this way, the gas to be ozonated flowing through the ozonation zone is cooled from its inner and outer sides and is ozonized at a low temperature.
実施例
この発明の実施例を添付図面について説明すると、円筒
形のオゾン化区域1の内側に円筒形の面状電極2を介し
て液体冷媒室3を設け、又外側に円筒状誘電体4を介し
て円筒状液体電極5を同心的に設け、該面状電極2と液
体電極5の内部浸漬せる円筒状金網導体5aとの間に高
圧、交流電源6を接続し、又該液体冷媒室3の一=端の
冷媒人[17に、絶縁性細長管で形成したコイル状冷却
管8の一端を循環バイブ9で連通し、更にそのコイル状
冷却管8の他端を前記液体冷媒室3の他端の液体出ト1
10に他の循環バイブ11て連通し、コイル状冷却管8
の中に液体冷媒を流入して電気抵抗12を形成し、その
電気抵抗の中間点12a及び航記液体電極5を夫々接地
1.3,14したオゾナイザである。Embodiment An embodiment of the present invention will be described with reference to the accompanying drawings. A liquid refrigerant chamber 3 is provided inside a cylindrical ozonation zone 1 via a cylindrical planar electrode 2, and a cylindrical dielectric 4 is provided on the outside. A cylindrical liquid electrode 5 is provided concentrically through the liquid refrigerant chamber 3, and a high voltage, AC power source 6 is connected between the planar electrode 2 and a cylindrical wire mesh conductor 5a immersed inside the liquid electrode 5. One end of the coiled cooling pipe 8 formed of an insulating long tube is connected to the refrigerant pipe 17 at one end through a circulation vibrator 9, and the other end of the coiled cooling pipe 8 is connected to the refrigerant pipe 17 of the liquid refrigerant chamber 3. Liquid output 1 at the other end
10 is connected to another circulation vibe 11, and a coiled cooling pipe 8 is connected to the coiled cooling pipe 8.
This is an ozonizer in which a liquid refrigerant flows into the ozonizer to form an electric resistance 12, and the midpoint 12a of the electric resistance and the liquid electrode 5 are grounded 1.3 and 14, respectively.
面状型g2と液体電極5との間に円筒状金網導体5aを
介して高圧交流′S源により、交流電圧を印加し、オゾ
ン化区域1に無)IIコロナ放電を発生させると共に、
そのオゾン化区域1に、ガスポンプ15、ガスバイブ1
6及びガス入口17を経て送られてきた空気、酸素等の
被オゾン化ガス18を供給し、それをオゾンカス19と
して、カス出口20、オゾンガスバイブ21及びオゾン
ガス調圧弁22を経て外部に取出すものである。An AC voltage is applied between the planar mold g2 and the liquid electrode 5 by a high-voltage AC source via the cylindrical wire mesh conductor 5a to generate a corona discharge in the ozonization zone 1, and
In the ozonization zone 1, a gas pump 15, a gas vibrator 1
6 and the gas to be ozonated such as oxygen sent through the gas inlet 17, and take it out as ozone scum 19 through the scum outlet 20, the ozone gas vibrator 21, and the ozone gas pressure regulating valve 22. be.
この際面状電極2の内側の液体冷媒室3には、冷媒人[
17から冷却された水又は油等の冷媒を供給してオゾン
化区域1をその内側から冷却し1、又オゾン化区域1の
外側は液体電極5を外側液体入口23から送り込まれる
液体によって冷却し、オゾン化区域1におけるオゾン化
作用を低温状態で行い、その効率を向−1−するもので
ある。At this time, the liquid refrigerant chamber 3 inside the planar electrode 2 has a refrigerant [
The ozonation zone 1 is cooled from the inside by supplying a coolant such as water or oil from 17, and the liquid electrode 5 outside the ozonization zone 1 is cooled by liquid fed from the outside liquid inlet 23. , the ozonation effect in the ozonization zone 1 is performed at a low temperature to improve its efficiency.
又前述の冷媒人n 7から供給される冷媒は、冷却M2
4内の水又は油等の冷却液25に浸漬されたコイル状冷
却管8の中を通る際冷却され、又冷媒出口10から排出
される冷媒は循環バイブ11を経て、コイル状冷却管8
の中に戻って111び冷却されるものである。27は冷
却管8の中間の設置接地部12a、12aに介入して設
けられた冷媒ポンプである。Also, the refrigerant supplied from the refrigerant man n7 mentioned above is the cooling M2
The refrigerant is cooled as it passes through the coiled cooling pipe 8 immersed in the cooling liquid 25 such as water or oil in the cooling fluid 25 inside the coiled cooling pipe 8 , and is discharged from the refrigerant outlet 10 through the circulation vibrator 11 .
111 and is cooled. Reference numeral 27 denotes a refrigerant pump that is interposed between the installation ground portions 12a, 12a in the middle of the cooling pipe 8.
この際、面状電極2は液体冷媒室3内の冷媒及びコイル
状冷却管8内の冷媒からなる電気抵抗12−Xを通して
接地していてコイル状冷却管8内の冷媒の通路を細く、
■つ充分長くすることによって電気抵抗値を高め面状電
極2からの漏洩電流を極めて小さく保つことがてきる。At this time, the planar electrode 2 is grounded through an electric resistance 12-X made up of the refrigerant in the liquid refrigerant chamber 3 and the refrigerant in the coiled cooling tube 8, thereby narrowing the path of the refrigerant in the coiled cooling tube 8.
(2) By making it sufficiently long, the electric resistance value can be increased and the leakage current from the planar electrode 2 can be kept extremely small.
更に外側液体入「I23から供給される液体は液体ポン
プ28.冷却器29及び液体パイプ30を経て送り込ま
れるものであり、液体出口31から排出される液体は前
述の液体ポンプ28に戻される。Further, the liquid supplied from the outer liquid input I23 is sent through a liquid pump 28, a cooler 29, and a liquid pipe 30, and the liquid discharged from the liquid outlet 31 is returned to the liquid pump 28 described above.
なお32はケーシング、33は冷却用フィンである。Note that 32 is a casing, and 33 is a cooling fin.
効 果
この発明はオゾン化区域が液体冷媒室内の液体によって
、その内側から冷却されると共にその外側から液体電極
によって能ヰく的に冷却されるのでオゾン化区域の温度
が」二昇せず、低温状態でオゾンを発生することが出来
、その発生効率を温度」−昇によって妨げることがない
。Effects This invention has the advantage that the ozonation zone is cooled from the inside by the liquid in the liquid refrigerant chamber, and is effectively cooled from the outside by the liquid electrode, so that the temperature of the ozonation zone does not rise. Ozone can be generated at low temperatures, and its generation efficiency is not hindered by temperature increases.
又本発明はト述のような構成にしたので、冷媒として水
を使用した場合はその冷却効率が極めて良好であり且つ
経済的である。Further, since the present invention has the above-mentioned configuration, when water is used as the refrigerant, the cooling efficiency is extremely good and it is economical.
特に液体冷媒室と、絶縁性細長管の中の冷媒で形成され
た電気抵抗とを接続し、その電気抵抗を介して、それを
接地したから、その液体冷媒室に面している面状電極の
絶縁性を確保することができ、その面状電極からの漏洩
電流を極めて小さく保ちながら、液体冷媒を循環して冷
却することができる。In particular, since the liquid refrigerant chamber and the electrical resistance formed by the refrigerant in the insulating elongated tube are connected and grounded via the electrical resistance, the planar electrode facing the liquid refrigerant chamber The insulation properties of the electrodes can be ensured, and the liquid refrigerant can be circulated for cooling while keeping the leakage current from the planar electrodes extremely small.
第1図は本発明の実施例を示すオゾナイザの縦断面図、
第2図は第1図のII −II線部の断面図である。
1・・・・・・・・・オゾン化区域
2・・・・・・・・・面状電極
3・・・・・・・・・液体冷媒室
4・・・・・・・・・円筒状誘電体
5・・・・・・・・・液体電極
5a・・・・・・円筒状金網導体
6・・・・・・・・・高圧交流電源
12・・・・・・・・・電気抵抗
入1”L/<事壮 者際 硝
(1灸か 2表)
1ニオ−ノン化区域
33:冷却用フィン
第2図FIG. 1 is a longitudinal sectional view of an ozonizer showing an embodiment of the present invention;
FIG. 2 is a sectional view taken along line II--II in FIG. 1. 1...Ozonation zone 2...Planar electrode 3...Liquid refrigerant chamber 4...Cylindrical Dielectric material 5...Liquid electrode 5a...Cylindrical wire mesh conductor 6...High voltage AC power source 12...Electricity Resistance included 1”L/< Events (1 moxibustion or 2 tables) 1 Ni-nonized area 33: Cooling fins Figure 2
Claims (1)
室を設け、又他側に面状誘電体を介して面状の液体電極
を設け、該面状電極と液体電極との間に、高圧交流電源
を接続し前記液体冷媒室の入口と出口に絶縁性細長管を
接続の上、これらを通してその中間点の設置点より、液
体冷媒の供給と排出を行うと同時に、該絶縁性細長管内
の冷媒で形成せる電気抵抗を介して、前記面状電極を設
置したオゾナイザ 2) オゾン化区域がその入口を、ガスパイプで冷却器
及びガスポンプに連通されていることを特徴とする特許
請求の範囲1項記載のオゾナイザ。 3) 液体電極がその入口と、液体出口とを、冷却器及
び液体ポンプを介入せる液体パイプで連通されているこ
とを特徴とする特許請求の範囲1項記載のオゾナイザ。 4) 液体冷媒室がその冷媒入口と冷媒出口とを、冷媒
で形成せる電気抵抗及び冷媒ポンプを介入せる循環パイ
プで、連通されていることを特徴とする特許請求の範囲
1項記載のオゾナイザ。 5) 冷媒で形成せる電気抵抗が冷却槽内の冷却液内に
浸漬されていることを特徴とする特許請求の範囲1項又
は2項記載のオゾナイザ。 6) 絶縁性細管内の冷媒が水であることを特徴とする
特許請求の範囲1項記載のオゾナイザ。 7) 絶縁性細管内の冷媒が油であることを特徴とする
特許請求の範囲1項記載のオゾナイザ。[Claims] 1) A liquid refrigerant chamber is provided on one side of the ozonation zone via a planar electrode, and a planar liquid electrode is provided on the other side via a planar dielectric, and the planar electrode A high-voltage alternating current power source is connected between the liquid refrigerant chamber and the liquid electrode, and insulating elongated tubes are connected to the inlet and outlet of the liquid refrigerant chamber, and the liquid refrigerant is supplied and discharged from an installation point in the middle through these tubes. At the same time, it is confirmed that the inlet of the ozonizer (2) in which the planar electrode is installed is connected to the cooler and the gas pump via a gas pipe via an electric resistance formed by the refrigerant in the insulating elongated tube. An ozonizer according to claim 1, characterized in that: 3) The ozonizer according to claim 1, wherein the liquid electrode has an inlet and a liquid outlet connected to each other by a liquid pipe in which a cooler and a liquid pump are interposed. 4) The ozonizer according to claim 1, wherein the liquid refrigerant chamber has its refrigerant inlet and refrigerant outlet communicated by an electric resistance formed by the refrigerant and a circulation pipe in which a refrigerant pump is inserted. 5) The ozonizer according to claim 1 or 2, wherein the electrical resistance formed by the refrigerant is immersed in a cooling liquid in a cooling tank. 6) The ozonizer according to claim 1, wherein the refrigerant in the insulating thin tube is water. 7) The ozonizer according to claim 1, wherein the refrigerant in the insulating thin tube is oil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60229435A JPH0617211B2 (en) | 1985-10-15 | 1985-10-15 | Ozonizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60229435A JPH0617211B2 (en) | 1985-10-15 | 1985-10-15 | Ozonizer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6291405A true JPS6291405A (en) | 1987-04-25 |
JPH0617211B2 JPH0617211B2 (en) | 1994-03-09 |
Family
ID=16892181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60229435A Expired - Lifetime JPH0617211B2 (en) | 1985-10-15 | 1985-10-15 | Ozonizer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0617211B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008068218A (en) * | 2006-09-15 | 2008-03-27 | Hamanetsu:Kk | Ozone water generator |
JP2012111666A (en) * | 2010-11-26 | 2012-06-14 | Shunsuke Hosokawa | Creeping discharge type ozonizer |
US9741511B2 (en) | 2013-06-07 | 2017-08-22 | Tokyo Cosmos Electric Co., Ltd. | Rotary operation type electronic component |
WO2024116523A1 (en) * | 2022-11-29 | 2024-06-06 | 住友精密工業株式会社 | Discharge cell for ozone generation and ozone gas generation apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52150796A (en) * | 1976-06-10 | 1977-12-14 | Fuji Electric Co Ltd | Ozone generation apparatus |
JPS53131994A (en) * | 1977-04-22 | 1978-11-17 | Mitsubishi Electric Corp | Boiling and cooling type ozonizer |
JPS53144488A (en) * | 1977-05-23 | 1978-12-15 | Mitsubishi Electric Corp | Ozone generator |
-
1985
- 1985-10-15 JP JP60229435A patent/JPH0617211B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52150796A (en) * | 1976-06-10 | 1977-12-14 | Fuji Electric Co Ltd | Ozone generation apparatus |
JPS53131994A (en) * | 1977-04-22 | 1978-11-17 | Mitsubishi Electric Corp | Boiling and cooling type ozonizer |
JPS53144488A (en) * | 1977-05-23 | 1978-12-15 | Mitsubishi Electric Corp | Ozone generator |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008068218A (en) * | 2006-09-15 | 2008-03-27 | Hamanetsu:Kk | Ozone water generator |
JP2012111666A (en) * | 2010-11-26 | 2012-06-14 | Shunsuke Hosokawa | Creeping discharge type ozonizer |
US9741511B2 (en) | 2013-06-07 | 2017-08-22 | Tokyo Cosmos Electric Co., Ltd. | Rotary operation type electronic component |
WO2024116523A1 (en) * | 2022-11-29 | 2024-06-06 | 住友精密工業株式会社 | Discharge cell for ozone generation and ozone gas generation apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0617211B2 (en) | 1994-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4614573A (en) | Method for producing an ozone gas and apparatus for producing the same | |
US3214364A (en) | Ozone generator | |
US4079260A (en) | Ozone generator | |
JPS61275107A (en) | Ozonator | |
US4025441A (en) | Ozone generating apparatus | |
JPH02160607A (en) | Improved coaxial tube ozonater | |
US5871701A (en) | Ozone generator with small-diameter dielectric tubes | |
KR20010005441A (en) | Device for producing plasma at a low temperature | |
JPS6291405A (en) | Ozonizer | |
JP2002159844A (en) | Low temperature plasma generation device | |
JP2002255514A (en) | Ozone generator | |
US5501845A (en) | Chilled oxygen for an ionization device | |
US20080025883A1 (en) | Ozone generator | |
KR20100052782A (en) | Ozone generating tube and ozone generating apparatus | |
JPH08183604A (en) | Ozonizer | |
JPH0372995A (en) | Ozone water manufacturing device | |
CN2606102Y (en) | Double cooled ozone arc chamber | |
JPS61215202A (en) | Ozonizer | |
JP2002087804A (en) | Ozone generating device | |
JPH0859213A (en) | Ozonizer | |
JP2553336B2 (en) | Ozonizer | |
US906081A (en) | Apparatus for the production of ozone. | |
JPH0741306A (en) | Ozonizer | |
JPH11157808A (en) | Ozone generating device | |
JPH10338503A (en) | Ozonizer |