[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6278755A - Pickup for photomagnetic recording medium - Google Patents

Pickup for photomagnetic recording medium

Info

Publication number
JPS6278755A
JPS6278755A JP60219896A JP21989685A JPS6278755A JP S6278755 A JPS6278755 A JP S6278755A JP 60219896 A JP60219896 A JP 60219896A JP 21989685 A JP21989685 A JP 21989685A JP S6278755 A JPS6278755 A JP S6278755A
Authority
JP
Japan
Prior art keywords
light
laser
recording medium
magneto
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60219896A
Other languages
Japanese (ja)
Inventor
Akihiro Sakata
昭博 坂田
Satoru Toshida
利田 哲
Hiroshi Yamamoto
寛 山本
Tsuneo Takahashi
恒夫 高橋
Tetsuo Hosomi
哲雄 細美
Yasuhiro Tanaka
田中 保裕
Kazutomi Odagi
小田木 一富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60219896A priority Critical patent/JPS6278755A/en
Publication of JPS6278755A publication Critical patent/JPS6278755A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PURPOSE:To obtain a highly efficient pickup for photomagnetic recording medium by transmitting approximately all of the laser light made incident on a half mirror through a lambda/2 plate in a record mode and moving this lambda/2 plate to avoid transmission of the laser light in a reproduction mode respectively. CONSTITUTION:The half of the light passed through a beam shaping prism 7 is made incident on a PBS 26. While the other half of said light passes through a lambda/2 plate 28 and is made incident on an HM 27 which reflects and transmits by half both S and P polarized waves respectively. The laser light passed through the PBS 26 and the HM 27 is focused by an objective lens 2 and irradiated on a disk 1 for heating. The laser light deliver from a laser device is all sent toward a photomagnetic recording medium and focused with maximum efficiency. In a reproduction mode, the plate 28 is removed. Then a semiconductor laser device 9 emits light by a laser drive circuit 10 and focuses the laser light 3 passed through a collimator lens 8, the prism 7, the PBS 26 and the HM 27 onto the surface of the disk 1 through the lens 2. The laser light is made incident on the recording surface in the form of a linear polarized wave as it is. Thus the photomagnetic recording medium has no trouble with its reproduction of signals.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、消去型の光磁気記録媒体の記録・再生装置に
用いる光磁気記録媒体用光ピツクアップに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical pickup for a magneto-optical recording medium used in a recording/reproducing apparatus for erasable magneto-optical recording media.

従来の技術 光磁気記録媒体には、ディスク型式のものfカード型式
のもの等があるが、以下の説明は全てディスクで代表し
て行う。
Conventional magneto-optical recording media include disk-type media and f-card type media, but the following explanation will be made using disks as a representative example.

光デイスクプレーヤーには、再生専用型、追記型、消去
型があり、本発明は消去型に属する光磁気ディスクなど
に用いるピックアップに関する。
There are three types of optical disc players: read-only type, write-once type, and erasing type. The present invention relates to a pickup used for magneto-optical discs and the like belonging to the erasing type.

光磁気ディスクは、ディスク基月上に磁性薄膜を形成し
たもので、記録時には、レーザ光による局部加熱により
その部分の保磁力を低下させ、同時に外部磁界をかける
ことにより磁化方向を反転させるものである。また再生
時には、直Fil偏光のレーザ光をディスクの信号面に
照射し、その反射光のカー効果を利用し、反射光の偏光
角の回転を検光子で分離し、光検出器で読み取るもので
ある。。
A magneto-optical disk has a magnetic thin film formed on the disk base. During recording, the coercive force of that area is lowered by local heating with laser light, and at the same time, the direction of magnetization is reversed by applying an external magnetic field. be. During playback, a directly polarized laser beam is irradiated onto the signal surface of the disc, and the Kerr effect of the reflected light is used to separate the rotation of the polarization angle of the reflected light with an analyzer and read with a photodetector. be. .

光磁気ディスクに信号を記録する従来の記録用のピック
アップについて第5図を、また信号の記録されたディス
クから信号を再生する従来の再生用の、ピックアップに
ついて第6図をそれぞれ用いて説明する。
A conventional recording pickup for recording signals on a magneto-optical disk will be explained with reference to FIG. 5, and a conventional reproduction pickup for reproducing signals from a disk on which signals have been recorded will be explained using FIG. 6.

第5図において、1はディスク、2は対物レンズ、3は
レーデ光、4はコイル、5はλ/4板、6は偏光ビーム
スプリッタ(以下rPBsJと記す)、7はビーム整形
プリズム、8はコリメートレンズ、9は半導体レーデ装
置、10はレーザ駆動回路、11は変調回路、12はレ
ンズ、13は分割ミラー、14.15は光検出器である
。記録すべき信号を変調回路11で変調し、レーザ駆動
回路10で半導体レーザ装置9を発光させる。半導体レ
ーザ装置9から出射されたレーザ光は、コリメートレン
ズ8とビーム整形プリズム7とで楕円の拡散光から円形
の平行光に整形され、P8S6を通り、λ/4板5で円
偏光になり、対物レンズ2によりディスク1而に集光さ
れる。ディスク1に集光したレーザ光3によりディスク
1の信号面が加熱され、同時にコイル4により外部磁界
がかけられ、磁化方向の反転が起る。ディスク1で反射
したレーザ光は、再度対物レンズ2とλ/4板5とを通
り、P2S5で反射され、レンズ12で集束光になり、
分割ミラー13を通過および反射した光はそれぞれ2分
割の光検出器14.15に入り、フォーカシング誤差信
号とトラッキング誤差信号とが得られる。
In Fig. 5, 1 is a disk, 2 is an objective lens, 3 is a radar beam, 4 is a coil, 5 is a λ/4 plate, 6 is a polarizing beam splitter (hereinafter referred to as rPBsJ), 7 is a beam shaping prism, and 8 is a A collimating lens, 9 a semiconductor radar device, 10 a laser drive circuit, 11 a modulation circuit, 12 a lens, 13 a dividing mirror, and 14.15 a photodetector. A signal to be recorded is modulated by a modulation circuit 11, and a laser drive circuit 10 causes the semiconductor laser device 9 to emit light. The laser light emitted from the semiconductor laser device 9 is shaped from an elliptical diffused light to a circular parallel light by the collimating lens 8 and the beam shaping prism 7, passes through P8S6, becomes circularly polarized light by the λ/4 plate 5, The light is focused onto the disk 1 by the objective lens 2. The signal surface of the disk 1 is heated by the laser beam 3 focused on the disk 1, and at the same time an external magnetic field is applied by the coil 4, causing a reversal of the magnetization direction. The laser beam reflected by the disk 1 passes through the objective lens 2 and the λ/4 plate 5 again, is reflected by P2S5, becomes a focused beam by the lens 12,
The light that has passed through and reflected from the split mirror 13 enters two split photodetectors 14 and 15, respectively, and a focusing error signal and a tracking error signal are obtained.

第6図において、16はハーフミラ−(以下「HM」と
記す)、17はレーザ駆動回路、 18.19はビーム
スプリッタ(以下rBsJと記す)、20.21は検光
子、22.23は光検出器、24は差動増幅器、25は
出力端子である。レーザ駆動回路17により再生に必要
なレーザ出力で半導体レーザ装置9を発光させ、コリメ
ートレンズ8とビーム整形プリズム7とで円形の平行光
にし、l−4M16と対物レンズ2とを通過させてディ
スク1に集束させる。ディスク1で反射し、カー効果に
より直線偏光の偏波面の回転したレーザ光は、再度対物
レンズ2を通過した後、8M16で反射され、8 S 
18を直進し、別の[3319で透過光と反射光とに分
けられる。それぞれの光は、検光子20.21で特定の
偏波面のみ選別され、それぞれ光検出器22.23に向
う。両光検出器22.23の出力は、差動増幅器24に
よりディスク1圭の信号として検出され、出力端子25
に出力される。
In Fig. 6, 16 is a half mirror (hereinafter referred to as "HM"), 17 is a laser drive circuit, 18.19 is a beam splitter (hereinafter referred to as rBsJ), 20.21 is an analyzer, and 22.23 is a photodetector. 24 is a differential amplifier, and 25 is an output terminal. The laser drive circuit 17 causes the semiconductor laser device 9 to emit light with the laser output necessary for reproduction, and the collimator lens 8 and beam shaping prism 7 convert the light into circular parallel light. focus on. The laser beam reflected by the disk 1 and having its linearly polarized plane of polarization rotated by the Kerr effect passes through the objective lens 2 again, is reflected by the 8M16, and is reflected by the 8S
18, and is separated into transmitted light and reflected light at another [3319]. Each light is separated into a specific plane of polarization by an analyzer 20.21, and then directed to a photodetector 22.23. The outputs of both photodetectors 22 and 23 are detected by the differential amplifier 24 as a signal for disk 1, and are sent to the output terminal 25.
is output to.

このように、記録時と再生時との大きな違いは、記録時
には直線偏光でなく(ら良いが熱を1−Jえて磁化方向
を変える必要があるため、大出力が必要であるが、再生
時には全く逆に、レーザ出力は小さくでも良いが、ディ
スク1面へのレーザ光3は直線偏光でなければ光磁気特
有のカー効果が検出できない。
In this way, the big difference between recording and reproducing is that during recording, the polarized light is not linearly polarized (which is better, but it is necessary to remove heat by 1-J to change the direction of magnetization, so a large output is required, but during reproducing, it is not linearly polarized light). Quite to the contrary, although the laser output may be small, the Kerr effect peculiar to magneto-optics cannot be detected unless the laser beam 3 directed to the surface of the disk is linearly polarized.

そのため記録時には、P8S6を用いてλ/4板で円偏
光にし、ディスク1で反射俊、再度PBS6に入射する
時には出射時の偏波面と直交しPBS6で全光吊反射し
、効率が最大になるようにしている。光路の伝達効率を
50%とし、ディスク1面で必要なレーザパワーを8m
Wとすると、半導体レーザ装置9の出力は16mWあれ
ば良い。
Therefore, during recording, the light is circularly polarized by a λ/4 plate using P8S6, and is quickly reflected by disk 1. When it enters PBS6 again, it is perpendicular to the plane of polarization at the time of output and is completely reflected by PBS6, maximizing efficiency. That's what I do. The transmission efficiency of the optical path is set to 50%, and the laser power required for one disk surface is 8 m.
Assuming W, the output of the semiconductor laser device 9 only needs to be 16 mW.

再生時には、ディスク1面上で1mWあれば良いので、
上記同様、光路の伝達効率を50%とすると、半導体レ
ーザ装置9の出力は8M16で半分になるため4mW必
要になる。
During playback, 1 mW on one side of the disc is sufficient, so
Similarly to the above, if the transmission efficiency of the optical path is 50%, the output of the semiconductor laser device 9 is halved at 8M16, so 4 mW is required.

また別の従来装置として、第6図に示す構成と同様の構
成で記録と再生とを行うものがあり、記録時にはレーザ
駆動回路17に他から記録すべき信号を入力し、半導体
レーザ装置9を変調する。しかしこの方式であれば、P
BS6とλ/4板5との代わりに8M16を用いている
ため、半導体装置ザg@9からのレーデ光は8M16で
172になる。
There is another conventional device that performs recording and reproduction with a configuration similar to that shown in FIG. Modulate. However, with this method, P
Since 8M16 is used instead of the BS 6 and the λ/4 plate 5, the radar light from the semiconductor device ZAg@9 is 8M16, which is 172.

したがって、光路の伝達効率を50%、記録時のディス
ク1面上での必要なレーザパワーを8mWとすると、半
導体レーザ装置9の出力が32mWなければならないこ
とになる。半導体レーザ装置9の価格は、レーザ出力が
大きくなるに従い加速度的に高くなり、寿命も出力が大
きくなるに従い短くなる。別の面から見れば、再生用の
低出力のレーザ装置に比べ、記録用の高出力のレーデ装
置は、出荷個数が少ないため、必然的に高価になってし
まう。
Therefore, assuming that the transmission efficiency of the optical path is 50% and the required laser power on one surface of the disk during recording is 8 mW, the output of the semiconductor laser device 9 must be 32 mW. The price of the semiconductor laser device 9 increases at an accelerating rate as the laser output increases, and the lifetime also decreases as the output increases. From another perspective, compared to low-output laser devices for reproduction, high-output radar devices for recording are shipped in fewer units, so they are inevitably more expensive.

発明が解決しようとする問題点 従来は、半導体レーザ装置の価格、寿命、効率の点から
、記録用のピックアップと再生用のピックアップとを全
く別のものにして、光磁気ディスクへの記録・再生を行
っていたが、全く別のピックアップを用いることは、効
率、価格、寿命の点で問題があり、ピックアップを記録
・再生装置に組み入れた時、装置の大きさ、価格の点で
大ぎな問題が生じる。
Problems to be Solved by the Invention Conventionally, due to the cost, lifespan, and efficiency of the semiconductor laser device, recording and reproducing pickups have been completely separate from each other to record and reproduce information on magneto-optical disks. However, using a completely different pickup has problems in terms of efficiency, cost, and lifespan, and when the pickup is incorporated into a recording/playback device, there are major problems in terms of the size and price of the device. occurs.

本発明は上記従来の問題点を解消するもので、記録・再
生の双方を行なえしかも不必要に高出力の半導体レーザ
装置を用いることのない、効率の良い光磁気記録媒体用
ピックアップを提供1Jることを目的とする。
The present invention solves the above conventional problems, and provides an efficient pickup for magneto-optical recording media that can perform both recording and reproduction without using an unnecessary high-output semiconductor laser device. The purpose is to

問題点を解決するための手段 上記問題点を解決リ−るため、本発明の光磁気記録媒体
用ピックアップは、光磁気記録媒体にイを弓を記録・再
生ずるためのレーザ装置と、このレーザ装置からのレー
ザ光を平行光に覆るコリメートレンズと、このコリメー
トレンズを通過したレーザ光を光磁気記録媒体に集束さ
せる対物レンズと、光磁気記録媒体の記録面および光磁
気記録媒体上に形成されたトラックの位置を検出するた
めの光検出器と、再生時にカー効果により回転した偏波
面を検出する検出装置と、前記コリメートレンズと対物
レンズとの間にレーザ光が互いに等巾づつ入射するよう
に並設された偏光ビームスプリッタおよびハーフミラ−
と、前記コリメートレンズとハーフミラ−との間に挿抜
自在に配設されたλ/2板とを備え、レーザ光が前記ハ
ーフミラ−で反射した後に前記偏光ビームスプリッタに
向い、かつ前記偏光ビームスプリッタで反射したレーザ
光が前記光磁気記録媒体に向い、記録時には前記ハーフ
ミラ−に入射するレーザ光のほぼ全光量が前記λ/2板
を通過し、再生時には前記λ/2板を移動させてレーザ
光を通過させない構成としたものである。
Means for Solving the Problems In order to solve the above problems, the pickup for a magneto-optical recording medium of the present invention includes a laser device for recording and reproducing images on a magneto-optical recording medium, and a laser device for recording and reproducing images on a magneto-optical recording medium. A collimating lens that covers the laser beam from the device into parallel light; an objective lens that focuses the laser beam that has passed through the collimating lens onto the magneto-optical recording medium; a photodetector for detecting the position of the track, a detection device for detecting the plane of polarization rotated by the Kerr effect during reproduction, and the collimating lens and the objective lens so that the laser beams are incident on each other with the same width. Polarizing beam splitter and half mirror installed in parallel
and a λ/2 plate that is removably inserted between the collimating lens and the half mirror, and the laser beam is directed toward the polarizing beam splitter after being reflected by the half mirror; The reflected laser beam is directed toward the magneto-optical recording medium, and during recording, almost the entire amount of the laser beam incident on the half mirror passes through the λ/2 plate, and during reproduction, the λ/2 plate is moved to direct the laser beam. The structure is such that it does not allow the passage of.

作用 上記構成によれば、レーザ光が偏光ビームスプリッタと
ハーフミラ−とに半分づつ入射するようにし、記録時に
のみλ/2板をハーフミラ−側に挿入するので、レーザ
glllから出射したレーザ光のうち、ハーフミラ−側
を通過した光は、光磁気記録媒体で反射後、偏光ビーム
スプリッタ側に向い、偏光ビームスプリッタ側を通過し
た光は、光磁気記録媒体で反射後、ハーフミラ−側に向
う。
Effects According to the above configuration, half of the laser light is incident on the polarizing beam splitter and half of the half mirror, and the λ/2 plate is inserted into the half mirror side only during recording, so that only half of the laser light emitted from the laser beam is incident on the half mirror. The light that has passed through the half mirror side is reflected by the magneto-optical recording medium and then directed toward the polarizing beam splitter, and the light that has passed through the polarizing beam splitter side is reflected by the magneto-optical recording medium and then directed toward the half mirror.

レーザ光の偏波面を偏光ビームスプリッタで通過する角
度にしておけば、ハーフミラ−に入射した光は、λ/2
板を通って偏波面がλ/2板への入射光に対し直角にな
り、ハーフミラ−で反射し、偏光ビームスプリッタに向
った光は全て光磁気記録媒体側に向うため、結局レーザ
装置から出射されたレーザ光は全て光磁気記録媒体に向
い、光磁気配8媒体に最大の効率でレーザ光が集束され
る。
If the polarization plane of the laser beam is set at an angle that allows it to pass through the polarizing beam splitter, the light incident on the half mirror will be λ/2
After passing through the plate, the plane of polarization becomes perpendicular to the light incident on the λ/2 plate, reflected by the half mirror, and all the light directed toward the polarizing beam splitter is directed toward the magneto-optical recording medium, so it is ultimately emitted from the laser device. All of the emitted laser light is directed toward the magneto-optical recording medium, and the laser light is focused on the magneto-optical recording medium with maximum efficiency.

再生時には、λ/2板を取り除くことにより、光磁気記
録媒体の記録面には直I!J偏波のままでレーザ光が入
射するため、光磁気記録媒体の信号再生には支障はない
。ビームスプリッタを記録・再生時に入れ換える方法で
は、そのビームスプリッタの取り付は精度、角度が問題
で、1μm以下の精度が要求され、現実には不可能であ
るが、木光明の如く、λ/2板のように平行光中を平行
平板を出し入れする場合には粘度はあまり要求されない
During reproduction, by removing the λ/2 plate, the recording surface of the magneto-optical recording medium is directly exposed to I! Since the laser beam is incident as J-polarized, there is no problem in signal reproduction from the magneto-optical recording medium. In the method of replacing the beam splitter during recording and playback, the precision and angle of mounting the beam splitter are problems, and an accuracy of 1 μm or less is required, which is actually impossible. When a parallel plate is moved in and out through parallel light, viscosity is not required much.

実施例 以下、本発明の一実施例を第1図〜第4図に基づいて説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described based on FIGS. 1 to 4.

第1図は本発明の一実施例における光磁気記録媒体用ピ
ックアップの構成図で、第5図および第6図に示す構成
要素と同一の構成要素には同一の符号を付してその説明
を省略する。第1図において、26は偏光ビームスプリ
ッタ(以下rP8sJと記ず)、27はハーフミラ−(
以下rHMJと記”F’)、28はλ/2板である。
FIG. 1 is a configuration diagram of a pickup for a magneto-optical recording medium according to an embodiment of the present invention, and the same components as those shown in FIGS. 5 and 6 are given the same reference numerals and explanations thereof are given. Omitted. In FIG. 1, 26 is a polarizing beam splitter (hereinafter referred to as rP8sJ), 27 is a half mirror (
Hereinafter referred to as rHMJ ("F"), 28 is a λ/2 plate.

まず、記録時の動作について説明を行う。変調回路11
からの信号で、レーザ駆動回路10により半導体レーザ
装置9を変調さけ、コリメートレンズ8とビーム整形プ
リズム7とで楕円の拡散光を円形の平行光に直で。ビー
ム整形プリズム7を通過した光のうち半分はP B S
 2Gに入射し、他の半分はλ/2板28を通り、S偏
波およびP偏波とも1/2を反射、透過する8M27に
入射する。それぞれPBS26、l−(M27を通過し
たレーザ光は、対物レンズ2で集束光になり、ディスク
1に照射され、加熱が行なわれる。同時に、光を照射し
た部分のディスク1の反対側に設けであるコイル4に電
流を流し、外部磁界を発生させてディスク1に磁化反転
を起させる。ディスク1で反射した光は、再度対物レン
ズ2に入り、PBS26および)1M27で反射後、3
318で反射し、レンズ12を通過し、分v1ミラー1
3で反射、通過し、それぞれ光検出器15.14に入射
して、トラッキング誤差信号およびフォーカシング誤差
信号が得られる。
First, the operation during recording will be explained. Modulation circuit 11
The laser driving circuit 10 modulates the semiconductor laser device 9 using the signal from the laser beam, and the collimating lens 8 and beam shaping prism 7 convert the elliptical diffused light into circular parallel light. Half of the light passing through the beam shaping prism 7 is PBS
The other half passes through the λ/2 plate 28 and enters the 8M 27, which reflects and transmits half of both the S and P polarizations. The laser beams that have passed through the PBS 26 and l-(M27) are focused by the objective lens 2, and are irradiated onto the disk 1 to heat it. A current is applied to a certain coil 4 to generate an external magnetic field to cause magnetization reversal in the disk 1.The light reflected by the disk 1 enters the objective lens 2 again, and after being reflected by the PBS 26 and )1M27,
318, passes through the lens 12, and is reflected by the mirror 1
3 and are incident on photodetectors 15 and 14, respectively, to obtain a tracking error signal and a focusing error signal.

再生時には、λ/2板28を取り除く。レーザ駆動回路
10で半導体レーザ装置9を発光させ、コリメートレン
ズ8とビーム整形プリズム7とPBS26および8M2
7とを通ったレーザ光3を、対物レンズ2でディスク1
面に集束させる。ディスク1で反射した光は、対物レン
ズ2で通過後、PBS26および8M27で反射され、
B 3 isを透過し、B519を透過、反射し、それ
ぞれ検光子20.21を通って光検出器22.23に向
う。光検出器22.23で受光された光は、電気信号に
変換され、差動増幅器24に入り、出力端子25に出力
信号が出力される。
At the time of reproduction, the λ/2 plate 28 is removed. The laser drive circuit 10 causes the semiconductor laser device 9 to emit light, and the collimator lens 8, beam shaping prism 7, PBS 26 and 8M2
The laser beam 3 that has passed through
Focus on a surface. The light reflected by the disk 1 passes through the objective lens 2, and then is reflected by the PBS 26 and 8M27.
It passes through B 3 is, passes through B519, and is reflected, and each passes through an analyzer 20.21 and heads toward a photodetector 22.23. The light received by the photodetectors 22 and 23 is converted into an electrical signal, enters the differential amplifier 24, and outputs an output signal to the output terminal 25.

フを一カシングおよびトラッキングの誤差検出は、この
実施例の場合、ナイフェツジ法と呼ばれるもので、レン
ズ12と分割ミラー13と光検出器14.15とで行な
われる。
In this embodiment, error detection in scanning and tracking is carried out by a lens 12, a splitting mirror 13, and a photodetector 14, 15, which is called the Knifezi method.

次にレーザ光がディスク1に到達するまでの経路につい
て説明する。
Next, the path of the laser beam until it reaches the disk 1 will be explained.

まず、第2図に示した記録時の場合、半導体レーザ装置
9からのレーザ光29の偏波面を、矢印30に示すよう
に、紙面横方向にし、レーザ光29を中央で2分割し、
左側をA、右側をBとすると、八はP B S 26か
ら見ればP偏波であるため、はぼ全光量がディスク1に
向い、Bはλ/2板28を透過して偏波面が紙面垂直方
向に変り、8M27で172が透過し、ディスク1に向
い、残りの172は反射し、P[3326に向う。P 
B S 2Gに向う光は、PB326から見ればS偏波
であり、はぼ全光量がディスク1に向う。結局、半導体
レーザ装置9からの光が全てディスク1に向うため損失
がなく、光路の伝達効率を50%とし、ディスク1面で
必要なレーザパワーを(3rnWとすると、半導体レー
ザ出力は16mWで良い。ディスク1で反射した光は、
AはNM27で172が光検出器側(図では右側)へ、
P B S 26で反射したBの1/2は8M27で1
/4が光検出器側へ、l−1M27を透過したBの17
2はP[3S26で全反射、トIM27で1/2が透過
し、1/4が光検出器側へ向い、結局1/2の光量が光
検出器側へ向う。
First, in the case of recording shown in FIG. 2, the plane of polarization of the laser beam 29 from the semiconductor laser device 9 is set horizontally in the paper as shown by the arrow 30, and the laser beam 29 is divided into two at the center.
Assuming that the left side is A and the right side is B, 8 is P-polarized when viewed from the P B S 26, so almost the entire amount of light is directed toward the disk 1, and B is transmitted through the λ/2 plate 28 and the polarization plane is The direction changes to the direction perpendicular to the plane of the paper, and 172 is transmitted at 8M27 and is directed toward disk 1, while the remaining 172 is reflected and is directed toward P[3326. P
The light heading toward B S 2G is S-polarized when viewed from the PB 326, and almost the entire amount of light is directed toward the disk 1. In the end, all the light from the semiconductor laser device 9 is directed toward the disk 1, so there is no loss.If the optical path transmission efficiency is 50% and the laser power required for one disk surface is (3rnW), the semiconductor laser output should be 16mW. .The light reflected by disk 1 is
A is NM27 and 172 is on the photodetector side (right side in the figure),
1/2 of B reflected by P B S 26 is 1 at 8M27
/4 goes to the photodetector side, 17 of B transmitted through l-1M27
2 is totally reflected by P[3S26, 1/2 is transmitted by IM27, 1/4 is directed toward the photodetector, and in the end, 1/2 of the amount of light is directed toward the photodetector.

再生時には、第3図に示すように、半導体レーザ装M9
からのレーザ光31の偏波面を、矢印32に示すように
、紙面横方向にし、レーザ光31を中央で2分割し、図
面の左、右側をそれぞれC,[)とすると、CはP B
 S 26を全光量透過してディスク1面へ、Dは1/
2がディスク1面へ、残りの172はP B S 26
に向うが、P B S 26をそのまま透過してしまう
。結局、3/4の光量がディスク1に向う。
During reproduction, as shown in Fig. 3, the semiconductor laser device M9
If the plane of polarization of the laser beam 31 from 2000 is set horizontally in the plane of the paper as shown by the arrow 32, and the laser beam 31 is divided into two at the center, and the left and right sides of the drawing are respectively C and [), then C is P B
The entire amount of light passes through S 26 and reaches the first surface of the disc, and D is 1/
2 goes to the first side of the disc, the remaining 172 go to P B S 26
However, it passes through PBS 26 as it is. In the end, 3/4 of the amount of light is directed toward the disk 1.

ディスク1で反射したレーザ光のうち、CはトIM27
で1/2が光検出器側へ、DはP B S 26に向う
が、Dの偏波面がP 8 S 26から見ればP偏波で
あるため、はぼ全光量が透過してしまう。結局、光検出
器側に向う光量は1/4になる。ブなわち再生時に有効
に利用されるレーザ光は1/4である。
Of the laser beams reflected by disk 1, C is IM27.
1/2 goes to the photodetector side, and D goes to the PBS 26, but since the polarization plane of D is P polarization when viewed from the P8S 26, almost the entire amount of light is transmitted. In the end, the amount of light directed toward the photodetector becomes 1/4. In other words, the amount of laser light that is effectively used during reproduction is 1/4.

第4図は別の実施例を示しており、このように、P B
 S 26とl−1M27との代わりに、3つのプリズ
ム33a〜33cから構成されたひし形のプリズム33
を用いてもよい。このプリズム33の張り合せ面34は
、P偏波をほぼ全光量透過し、S偏波をほぼ金光吊反射
する。また張り合せ面35は、P偏波、S偏波ともほぼ
半分を透過及び反射する。
FIG. 4 shows another embodiment, in which P B
A diamond-shaped prism 33 composed of three prisms 33a to 33c is used instead of S26 and l-1M27.
may also be used. The bonding surface 34 of this prism 33 transmits almost the entire amount of P polarized light and reflects almost all of S polarized light. Furthermore, the bonding surface 35 transmits and reflects approximately half of both the P-polarized wave and the S-polarized wave.

なお上記実施例においては、光磁気記録媒体として光磁
気ディスクを用いた例について説明したが、例えば光磁
気カードなどであってもよいことは勿論である。
In the above embodiment, a magneto-optical disk is used as the magneto-optical recording medium, but it goes without saying that a magneto-optical card may also be used.

発明の効果 以上述べたごとく本発明によれば、1つのピックアップ
で記録・再生が可能で、かつ最大の効率でレーザ装置か
ら光磁気記録媒体にレーザ光を向わUることができるの
で、レーザK[l15’の光光出力が小さいもので良く
なり、光磁気記録・再生装置の価格を大幅に低下させる
だけでなく、装置の大きさも小さくすることができる。
Effects of the Invention As described above, according to the present invention, recording and reproduction are possible with one pickup, and the laser beam can be directed from the laser device to the magneto-optical recording medium with maximum efficiency. The optical output of K[l15' can be small, and not only the price of the magneto-optical recording/reproducing device can be significantly reduced, but also the size of the device can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における光磁気記録媒体用ピ
ックアップの構成図、第2図は同ピックアップの記録時
の光の経路の説明図、第3図は同ピックアップの再生時
の光の経路の説明図、第4図は別の実施例における偏光
ビームスプリッタとハーフミラ−とを一体化したプリズ
ムの正面図、第5図は従来の記録用のピックアップの構
成図、第6図は従来の再生用のピックアップの構成図で
ある。 1・・・ディスク、2・・・対物レンズ、8・・・コリ
メートレンズ、9・・・半導体レーザ装置、14,15
,22.23・・・光検出器、20.21・・・検光子
、26・・・偏光ビームスプリッタ、27・・・ハーフ
ミラ−128・・・λ/2板、33・・・プリズム 代理人   森  本  義  弘 第2図 第3図 第4図 、33# 第5図 第4図 !
FIG. 1 is a configuration diagram of a pickup for a magneto-optical recording medium according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the optical path during recording in the same pickup, and FIG. 3 is an illustration of the optical path during reproduction in the same pickup. FIG. 4 is a front view of a prism that integrates a polarizing beam splitter and a half mirror in another embodiment, FIG. 5 is a configuration diagram of a conventional recording pickup, and FIG. 6 is a diagram of a conventional recording pickup. FIG. 3 is a configuration diagram of a pickup for reproduction. DESCRIPTION OF SYMBOLS 1... Disk, 2... Objective lens, 8... Collimating lens, 9... Semiconductor laser device, 14, 15
, 22.23... Photodetector, 20.21... Analyzer, 26... Polarizing beam splitter, 27... Half mirror 128... λ/2 plate, 33... Prism agent Yoshihiro MorimotoFigure 2Figure 3Figure 4, 33# Figure 5Figure 4!

Claims (1)

【特許請求の範囲】 1、光磁気記録媒体に信号を記録・再生するためのレー
ザ装置と、このレーザ装置からのレーザ光を平行光にす
るコリメートレンズと、このコリメートレンズを通過し
たレーザ光を光磁気記録媒体に集束させる対物レンズと
、光磁気記録媒体の記録面および光磁気記録媒体上に形
成されたトラックの位置を検出するための光検出器と、
再生時にカー効果により回転した偏波面を検出する検出
装置と、前記コリメートレンズと対物レンズとの間にレ
ーザ光が互いに等量づつ入射するように並設された偏光
ビームスプリッタおよびハーフミラーと、前記コリメー
トレンズとハーフミラーとの間に挿抜自在に配設された
λ/2板とを備え、レーザ光が前記ハーフミラーで反射
した後に前記偏光ビーザスプリッタに向い、かつ前記偏
光ビームスプリッタで反射したレーザ光が前記光磁気記
録媒体に向い、記録時には前記ハーフミラーに入射する
レーザ光のほぼ全光量が前記λ/2板を通過し、再生時
には前記λ/2板を移動させてレーザ光を通過させない
構成とした光磁気記録媒体用ピックアップ。 2、偏光ビームスプリッタとハーフミラーとは、3個の
プリズムからなるひし形のプリズムとして一体に構成さ
れている特許請求の範囲第1項記載の光磁気記録媒体用
ピックアップ。
[Claims] 1. A laser device for recording and reproducing signals on a magneto-optical recording medium, a collimating lens that converts the laser beam from the laser device into parallel light, and a collimating lens that converts the laser beam that has passed through the collimating lens into parallel light. an objective lens for focusing on the magneto-optical recording medium; a photodetector for detecting the position of the recording surface of the magneto-optical recording medium and the track formed on the magneto-optical recording medium;
a detection device for detecting a plane of polarization rotated by the Kerr effect during reproduction; a polarizing beam splitter and a half mirror arranged in parallel between the collimating lens and the objective lens so that equal amounts of laser light are incident on each other; A λ/2 plate is provided between a collimating lens and a half mirror so as to be freely inserted and removed, the laser beam is reflected by the half mirror and then directed toward the polarizing beam splitter, and the laser reflected by the polarizing beam splitter Light is directed toward the magneto-optical recording medium, and during recording, almost the entire amount of laser light incident on the half mirror passes through the λ/2 plate, and during reproduction, the λ/2 plate is moved to prevent the laser light from passing through. A pickup for magneto-optical recording media. 2. The pickup for a magneto-optical recording medium according to claim 1, wherein the polarizing beam splitter and the half mirror are integrally constituted as a rhombic prism consisting of three prisms.
JP60219896A 1985-10-02 1985-10-02 Pickup for photomagnetic recording medium Pending JPS6278755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60219896A JPS6278755A (en) 1985-10-02 1985-10-02 Pickup for photomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60219896A JPS6278755A (en) 1985-10-02 1985-10-02 Pickup for photomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6278755A true JPS6278755A (en) 1987-04-11

Family

ID=16742734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60219896A Pending JPS6278755A (en) 1985-10-02 1985-10-02 Pickup for photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6278755A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315574A (en) * 1988-10-28 1994-05-24 Matsushita Electric Industrial Co., Ltd. Optical head with polarized beam hologram
US9741700B2 (en) 2015-03-23 2017-08-22 Hyundai Mobis Co., Ltd. Lighting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315574A (en) * 1988-10-28 1994-05-24 Matsushita Electric Industrial Co., Ltd. Optical head with polarized beam hologram
US9741700B2 (en) 2015-03-23 2017-08-22 Hyundai Mobis Co., Ltd. Lighting device

Similar Documents

Publication Publication Date Title
JP2902415B2 (en) Optical head
JPH0321961B2 (en)
EP0195227A2 (en) Magneto-optical disc memory
JPS59177735A (en) Recording and reproducing device of optical information
JPH0650580B2 (en) Erasable optical head
JPS6278755A (en) Pickup for photomagnetic recording medium
US5777974A (en) Optical head and magneto-optical reproducing apparatus using the same
JPH04252425A (en) Information recorder
JPS628347A (en) Optomagnetic recording and reproducing device
JP2579102B2 (en) Optical information recording / reproducing device
JPH08153336A (en) Optical head device
KR0141268B1 (en) Optical head for optical disk recording and reproducing device
JP3360324B2 (en) Optical head device and optical disk device
JP2935554B2 (en) Light head
JP2586731B2 (en) Optical disk device
JPS61261838A (en) Erasable optical head
JP2851399B2 (en) Magneto-optical recording / reproducing device
JP2760410B2 (en) Optical information recording / reproducing device
JP2859519B2 (en) Optical information reproducing device
JPH0785496A (en) Optical information recorder/reproducer
JPS639038A (en) Optical system for optical information
JPS59140655A (en) Photomagnetic recording type writing and reading device
JPH10188326A (en) Optical pickup device
JPS6214340A (en) Erasable optical head
JPH0628731A (en) Magneto-optical head device