JPS628521B2 - - Google Patents
Info
- Publication number
- JPS628521B2 JPS628521B2 JP57159759A JP15975982A JPS628521B2 JP S628521 B2 JPS628521 B2 JP S628521B2 JP 57159759 A JP57159759 A JP 57159759A JP 15975982 A JP15975982 A JP 15975982A JP S628521 B2 JPS628521 B2 JP S628521B2
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- yarn
- fiber
- carbon
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000835 fiber Substances 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 23
- 238000004140 cleaning Methods 0.000 claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 10
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 10
- 239000011302 mesophase pitch Substances 0.000 claims description 9
- 238000002604 ultrasonography Methods 0.000 claims description 9
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 8
- 239000004917 carbon fiber Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229920001187 thermosetting polymer Polymers 0.000 claims description 8
- 239000011295 pitch Substances 0.000 claims description 7
- 238000013007 heat curing Methods 0.000 claims description 6
- 239000006229 carbon black Substances 0.000 claims description 4
- 238000010000 carbonizing Methods 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000009987 spinning Methods 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 description 13
- 238000003763 carbonization Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000004506 ultrasonic cleaning Methods 0.000 description 4
- 238000009998 heat setting Methods 0.000 description 3
- 238000009656 pre-carbonization Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D11/00—Other features of manufacture
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
- D01F9/145—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
- D01F9/20—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
- D01F9/21—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F9/22—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
- D01F9/32—Apparatus therefor
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
- D01F9/32—Apparatus therefor
- D01F9/322—Apparatus therefor for manufacturing filaments from pitch
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Inorganic Fibers (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Description
【発明の詳細な説明】
本発明は、ポリアクリロニトリル(PAN)及
びピツチから誘導した繊維の浄化法に関し、特に
高周波機械的振動を使用して該繊維を浄化するこ
とに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cleaning fibers derived from polyacrylonitrile (PAN) and pitch, and more particularly to cleaning the fibers using high frequency mechanical vibration.
一般的に言つて、PAN又はピツチから誘導さ
れる炭素繊維の通常の製造法は、PAN又はメソ
相ピツチから繊維を紡糸し、その紡糸した繊維を
空気中で加熱することによつて不融化し、そして
その不融性繊維を不活性ガス環境中で加熱するこ
とによつて炭化する各工程を含む。不融化工程は
通常“熱硬化工程”と称されており、そして不融
性繊維は“熱硬化繊維”と称されている。 Generally speaking, the usual method for producing carbon fibers derived from PAN or pitch is to spin fibers from PAN or mesophase pitch and infusible by heating the spun fibers in air. , and carbonizing the infusible fibers by heating in an inert gas environment. The infusible process is commonly referred to as a "thermosetting process" and the infusible fibers are referred to as "thermosetting fibers."
一般には、高品質の工業的炭素繊維はPAN及
びメソ相ピツチから作られている。工業的な方法
では、数千の繊維が紡糸されそして“ヤーン”と
称される束にされる。ピツチヤーンは複数のピツ
チ繊維からなるのに対して、PANヤーンは複数
のPAN繊維からなる。ヤーンに対して後続の操
作が実施されて複数の炭素繊維からなる炭素ヤー
ンが生成される。メソ相ピツチヤーンは、典型的
には、2000本の繊維を有することができる。各繊
維は、典型的には、約14ミクロン又はそれ以下の
直径を有する。 Generally, high quality technical carbon fibers are made from PAN and mesophase pitch. In industrial methods, thousands of fibers are spun into bundles called "yarns." Pitch yarn consists of multiple pitch fibers, whereas PAN yarn consists of multiple PAN fibers. Subsequent operations are performed on the yarn to produce a carbon yarn comprising a plurality of carbon fibers. Mesophase pitch yarns can typically have 2000 fibers. Each fiber typically has a diameter of about 14 microns or less.
こゝに本発明において、メソ相ピツチ誘導炭素
ヤーンの工業的製造では、熱硬化工程間にピツチ
ヤーン中にホツトスポツトが生じその結果として
個々の繊維はそれらが熱硬化する前に溶融又は軟
化することが分つた。これらの繊維は他の繊維に
付着する傾向があり、そしてヤーンは剛く且つ脆
くなつた。かゝる環境下に製造された炭素ヤーン
の機械的特性は比較的貧弱である。 Thus, in the present invention, in the industrial production of mesophase pitch-derived carbon yarns, hot spots can occur in the pitch yarn during the heat setting process, so that the individual fibers can melt or soften before they are heat set. Divided. These fibers tended to stick to other fibers and the yarn became stiff and brittle. The mechanical properties of carbon yarn produced under such conditions are relatively poor.
米国特許第4275051号及び同第4276278号は、熱
硬化操作間に生じ得るこれらの問題を打破するた
めの方法に関する。一般には、これらの方法は、
熱硬化工程に先立つてピツチ繊維の表面上にグラ
フアイト又はカーボンブラツク粒子を付着させる
ことを特徴とする。必要ならば、これらの特許の
開示を参照されたい。 US Pat. No. 4,275,051 and US Pat. No. 4,276,278 relate to methods for overcoming these problems that can occur during heat curing operations. In general, these methods
The method is characterized in that graphite or carbon black particles are deposited on the surface of pitch fibers prior to the heat curing process. If necessary, reference is made to the disclosures of these patents.
熱硬化工程間におけるカーボンブラツク粒子の
存在は、得られる炭素ヤーンの品質を改善したが
しかし新たな問題を提起した。炭素ヤーンの多く
の工業的用途は、複合体の形態をとる。炭素ヤー
ン中の炭素繊維上での粒子の存在は、ある種の複
合体に対しては貧弱な最終製品をもたらした。 The presence of carbon black particles during the heat curing process improved the quality of the resulting carbon yarn but posed new problems. Many industrial applications of carbon yarn take the form of composites. The presence of particles on the carbon fibers in the carbon yarn resulted in poor final products for certain composites.
繊維から粒子を除去する方法の研究は、従来技
術の再調査及び慣用法の検討から開始された。 Research into methods for removing particles from fibers began with a review of the prior art and consideration of conventional methods.
物体を超音波振動によつて浄化する従来技術の
方法は、繊維から粒子を除去浄化するのに満足な
ものであることが分つたが、しかし重大な欠点を
示した。通常の超音波浄化は、浄化しようとする
物体を収容する液媒体中に機械的エネルギーの超
音波源を設けることによつて実施される。液媒体
は、超音波源から物体へと超音波振動を伝達す
る。従来技術によれば、超音波浄化は“キヤビテ
ーシヨン(cavitation)”と称される現象によつて
達成されそしてキヤビテーシヨンを生じるには液
媒体が必要とされることが教示されている。 Prior art methods of cleaning objects by ultrasonic vibration have been found to be satisfactory for cleaning and removing particles from fibers, but have exhibited significant drawbacks. Conventional ultrasonic cleaning is carried out by placing an ultrasonic source of mechanical energy in a liquid medium containing the object to be cleaned. The liquid medium transmits ultrasonic vibrations from the ultrasonic source to the object. The prior art teaches that ultrasonic cleaning is accomplished by a phenomenon called "cavitation" and that a liquid medium is required to cause cavitation.
ヤーンの浄化に対して従来技術の超音波浄化を
適用する場合の1つの問題は、ヤーンを浄化後に
乾燥させなければならないことである。湿つたヤ
ーンを輸送するのは望ましくなく、そしてもしヤ
ーンを追加的に炭化又は熱処理しようとするなら
ばヤーンを乾燥状態にすることが特に重要であ
る。乾燥工程は、炉、炉を作動させるエネルギ
ー、追加的な監視制御及び製造面積における床空
間を必要とする。ヤーンの浄化に対して従来技術
の超音波浄化を適用する場合の他の問題は、工業
的操作に対して好適な製造線速度ではヤーン中の
繊維が損傷又は破断した状態になつて低品質の炭
素ヤーンが生成されることである。 One problem with applying prior art ultrasonic cleaning to yarn cleaning is that the yarn must be dried after cleaning. It is undesirable to transport wet yarn, and it is especially important that the yarn be dry if the yarn is to be additionally carbonized or heat treated. The drying process requires a furnace, energy to operate the furnace, additional supervisory control and floor space in the manufacturing area. Another problem with applying prior art ultrasonic cleaning to yarn cleaning is that the production line speeds preferred for industrial operations can leave the fibers in the yarn in a damaged or broken state, resulting in poor quality. Carbon yarn is produced.
この問題を研究した後、繊維はヤーンを浄化す
るための簡単な解決策に対して独特に順応するこ
とが分つた。 After researching this problem, it was found that fibers are uniquely amenable to simple solutions for cleaning yarns.
液媒体を使用する代わりに、乾燥ヤーンに対し
て超音波源が直接適用された。驚いたことに、繊
維は、実質上きれいになりそして発生した熱によ
つて評価し得る程に損傷を受けなかつた。 Instead of using a liquid medium, an ultrasound source was applied directly to the dry yarn. Surprisingly, the fibers were substantially cleaned and not appreciably damaged by the heat generated.
メソ相ピツチ誘導繊維について言えば、浄化工
程は、繊維を熱硬化させた後に実施することがで
きる。工業的な方法では、熱硬化繊維は被覆工程
を通常施こされるが、この被覆又は“仕上げ”は
本発明に従つた浄化工程の有効性に干渉する場合
がある。 For mesophase pitch-derived fibers, the purification step can be carried out after heat curing the fibers. In industrial processes, thermoset fibers are commonly subjected to a coating step, but this coating or "finish" may interfere with the effectiveness of the cleaning step in accordance with the present invention.
メソ相ピツチ誘導熱硬化ヤーンを炭化するため
の工業的な方法は2つの段階で有益下に実施され
る。熱硬化ヤーンは、加熱室を通してヤーンを引
きながら不活性雰囲気中において約1300℃の温度
で第一熱処理を施こされる。第一熱処理は仕上面
を実質上除去するので、これは、たとえ炭化工程
であつても従来技術では“予備炭化”と称される
場合が多い。第一熱処理後のヤーンは、ずつと強
くなるので、あまり注意を払わなくても取扱うこ
とができる。続いて、ヤーンは、最終生成物であ
る炭素ヤーンを生成するために不活性雰囲気中に
おいて約1500〜約3000℃の温度で第二熱処理を受
ける。 The industrial process for carbonizing mesophase pitch-induced thermoset yarns is advantageously carried out in two stages. The thermoset yarn is subjected to a first heat treatment at a temperature of about 1300° C. in an inert atmosphere while drawing the yarn through a heating chamber. Since the first heat treatment substantially removes the finished surface, it is often referred to in the prior art as "pre-carbonization" even though it is a carbonization step. The yarn after the first heat treatment becomes gradually stronger and can be handled without much care. The yarn is then subjected to a second heat treatment at a temperature of about 1500 to about 3000<0>C in an inert atmosphere to produce the final product, carbon yarn.
熱処理のどれも、熱硬化工程を改善するために
繊維上に付着されたカーボンブラツク粒子を除去
しない。 None of the heat treatments remove the carbon black particles deposited on the fibers to improve the heat curing process.
本発明の浄化工程は、第一熱処理と第二熱処理
との間で使用されるのが好ましい。何故ならば、
ヤーンは仕上面を有さず且つヤーンは良好な機械
的特性を有するのでより高い速度及びより強い浄
化を実施することができるからである。 The purification step of the present invention is preferably used between the first heat treatment and the second heat treatment. because,
Higher speeds and stronger cleaning can be carried out because the yarn has no surface finish and the yarn has good mechanical properties.
メソ相誘導ヤーンで得られた優秀な結果は、本
発明の更に広い範囲を示唆した。即ち、PAN誘
導ヤーンに対しても同じ浄化操作を用いることが
できる。何故ならば、これらのヤーンはメソ相ピ
ツチ誘導ヤーンに匹敵する性能を有するからであ
る。 The excellent results obtained with mesophase-induced yarns suggested a broader scope of the invention. That is, the same purification operation can be used for PAN-induced yarns. This is because these yarns have performance comparable to mesophase pitch-induced yarns.
超音波振動は極めて有効であることが分つたけ
れども、一般的に言つて本発明は実質上乾燥した
ヤーン又は繊維に直接適用される高周波機械的振
動の使用にある。 Although ultrasonic vibrations have been found to be very effective, the invention generally resides in the use of high frequency mechanical vibrations applied directly to substantially dry yarns or fibers.
従つて、本発明は、その最とも広い具体例で
は、繊維を紡糸し、その繊維を熱硬化させそして
それを炭化する各工程からなる炭素繊維の製造法
の改良に係り、そして熱硬化工程後の繊維を、そ
の乾燥繊維に高周波機械的振動を施すことによつ
て浄化することを特徴とする。 Accordingly, in its broadest embodiment, the present invention relates to an improvement in the process of making carbon fibers, which comprises the steps of spinning a fiber, heat-setting the fiber, and carbonizing it, and after the heat-setting step. The dry fibers are purified by subjecting the dry fibers to high-frequency mechanical vibration.
繊維はメソ相ピツチから誘導したものでも又は
PANから誘導したものでもよく、そして好まし
くは機械的振動は超音波振動数範囲にある。 The fibers may be derived from mesophase pitch or
The mechanical vibrations may be derived from PAN, and preferably the mechanical vibrations are in the ultrasonic frequency range.
もちろん、単一の繊維の代わりに、約14ミクロ
ンの直径を有する複数の繊維、典型的には約2000
本の繊維からなるヤーンを用いることができる。 Of course, instead of a single fiber, multiple fibers with a diameter of about 14 microns, typically about 2000
Yarns consisting of real fibers can be used.
好ましくは、炭化は2つの段階で実施され、そ
の結果として浄化工程は予備炭化工程の後に実施
することができる。 Preferably, the carbonization is carried out in two stages, so that the purification step can be carried out after the pre-carbonization step.
好ましくは、第一熱処理後のヤーン即ち予備炭
化ヤーンは、最終炭化工程を実施するための室に
入る直前に本発明に従つて浄化される。ヤーン
は、線通路にほゞ沿つて伸ばされそして超音波源
のホーンに対して約10〜約25 lbの有効力で押圧
する。好ましくは、超音波源は、約20000ヘルツ
の超音波振動数を有する機械的振動を生じる。 Preferably, the yarn after the first heat treatment or pre-carbonized yarn is purified according to the invention immediately before entering the chamber for carrying out the final carbonization step. The yarn is stretched generally along the line path and pressed against the horn of the ultrasonic source with an effective force of about 10 to about 25 lbs. Preferably, the ultrasound source produces mechanical vibrations having an ultrasound frequency of about 20,000 Hertz.
本発明に従つた浄化に対して機械的振動の好適
な振幅及び周波数の範囲は、使用される特定のヤ
ーンに対して容易に実験的に決定することができ
る。ヤーンについて考慮すべき因子のうちのいく
らかは、受け入れできる浄化の程度、ヤーンを移
動させようとする速度、許容できるヤーン損傷の
程度及び浄化操作の経済性である。 Suitable amplitude and frequency ranges of mechanical vibrations for cleaning according to the present invention can be easily determined experimentally for the particular yarn used. Some of the factors to consider for the yarn are the degree of cleaning that is acceptable, the speed at which the yarn is to be moved, the degree of yarn damage that can be tolerated, and the economics of the cleaning operation.
本発明の更に他の利益は、以下の記載から明ら
かになるであろう。 Further advantages of the invention will become apparent from the description below.
本発明を実施するための最良の態様を添付図面
に示す。こゝで図面を説明すると、熱硬化された
メソ相ピツチ誘導ヤーン1は、約1300℃の最高温
度で作動している予備炭化装置2を出る。ヤーン
1は2000本の繊維を有し、そして各繊維は約10ミ
クロンの直径を有する。 The best mode for carrying out the invention is illustrated in the accompanying drawings. Referring now to the drawings, the thermoset mesophase pitch-guided yarn 1 exits the pre-carbonizer 2 operating at a maximum temperature of approximately 1300°C. Yarn 1 has 2000 fibers and each fiber has a diameter of approximately 10 microns.
超音波源3,4及び6は、機械的振動をもたら
しそして本発明に従つてヤーン1を浄化する。ヤ
ーン1は約20m/分の速度で移動しそして約550
lbの張力を有する。 Ultrasonic sources 3, 4 and 6 provide mechanical vibrations and clean the yarn 1 according to the invention. Yarn 1 moves at a speed of about 20 m/min and has a speed of about 550 m/min.
It has a tension of lb.
超音波源3,4及び6の各々は、約20000ヘル
ツの周波数を有しそして市場で入手可能な型であ
る。ホーン7,8及び9の各々はそれぞれの超音
波源3,4及び6の能動出力素子であり、そして
各ホーンはヤーンを接触した約1.3cm長さの表面
を有し、しかして各ホーン上におけるヤーン1の
滞留時間は約0.04秒である。ホーン7,8及び9
の各々に対して、ヤーン1は約10〜約25 lbの力
で押圧される。 Each of the ultrasound sources 3, 4 and 6 has a frequency of approximately 20,000 Hertz and is of a commercially available type. Each of horns 7, 8 and 9 is an active output element of a respective ultrasonic source 3, 4 and 6, and each horn has a surface approximately 1.3 cm long in contact with the yarn, so that on each horn The residence time of yarn 1 at is approximately 0.04 seconds. Horns 7, 8 and 9
For each, yarn 1 is pressed with a force of about 10 to about 25 lbs.
本発明に関しては2つの重要な面がある。1つ
は浄化の程度であり、もう1つは機械的特性に及
ぼされる悪影響の程度である。 There are two important aspects regarding the present invention. One is the degree of cleaning and the other is the degree of negative impact on mechanical properties.
本発明によつて浄化されたヤーンは、浄化しな
かつたヤーンと比較して粒子の不在の面で有意義
な改善を示した。 Yarns purified according to the invention showed significant improvement in the absence of particles compared to yarns that were not purified.
加えて、本発明に従つて浄化された炭素ヤーン
は、少しも浄化されなかつた炭素ヤーンに匹敵す
る引張強度及びヤング率を有していた。このこと
は重要である。と云うのは、これは本発明がこれ
らの2つの重要な機械的特性を劣化させないこと
を示しているからである。 In addition, carbon yarns purified according to the present invention had tensile strength and Young's modulus comparable to carbon yarns that were not purified at all. This is important. This is because this shows that the present invention does not degrade these two important mechanical properties.
典型的な場合には、添付図面に記載した如くし
て本発明に従つて作られた炭素ヤーンは2.23GPa
の平均引張強度及び632GPaの平均ヤング率を有
する繊維を有したが、これに対して全く浄化され
なかつた炭素ヤーンは2.24GPa及び600GPaの対応
平均値を有していた。 Typically, carbon yarn made in accordance with the invention as described in the accompanying drawings has a pressure of 2.23 GPa.
The fibers had an average tensile strength of , and an average Young's modulus of 632 GPa, whereas the carbon yarns that were not purified at all had corresponding average values of 2.24 GPa and 600 GPa.
ヤーンの更に高い浄化度は、超音波源の予定の
出力レベルでも、超音波源の数を増加すること及
び(又は)ホーンに対するヤーンの圧力を増大さ
せることによつて得ることができる。市場で入手
可能な超音波源は、通常、予め設定した出力レベ
ルを有する。別個の実験において、3つのホーン
の各々に対して約10〜約25 lbの代わりに約50 lb
の押圧力を使用して浄化工程を実施した。製造さ
れた炭素ヤーンの繊維は、約2.25GPaの引張強度
及び約612GPaのヤング率を有していた。これら
の結果も未浄化ヤーンで得られるものにひけを取
らなかつたが、これは圧力の選定にはかなりの許
容範囲が存在することを示す。 A higher degree of cleaning of the yarn, even at the intended power level of the ultrasound sources, can be obtained by increasing the number of ultrasound sources and/or by increasing the pressure of the yarn against the horn. Ultrasonic sources available on the market usually have a preset power level. In separate experiments, about 50 lb instead of about 10 to about 25 lb for each of the three horns
The cleaning process was carried out using a pressing force of . The carbon yarn fibers produced had a tensile strength of about 2.25 GPa and a Young's modulus of about 612 GPa. These results were also comparable to those obtained with unpurified yarns, indicating that there is considerable latitude in pressure selection.
本発明に従つた浄化工程間にヤーンから機械的
に除去されつゝある粒子が各々のホーンの領域で
可視的な曇りの形で生じていることは興味のある
ことである。浄化領域からの粒子の除去は、吸引
装置又は類似装置で実施することができる。第一
ホーンであるホーン7において最とも大きい曇り
が存在していた。 It is interesting to note that the particles that are being mechanically removed from the yarn during the cleaning process according to the invention result in a visible haze in the area of each horn. Removal of particles from the purification area can be carried out with a suction device or similar device. The greatest haze was present in the first horn, horn 7.
超音波源3,4及び6を取り除くと、曇りはも
はや形成されず、そしてヤーンはほつれ損傷を生
じてかなり低下した。実際にはこのようなほつれ
が予期されたが、しかし超音波源3,4及び6が
作動しているときにはこのほつれが起らないこと
は驚くべきことである。 When the ultrasonic sources 3, 4 and 6 were removed, haze no longer formed and the yarn was considerably degraded with fray damage. In practice, such fraying was expected, but it is surprising that this does not occur when the ultrasound sources 3, 4 and 6 are activated.
以上本発明を詳細に説明したけれども、当業者
には幾多の変更修正が可能であるので、本発明を
ここに例示記載した構成のものに限定するつもり
はないことを理解されたい。 Although the present invention has been described in detail above, it is to be understood that the present invention is not intended to be limited to the configurations illustrated and described herein, as many modifications and changes will occur to those skilled in the art.
添付図面は本発明を実施する各装置の概略側面
図を示し、2が予備炭化帯域、3,4及び6が超
音波源そして12が最終炭化帯域である。
The accompanying drawings show a schematic side view of the apparatus implementing the invention, with 2 being the pre-carbonization zone, 3, 4 and 6 the ultrasound sources and 12 the final carbonization zone.
Claims (1)
熱硬化させそしてそれを炭化することからなる少
なくとも1つの炭素繊維の製造法において、熱硬
化工程後の繊維を、その乾燥繊維に高周波機械的
振動を施して繊維の表面に付着する粒子を除去す
ることによつて浄化することを特徴とする炭素繊
維の製造法。 2 繊維がポリアクリロニトリルか又はピツチか
ら誘導される特許請求の範囲第1項記載の方法。 3 繊維がメソ相ピツチから誘導される特許請求
の範囲第1項記載の方法。 4 複数の繊維を紡糸しそしてそれらをヤーンに
する特許請求の範囲第1項記載の方法。 5 少なくとも1つの超音波源を用いて高周波機
械的振動を発生させる特許請求の範囲第1項記載
の方法。 6 超音波源が約20000ヘルツの周波数を有する
特許請求の範囲第4項記載の方法。 7 複数の繊維を紡糸してこれらをヤーンにし、
そして少なくとも1つの超音波源を用いて高周波
機械的振動を発生させる特許請求の範囲第1項記
載の方法。 8 ヤーンを約1300℃への第一熱処理それに続く
約1500〜約3000℃の範囲の温度への第二熱処理に
よつて炭化し、そして浄化工程を前記第一熱処理
と前記第二熱処理との間で実施する特許請求の範
囲第6項記載の方法。 9 複数の繊維を紡糸してこれらをヤーンにし、
そして更に該繊維の表面の一部分を熱硬化工程に
先立つてグラフアイト又はカーボンブラツクで被
覆する工程を含む特許請求の範囲第1項記載の方
法。[Claims] 1. A method for producing at least one carbon fiber, which comprises spinning at least one fiber, thermosetting the fiber, and carbonizing the fiber, wherein the fiber after the thermosetting step is treated as a dry fiber. A method for producing carbon fibers, characterized in that the carbon fibers are purified by subjecting them to high-frequency mechanical vibration to remove particles adhering to the surface of the fibers. 2. The method of claim 1, wherein the fibers are derived from polyacrylonitrile or pitch. 3. The method of claim 1, wherein the fibers are derived from mesophase pitch. 4. The method of claim 1, comprising spinning a plurality of fibers and forming them into yarn. 5. The method of claim 1, wherein at least one ultrasonic source is used to generate high frequency mechanical vibrations. 6. The method of claim 4, wherein the ultrasound source has a frequency of about 20,000 Hertz. 7 Spun multiple fibers into yarn,
2. The method of claim 1, wherein the high frequency mechanical vibrations are generated using at least one ultrasonic source. 8. The yarn is carbonized by a first heat treatment to about 1300°C followed by a second heat treatment to a temperature in the range of about 1500 to about 3000°C, and a cleaning step is carried out between said first heat treatment and said second heat treatment. 7. The method of claim 6 carried out in . 9 Spun multiple fibers into yarn,
The method of claim 1 further comprising the step of coating a portion of the surface of the fiber with graphite or carbon black prior to the heat curing step.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30318581A | 1981-09-17 | 1981-09-17 | |
US303185 | 1981-09-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58109623A JPS58109623A (en) | 1983-06-30 |
JPS628521B2 true JPS628521B2 (en) | 1987-02-23 |
Family
ID=23170894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15975982A Granted JPS58109623A (en) | 1981-09-17 | 1982-09-16 | Purification of polyacrylonitrile and pitch derivative fiber |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0075437B1 (en) |
JP (1) | JPS58109623A (en) |
DE (1) | DE3271564D1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3732947A1 (en) * | 1987-09-30 | 1989-04-13 | Henkel Kgaa | FOAM REGULATOR SUITABLE FOR USE IN WASHING AND CLEANING AGENTS |
US4915926A (en) * | 1988-02-22 | 1990-04-10 | E. I. Dupont De Nemours And Company | Balanced ultra-high modulus and high tensile strength carbon fibers |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5423730A (en) * | 1977-07-21 | 1979-02-22 | Sumitomo Electric Ind Ltd | Production of glass fibers and its device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3705236A (en) * | 1969-11-01 | 1972-12-05 | Nippon Carbon Co Ltd | Method of producing carbon fibers |
JPS584113B2 (en) * | 1979-03-01 | 1983-01-25 | 株式会社新和製作所 | How to make the tip of synthetic fiber thinner |
-
1982
- 1982-09-15 DE DE8282304859T patent/DE3271564D1/en not_active Expired
- 1982-09-15 EP EP19820304859 patent/EP0075437B1/en not_active Expired
- 1982-09-16 JP JP15975982A patent/JPS58109623A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5423730A (en) * | 1977-07-21 | 1979-02-22 | Sumitomo Electric Ind Ltd | Production of glass fibers and its device |
Also Published As
Publication number | Publication date |
---|---|
JPS58109623A (en) | 1983-06-30 |
EP0075437B1 (en) | 1986-06-04 |
DE3271564D1 (en) | 1986-07-10 |
EP0075437A1 (en) | 1983-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4534919A (en) | Production of a carbon fiber multifilamentary tow which is particularly suited for resin impregnation | |
JPS6311447B2 (en) | ||
JPS628521B2 (en) | ||
JPS639045B2 (en) | ||
JP2016008372A (en) | Apparatus and method for producing pitch-based short carbon fiber | |
US3705236A (en) | Method of producing carbon fibers | |
US4750964A (en) | Rotating drum accumulator for semi-aligned carbon fibers and process of manufacturing same | |
JPH11332980A (en) | Production of hollow fiber membrane | |
JPS54131032A (en) | Production of carbon fibers from acrylic fibers | |
JP3610659B2 (en) | Oxidation furnace and carbon fiber manufacturing method | |
WO1989000618A3 (en) | Process and device for manufacturing anisotropic carbon fibres | |
JPH0310724B2 (en) | ||
JPS61108715A (en) | Production of acrylic fiber | |
KR100226888B1 (en) | The manufacture method of the pitch section activated carbon fiber | |
JPS58186614A (en) | Production of graphite fiber | |
JP2001049523A (en) | Production of acrylic fiber | |
JPH01282324A (en) | Production of pitch-based carbon fiber | |
JPH0633531B2 (en) | Carbon fiber manufacturing method | |
JPH01282341A (en) | Insolubilization of pitch fiber | |
SU1263727A1 (en) | Method of producing fibre from stock of fibre crops | |
JPH01282315A (en) | Production of pitch-based carbon fiber | |
JPH04241162A (en) | Method for removing powder and granule | |
EP0014161A2 (en) | Method of treating a multifilament bundle of pitch fibers and a spin size composition therefor | |
RU2088704C1 (en) | Method for removal of plant contaminants from wool | |
JPH026625A (en) | Production of flame-resistant fiber |