[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6286161A - Formation of artificial diamond film at high deposition forming rate - Google Patents

Formation of artificial diamond film at high deposition forming rate

Info

Publication number
JPS6286161A
JPS6286161A JP22641285A JP22641285A JPS6286161A JP S6286161 A JPS6286161 A JP S6286161A JP 22641285 A JP22641285 A JP 22641285A JP 22641285 A JP22641285 A JP 22641285A JP S6286161 A JPS6286161 A JP S6286161A
Authority
JP
Japan
Prior art keywords
diamond film
film
artificial diamond
heated
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22641285A
Other languages
Japanese (ja)
Inventor
Noribumi Kikuchi
菊池 則文
Tetsuo Komatsu
哲郎 小松
Hiroaki Yamashita
山下 博明
Hironori Yoshimura
吉村 寛範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp, Research Development Corp of Japan filed Critical Mitsubishi Metal Corp
Priority to JP22641285A priority Critical patent/JPS6286161A/en
Publication of JPS6286161A publication Critical patent/JPS6286161A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a diamond film having dense structure at a high deposition rate by placing a base body heated to a prescribed temp. as a pretreatment in a reactive gas and forming a vapor deposited Si film having a prescribed layer thickness thereon in the stage of forming the diamond film. CONSTITUTION:A tungsten carbide sintered hard alloy, titanium carbide cermet or titanium carbonitride cermet is heated to 300-1,000 deg.C. The heated base body is placed in the flow of the reactive gaseous mixture essentially composed of the hydride of Si and hydrogen and/or argon and the vapor deposited Si film having 0.1-2mum average layer thickness is formed on the surface thereof. Such base body is then placed in a heated reactive gaseous mixture which is essentially composed of hydrocarbon and hydrogen and is activated by plasma discharge, etc., to form the artificial diamond film thereon. The diamond crystalline nucleus deposited in the initial period of the reaction is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、炭化タングステン(以下WCで示す)基超
硬合金、炭化チタン(以下TiCで示す)基サーメット
、または炭窒化チタン(以下T1CNで示す)基サーメ
ット(以下これらを総称してサーメットという)からな
る基体の表面に、微細組織を有し、かつ密着性のすぐれ
た人工ダイヤモンド皮膜を速い析出形成速度で形成する
方法に関テるものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is applicable to tungsten carbide (hereinafter referred to as WC)-based cemented carbide, titanium carbide (hereinafter referred to as TiC)-based cermet, or titanium carbonitride (hereinafter referred to as T1CN). This relates to a method for forming an artificial diamond film with a fine structure and excellent adhesion on the surface of a substrate made of a base cermet (hereinafter collectively referred to as cermet) at a high precipitation formation rate. It is.

〔従来の技術〕[Conventional technology]

一般に、WCまたはTiC、さらにT1CNを主成分と
し、結合相形成成分としてCoやNiなどの金属成分を
含有するサーメットからなる基体の表面に人工ダイヤモ
ンド皮膜を析出形成することはよく知られるところであ
る。
Generally, it is well known that an artificial diamond film is deposited and formed on the surface of a substrate made of a cermet containing WC or TiC, or T1CN as a main component, and a metal component such as Co or Ni as a binder phase forming component.

これらの人工ダイヤモンド皮膜の析出形成には多数の方
法が提案されているが、この中で反応混合ガスを加熱し
、活性化する手段として、(at  熱電子放射材、 fhl  高周波によるプラズマ放電、(cl  マイ
クロ波によるプラズマ放電、以上(al〜fclのいず
れかを採用する方法が代表的方法として注目されている
Many methods have been proposed for the precipitation formation of these artificial diamond films, among which methods for heating and activating the reaction mixture gas include (at thermionic emissive material, fhl high frequency plasma discharge, ( cl Plasma discharge using microwaves, and methods employing any of the above (al to fcl) are attracting attention as representative methods.

すなわち、上記(a1方法は、第1図に概略説明図で示
されるように、石英製縦型反応容器1内の上方位置に開
口する反応混合ガス導入管2によって流入された、主と
して炭化水素と水素で構成された反応混合ガスを、その
下方位置に配置された、熱電子放射材としての例えば金
属タングステン製フィラメント3および台板4上に支持
された基体5に向けて流し、この間、反応容器1内の雰
囲気圧力を0.1〜300 torrに保持すると共に
、フィラメント3’Y1500へ2500℃に加熱して
、反応混合ガスの加熱活性化と、所定間隔をおいて下方
配置された基体表面の300〜1300℃の温度への加
熱tはかり、この状態で所定時間の反応に行なうことに
より前記基体5の表面に人工ダイヤモンド皮膜を析出形
成せしめる方法であり、例えば特開昭58−91100
号公報に記載される方法がこの方法に相当する方法であ
る。
That is, as shown in the schematic explanatory diagram in FIG. 1, the above (a1 method) mainly uses hydrocarbons and A reaction mixture gas composed of hydrogen is caused to flow toward a substrate 5 supported on a base plate 4 and a filament 3 made of, for example, metal tungsten as a thermionic emitting material, which is disposed below the reaction vessel. While maintaining the atmospheric pressure in 1 at 0.1 to 300 torr, the filament 3'Y1500 was heated to 2500°C to activate the reaction mixture gas and to heat the surface of the substrate disposed below at a predetermined interval. This is a method in which an artificial diamond film is precipitated and formed on the surface of the substrate 5 by heating to a temperature of 300 to 1300° C. and conducting a reaction in this state for a predetermined time.
The method described in the above publication corresponds to this method.

また、上記(b)方法は、同じく第2図に概略説明設け
た反応混合ガス導入管2から主として炭化水素と水素で
構成された反応混合ガスを流入させ、一方反応容器1の
他方側から排気し、この闇、反応容器1円の雰囲気圧力
を数torr〜数10 torrに保持すると共に、反
応容器1の中央部外周に設けた高周波コイル6に、例え
ば周波数: 13.56MHz、出カニ500Wの条件
を付加して反応容器1内の基体5の周囲にプラズマ放電
を誘起させ、このプラズマ放電C二よって反応混合ガス
の加熱活性化と基体表面温度の上昇tはかり、この状態
で所定時間の反応を行なうことにより基体表面にダイヤ
モンド皮膜を析出形成せしめる方法であり、例えば特開
昭58−135117号公報に記載される方法がこれに
相当するものである。
In addition, in the above method (b), a reaction mixture gas consisting mainly of hydrocarbons and hydrogen is introduced from the reaction mixture gas inlet pipe 2, which is also schematically explained in FIG. However, in this darkness, the atmospheric pressure in one circle of the reaction vessel is maintained at several torr to several tens of torr, and a high frequency coil 6 provided at the outer circumference of the central part of the reaction vessel 1 is heated with a frequency of, for example, 13.56 MHz and a power output of 500 W. Plasma discharge is induced around the substrate 5 in the reaction vessel 1 by adding conditions, and this plasma discharge activates heating of the reaction mixture gas and increases the substrate surface temperature, and in this state, the reaction continues for a predetermined time. This is a method in which a diamond film is precipitated and formed on the surface of a substrate by carrying out the following steps, and for example, the method described in Japanese Patent Application Laid-open No. 135117/1984 corresponds to this method.

さらに、上記(c1方法は、同様に第3図に概略説明図
で示されるように、石英製縦型反応容器1円の中央位置
に基体5を置き、この反応容器1の上部に設けた反応混
合ガス導入管2から、主として炭化水素と水素で構成さ
れた反応混合ガスを流入させ、一方反応容器1の下部か
ら排気し、この間、反応容器内の雰囲気圧力を0.1〜
300 torrに保持しながら、反応容器1の中央部
外周に設けた導波管7を通して供給された、例えば24
50 MHzのマイク・口波をプラズマ調整用プランジ
ャ8によって調整して、反応容器1内の基体5の周囲に
プラズマ放電を発生させ、このプラズマ放電によって反
応混合ガスの加熱活性化と基体表面温度の上昇をはかり
、この状態で所定時間の反応を行なうことにより基体表
面にダイヤモンド皮膜を析出形成せしめる方法であり、
例えば特開昭58−110494号公報に記載される方
法がこの方法に相当する方法である。
Furthermore, in the above (c1 method), as shown in the schematic explanatory diagram in FIG. A reaction mixture gas consisting mainly of hydrocarbons and hydrogen is introduced from the mixed gas introduction pipe 2, while being exhausted from the lower part of the reaction vessel 1. During this time, the atmospheric pressure inside the reaction vessel is maintained at 0.1~0.
For example, 24 torr is supplied through a waveguide 7 provided on the outer periphery of the central part of the reaction vessel 1 while maintaining the pressure at 300 torr.
A 50 MHz microphone/mouth wave is adjusted by the plasma adjustment plunger 8 to generate a plasma discharge around the substrate 5 in the reaction vessel 1, and this plasma discharge activates the reaction mixture gas by heating and lowers the substrate surface temperature. This is a method in which a diamond film is precipitated and formed on the surface of a substrate by increasing the temperature and performing a reaction for a predetermined period of time in this state.
For example, the method described in JP-A-58-110494 is a method corresponding to this method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらの人工ダイヤモンド皮膜析出形成方法に
おいては、いずれも共通して反応初期にサーメット基体
の表面に析出するダイヤモンド結晶核の数が少なく、一
方人工ダイヤモンドは、この結晶核を中心に成長し、膜
状を呈するようになるものであるため、所定の膜厚を有
する人工ダイヤモンド皮膜全析出形成するには、かなり
の反応時間を必要とするものであった。
However, in all of these artificial diamond film precipitation formation methods, the number of diamond crystal nuclei precipitated on the surface of the cermet substrate in the initial stage of the reaction is small, while the artificial diamond grows around these crystal nuclei, Since it takes on the form of a film, a considerable amount of reaction time is required to fully deposit and form an artificial diamond film having a predetermined film thickness.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述のような観点から、サーメ
ット基体の表面に人工ダイヤモンド皮膜を析出形成する
に際して、反応初期における基体表面へのダイヤモンド
結晶核の析出増大をはかるべく研究を行なった結果、主
成分が炭化水素と水素からなり、かつ熱電子放射材、高
周波(=よるプラズマ放電、あるいはマイクロ波による
プラズマ放電などにより活性化された加熱反応混合ガス
の流れの中に、サーメットからなる加熱基体を置くこと
によって前記基体の表面に人工ダイヤモンド皮膜を析出
形成するに先だって、その前処理として、主成分がSi
の水素化物と、水素およびアルゴンのいずれか、または
両方からなる反応混合ガスの渾れの中に、300−10
00℃の温度に加熱した前記基体ff置き、その表面に
平均層厚:0.1〜2μmの81蒸着膜を形成しておく
と、このSi蒸着膜は、引続いて行なわれる人工ダイヤ
モンド皮膜の析出形成に際して、反応初期におけるダイ
ヤモンド結晶核の析出!一段と促進させる作用をもつこ
とから、速い析出形成速度での人工ダイヤモンド皮膜の
形成が可能になり、この際Siの一部または全部が炭化
さねてSiC・になっても同様な効果が得られるという
知見!得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to increase the precipitation of diamond crystal nuclei on the surface of the substrate at the early stage of the reaction when depositing and forming an artificial diamond film on the surface of the cermet substrate. , the main components of which are hydrocarbons and hydrogen, and which are heated by a thermionic emissive material, cermet, in the flow of a heated reaction mixture activated by high frequency (= plasma discharge, or microwave plasma discharge, etc.) Before depositing and forming an artificial diamond film on the surface of the substrate by placing the substrate, as a pretreatment, the main component is Si.
300-10 hydride and a reaction mixture consisting of hydrogen and/or argon.
When the substrate ff is heated to a temperature of 00°C and an 81 vapor-deposited film with an average layer thickness of 0.1 to 2 μm is formed on its surface, this Si vapor-deposited film will be used for the artificial diamond coating that will be applied subsequently. During precipitation formation, diamond crystal nuclei are precipitated at the initial stage of the reaction! Since it has a further promoting effect, it is possible to form an artificial diamond film at a high precipitation formation rate, and even if some or all of the Si is not carbonized and becomes SiC, the same effect can be obtained. That knowledge! I got it.

この発明は、上記知見にもとづいてなされたものである
が、Si蒸着膜形成に際して、基体の加熱温度t300
〜1000℃に限定したのは、その温度が300℃未満
では、Si蒸着膜におけるアモルファスSiの割合が多
くなり丁ぎ、引続いて施されるダイヤモンド皮膜の形成
に際して、基体は通常700〜800℃の温度に加熱さ
れることから、前記アモルファスSiが結晶化して体積
変化が生じ、好ましくないばかりでなく、基体を構成す
るサーメットとの間に大きな熱膨張係数の差などが生じ
るようになって歪が発生し易くなり、一方その温度が1
000℃を越えると、形成されたSi蒸着膜自体が結晶
成長な起工ようになって膜強度が低下してしまい好まし
くないという理由によるものである、また、Si蒸着膜
は、その平均層厚が0.1μm未満では上記の作用に所
望の効果が得られないので、0、1μm以上の平均層厚
をもつようにする必要があるが、平均層厚で2μmを越
えた層厚にする必要はなく、2μmを越えて厚くすると
、かえってこの上に形成された人工ダイヤモンド皮膜の
変形原因になることから、その平均層厚to、1〜2p
mと定めた。
This invention was made based on the above knowledge, and when forming a Si vapor deposited film, the heating temperature of the substrate is t300.
The reason why the temperature is limited to ~1000°C is because if the temperature is less than 300°C, the proportion of amorphous Si in the Si vapor deposited film will increase, so when forming the diamond film that is subsequently applied, the substrate is usually heated to a temperature of 700 to 800°C. Because the amorphous Si is heated to a temperature of is more likely to occur, and on the other hand, if the temperature is 1
This is because if the temperature exceeds 000°C, the formed Si vapor-deposited film itself begins to undergo crystal growth, resulting in a decrease in film strength, which is undesirable. If the thickness is less than 0.1 μm, the desired effect described above cannot be obtained, so it is necessary to have an average layer thickness of 0.1 μm or more, but it is not necessary to have an average layer thickness of more than 2 μm. However, if the thickness exceeds 2 μm, it will actually cause deformation of the artificial diamond film formed on it, so the average layer thickness to, 1 to 2 p.
It was determined as m.

〔実施例〕〔Example〕

つぎに、この発明の方法1に実施例により具体的に説明
する。
Next, method 1 of the present invention will be specifically explained using an example.

実施例 1 基体として、Co:6重量%を含有し、残りがWCから
なる組成、並びに平面: IZ7mDX厚さ:4.8+
wの寸法をもったサーメットを用意し、この基体の表面
に、第1図に示される構造を有し、かつ反応容器1の外
径が5oWψにして、石英製の装置!用い、まず、 反応混合ガス組成::12−1容量%SiH4、金属タ
ングステン製フィラメント3と基体5の表面間の距離:
30m、 フィラメント3による基体5の表面加熱温度:500℃
、 反応容器1内の雰囲気圧カニ 0.5 torr、反応
時間=30分、 の条件でSi蒸着膜を形成し、ついで引続いて、lソ反
応混合ガス絹成:H2−1容匿96CH4、フィラメン
ト3と基体5の表面間の距離:30目、 フィラメント3による基体5の表面加熱温冷:SOO℃
、 反応容器1内の雰囲気圧カニ 10 torr、反応時
間:2時間、 の条件で人工ダイヤモンド皮膜を形成することによって
本発明法1を実施した。
Example 1 The composition of the base material is Co: 6% by weight and the remainder is WC, and plane: IZ7mDX thickness: 4.8+
A cermet with dimensions w is prepared, the surface of this base body has the structure shown in FIG. First, reaction mixture gas composition: 12-1% by volume SiH4, distance between the surface of the metallic tungsten filament 3 and the substrate 5:
30m, surface heating temperature of base 5 by filament 3: 500°C
A Si vapor deposition film was formed under the following conditions: the atmospheric pressure in the reaction vessel 1 was 0.5 torr, and the reaction time was 30 minutes. Distance between the filament 3 and the surface of the substrate 5: 30th, Surface heating temperature/cooling of the substrate 5 by the filament 3: SOO℃
Method 1 of the present invention was carried out by forming an artificial diamond film under the following conditions: atmospheric pressure in reaction vessel 1: 10 torr, reaction time: 2 hours.

また、比較の目的で、Si蒸着膜の形成を行なわない以
外は、同一の条件で従来法1を実施した。
Furthermore, for the purpose of comparison, Conventional Method 1 was carried out under the same conditions except that no Si vapor deposition film was formed.

実施例 2 基体として、Ni:12.5重置%、Mo:12−5重
量%を含有し、残りがTiCからなる組成、並びに平面
:IZ7+wrlX厚さ=4.8■の寸法をもったサー
メットを用意し、この基体の表面に、第2図に示される
構造を有し、かつ反応容器1の外径が50口にして、石
英製の装置!用い、まず、 反応混合ガス組成:H念−1容量’M 5IH430容
量% Ar。
Example 2 A cermet with a composition containing 12.5% Ni, 12-5% Mo, and the remainder TiC as a substrate, and dimensions of plane: IZ7+wrlX thickness = 4.8cm. A device made of quartz was prepared, and the surface of this substrate had the structure shown in FIG. 2, and the outer diameter of the reaction vessel 1 was 50 ports. First, reaction mixture gas composition: 1 volume 5 IH 430 volume % Ar.

高周波コイル6への印加条件−周波数:13.56MH
z 、出カニ700W。
Application conditions to high frequency coil 6 - Frequency: 13.56MH
z, Dekani 700W.

反応容器1内の雰囲気圧カニ 0−1 torr、基体
5の表面加熱温度=600℃、 反応時間:15分、 の条件でSi蒸着膜を形成し、ついで引続いて、反応ガ
ス組成:H2−2容量%CH4、高周波コイル6への印
加条件−周波数:13.56MHz 、出カニ2KW。
A Si vapor deposition film was formed under the following conditions: atmospheric pressure in reaction vessel 1 was 0-1 torr, surface heating temperature of substrate 5 was 600°C, reaction time was 15 minutes, and then reaction gas composition: H2- 2 capacity% CH4, application conditions to high frequency coil 6 - frequency: 13.56 MHz, output power 2 KW.

反応容器1内の雰囲気圧カニ 20 torr、基体5
の表面加熱温度=900℃、 反応時間=2時間、 の条件で人工ダイヤモンド皮膜を形成することによって
本発明法2を実施した。
Atmospheric pressure in reaction vessel 1: 20 torr, substrate 5
Method 2 of the present invention was carried out by forming an artificial diamond film under the following conditions: surface heating temperature = 900°C, reaction time = 2 hours.

また、比較の目的で、同様にSi蒸着膜の形成を行なわ
ない以外は、同一の条件で従来法2を実施した。
Furthermore, for the purpose of comparison, Conventional Method 2 was carried out under the same conditions except that no Si vapor deposition film was formed.

実施例 3 基体として、重量%で、WC:20%、Ni:10%、
Mo : 10%、Co:10961に含有し、残りが
T I Co、3N(x7からなる組成、並びに平面:
IZ7+a+ロ×厚さ:4.8■の寸法をもったサーメ
ットを用意し、この基体の表面に、第3図に示される構
造を有し、かつ反応容器1の外径が30■ψにして、石
英製の装置を用い、まず、 反応混合ガス組成:H2−1容量%S + HCl 3
、マイクロ波: 2450MHz (出カニ 500W
)、反応容器1内の雰囲気圧カニ 1 torr、基体
5の表面加熱温度=800℃、 反応時間=30分、 の条件でSi蒸着膜を形成し、ついで引続いて、反応混
合ガス組成:H2−1容量%CH4、マイクロ波: 2
450MH2(出カニ500W)、反応容器1内の雰囲
気圧カニ 20 torr、基体5の表面加熱温度=9
00℃、 反応時間:2時間、 の条件で人工ダイヤモンド皮膜を形成することによって
本発明法3を実施した。
Example 3 As a base, in weight%, WC: 20%, Ni: 10%,
Mo: 10%, Co: Contains in 10961, the rest is T I Co, 3N (x7 composition, and plane:
A cermet with dimensions of IZ7+a+Ro×thickness: 4.8 mm is prepared, and the surface of this base body has the structure shown in FIG. 3, and the outer diameter of the reaction vessel 1 is 30 mm. , using a quartz device, first, reaction mixture gas composition: H2-1 volume % S + HCl3
, Microwave: 2450MHz (Dekani 500W
), the atmospheric pressure in the reaction vessel 1 is 1 torr, the surface heating temperature of the substrate 5 is 800°C, and the reaction time is 30 minutes. -1% by volume CH4, microwave: 2
450MH2 (output 500W), atmospheric pressure in reaction vessel 1 20 torr, surface heating temperature of substrate 5 = 9
Method 3 of the present invention was carried out by forming an artificial diamond film under the following conditions: 00°C, reaction time: 2 hours.

同様に比較の目的で、Si蒸着膜を形成しない以外は同
一の条件で従来法3を実施した。
Similarly, for the purpose of comparison, Conventional Method 3 was carried out under the same conditions except that no Si vapor deposited film was formed.

つぎに、上記実施例1〜3において、それぞれ形成され
た人工ダイヤモンド皮膜の基体平面における面積率を測
定すると共に、表面外観を観察し、さらに基体の断面を
観察して、人工ダイヤモンド皮膜とSi蒸着膜の平均層
厚!測定した。これらの結果を第1表に示した。
Next, in Examples 1 to 3 above, the area ratio of each formed artificial diamond film on the plane of the substrate was measured, the surface appearance was observed, and the cross section of the substrate was observed, and the artificial diamond film and Si vapor deposition Average layer thickness of the film! It was measured. These results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明法1〜3においては
、それぞれ従来法1〜3に比して一段と速い析出形成速
度で、微細にして緻密な組織の人工ダイヤモンド皮膜!
形成することができるのに対して、従来法1〜3におい
ては、いずれも析出形成速度が遅く、同一反応時間では
層状の人工ダイヤモンド皮膜を形成することはできず、
人工ダイヤモンドが斑点状にまばら(:存在しているに
丁ぎないことが明らかである。
From the results shown in Table 1, in Methods 1 to 3 of the present invention, the precipitate formation rate is much faster than in Conventional Methods 1 to 3, and an artificial diamond film with a fine and dense structure can be obtained!
In contrast, in conventional methods 1 to 3, the precipitation formation rate is slow and it is not possible to form a layered artificial diamond film in the same reaction time.
Artificial diamonds are sparsely scattered (it is clear that there are not even enough diamonds at all).

上述のように、この発明の方法によれば、サーメットの
基体表面に、微細にして緻密組織の人工ダイヤモンド皮
膜!著しく速い析出形成速度で形成することができるの
である。
As mentioned above, according to the method of the present invention, an artificial diamond film with a fine and dense structure is formed on the surface of the cermet base! Precipitates can be formed at extremely high rates of precipitate formation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、および第3図はいずれも人工ダイヤモ
ンド皮膜の析出形成装置を示す概略説明図である。 1・・・反応容器、 2・・・反応混合ガス導入管、3
・・・熱電子放射材としてのフィラメント、4・・・台
板、    5・・・基体、6・・・高周波コイル、 
7・・・導波管。 出願人  三菱金属株式会社 外1名 代理人  富 1)和 夫  外2名 f1図 学2図
FIG. 1, FIG. 2, and FIG. 3 are all schematic explanatory diagrams showing an apparatus for depositing an artificial diamond film. 1... Reaction container, 2... Reaction mixed gas introduction pipe, 3
...Filament as thermionic radiation material, 4...Bed plate, 5...Base, 6...High frequency coil,
7... Waveguide. Applicant Mitsubishi Metals Co., Ltd. 1 other agent Tomi 1) Kazuo 2 others f1 drawings 2 drawings

Claims (1)

【特許請求の範囲】[Claims] 主成分が炭化水素と水素からなり、かつ熱電子放射材、
高周波によるプラズマ放電、あるいはマイクロ波による
プラズマ放電などにより活性化された加熱反応混合ガス
の流れの中に、炭化タングステン基超硬合金、炭化チタ
ン基サーメット、または炭窒化チタン基サーメットから
なる加熱基体を置くことによつて前記基体の表面に人工
ダイヤモンド皮膜を析出形成するに際して、その前処理
として、主成分がSiの水素化物と、水素およびアルゴ
ンのいずれか、または両方からなる反応混合ガスの流れ
の中に、300〜1000℃の温度に加熱した前記基体
を置くことによって、その表面に平均層厚:0.1〜2
μmのSi蒸着膜を形成し、このSi蒸着膜の形成によ
つて、引続いて行なわれる人工ダイヤモンド皮膜の析出
形成における反応初期に析出するダイヤモンド結晶核の
増大をはかることを特徴とする析出形成速度の速い人工
ダイヤモンド皮膜の形成方法。
The main components are hydrocarbons and hydrogen, and thermionic emitting material,
A heating substrate made of tungsten carbide-based cemented carbide, titanium carbide-based cermet, or titanium carbonitride-based cermet is placed in a flow of heated reaction mixture gas activated by high-frequency plasma discharge or microwave plasma discharge. When an artificial diamond film is precipitated and formed on the surface of the substrate by depositing, as a pretreatment, a flow of a reaction mixture gas consisting of a hydride whose main component is Si and either or both of hydrogen and argon is applied. By placing the substrate heated to a temperature of 300 to 1000°C inside, an average layer thickness of 0.1 to 2
Precipitation formation characterized by forming a micrometer-thick Si vapor deposition film and increasing the number of diamond crystal nuclei precipitated at the initial stage of the reaction in the subsequent precipitation formation of an artificial diamond film. A fast method for forming an artificial diamond film.
JP22641285A 1985-10-11 1985-10-11 Formation of artificial diamond film at high deposition forming rate Pending JPS6286161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22641285A JPS6286161A (en) 1985-10-11 1985-10-11 Formation of artificial diamond film at high deposition forming rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22641285A JPS6286161A (en) 1985-10-11 1985-10-11 Formation of artificial diamond film at high deposition forming rate

Publications (1)

Publication Number Publication Date
JPS6286161A true JPS6286161A (en) 1987-04-20

Family

ID=16844712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22641285A Pending JPS6286161A (en) 1985-10-11 1985-10-11 Formation of artificial diamond film at high deposition forming rate

Country Status (1)

Country Link
JP (1) JPS6286161A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244707A (en) * 1988-03-28 1989-09-29 Mitsubishi Metal Corp Ornament made of artificial diamond-coated gold and gold alloy
JPH01244706A (en) * 1988-03-28 1989-09-29 Mitsubishi Metal Corp Ornaments made of artificial diamond-coated gold and gold alloy
JPH01244705A (en) * 1988-03-28 1989-09-29 Mitsubishi Metal Corp Ornaments made of artificial diamond-coated gold alloy
JPH01275759A (en) * 1988-04-26 1989-11-06 Idemitsu Petrochem Co Ltd Sintered hard alloy coated with thin diamond film and its production
US5190823A (en) * 1989-07-31 1993-03-02 General Electric Company Method for improving adhesion of synthetic diamond coatings to substrates
EP0930377A1 (en) * 1998-01-20 1999-07-21 De Beers Industrial Diamond Division (Proprietary) Limited Bonding diamond to substrate
WO2010055869A1 (en) * 2008-11-11 2010-05-20 トーカロ株式会社 Printing roll, and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566920A (en) * 1979-06-28 1981-01-24 Philips Nv Dry lubricating bearing
JPS58126972A (en) * 1982-01-22 1983-07-28 Sumitomo Electric Ind Ltd Diamond coated sintered hard alloy tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566920A (en) * 1979-06-28 1981-01-24 Philips Nv Dry lubricating bearing
JPS58126972A (en) * 1982-01-22 1983-07-28 Sumitomo Electric Ind Ltd Diamond coated sintered hard alloy tool

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244707A (en) * 1988-03-28 1989-09-29 Mitsubishi Metal Corp Ornament made of artificial diamond-coated gold and gold alloy
JPH01244706A (en) * 1988-03-28 1989-09-29 Mitsubishi Metal Corp Ornaments made of artificial diamond-coated gold and gold alloy
JPH01244705A (en) * 1988-03-28 1989-09-29 Mitsubishi Metal Corp Ornaments made of artificial diamond-coated gold alloy
JPH01275759A (en) * 1988-04-26 1989-11-06 Idemitsu Petrochem Co Ltd Sintered hard alloy coated with thin diamond film and its production
US5190823A (en) * 1989-07-31 1993-03-02 General Electric Company Method for improving adhesion of synthetic diamond coatings to substrates
EP0930377A1 (en) * 1998-01-20 1999-07-21 De Beers Industrial Diamond Division (Proprietary) Limited Bonding diamond to substrate
WO2010055869A1 (en) * 2008-11-11 2010-05-20 トーカロ株式会社 Printing roll, and method for manufacturing the same
JP2010137540A (en) * 2008-11-11 2010-06-24 Tocalo Co Ltd Printing roll, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US4919974A (en) Making diamond composite coated cutting tools
JPH0566358B2 (en)
JPH0536229B2 (en)
US5491002A (en) Multilayer CVD diamond films
JPS6327319B2 (en)
JPS63182297A (en) Aggregate diamond
JPS6286161A (en) Formation of artificial diamond film at high deposition forming rate
EP0320657B1 (en) Improved diamond growth process
JPS6152363A (en) Method for depositing and forming artificial diamond film on surface of cermet member
CN1049018C (en) Diamond-phase carbon tubes and CVD process for their production
JPH01317197A (en) Diamond thin film substrate and production thereof
CN115125479A (en) Hard alloy coating cutter and preparation method thereof
JPH04157157A (en) Production of artificial diamond coated material
JPH02267284A (en) Polycrystalline diamond object and production thereof by vapor synthesis method
JPS6197194A (en) Process for forming deposited artificial diamond film
JPH01201478A (en) Diamond-coated carbon member
EP0534729A2 (en) Method for obtaining thick, adherent diamond coatings
JPS5915983B2 (en) Formation method of boron film
JPH05279854A (en) Formation of diamond film
JPH03260069A (en) Artificial diamond-coated hard sintered tool member having high adhesive strength
JP3160399B2 (en) Diamond film manufacturing method
JPS60200897A (en) Process for depositing and forming artificial diamond film
CN100363279C (en) Mold core for molding glass
JPH0116624B2 (en)
JPS62202898A (en) Production of diamond film