[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6274034A - Production of fiber reinforced metal - Google Patents

Production of fiber reinforced metal

Info

Publication number
JPS6274034A
JPS6274034A JP21527685A JP21527685A JPS6274034A JP S6274034 A JPS6274034 A JP S6274034A JP 21527685 A JP21527685 A JP 21527685A JP 21527685 A JP21527685 A JP 21527685A JP S6274034 A JPS6274034 A JP S6274034A
Authority
JP
Japan
Prior art keywords
binder
preform
mixture
fibers
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21527685A
Other languages
Japanese (ja)
Inventor
Hideo Otsu
大津 日出男
Kenichi Akutagawa
芥川 憲一
Jun Hasegawa
順 長谷川
Hiroshi Otsuki
浩 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP21527685A priority Critical patent/JPS6274034A/en
Publication of JPS6274034A publication Critical patent/JPS6274034A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain a fiber reinforced metal in which reinforcing materials are uniformly distributed and which has excellent characteristics by using a mixture composed of a comps. which is consumed by heating and compsn. which is not consumed by the same aas a fibrous reinforcing material, forming the mixture by a binder diluted with a volatile solvent to a preform and filling a martix metal therein. CONSTITUTION:For example, K2O.6TiO2 fibers 1 are weighed into a vessel 2. A soln. prepd. by diluting sodium silicate as an inorg. binder and a soln. 4 prepd. by diluting a PVA with water or ethanol as an org. binder is added to the fibers 1. The above-mentioned mixture is thoroughly kneaded by a stirring rod 5 and further the mixture 9 which is made granular is calssified by using a sieve 8. The prescribed amt. of the classified mixture 9a is put into a molding tool 10 and the fibers 1 are compressively molded by the pressurizing force of a punch 11. After the molding is dried, the molding is heated to >=300 deg.C to decompose and consume the PVA, by which the preform 14 is obtd. The preform 14 is put into a metallic mold and molten Al is poured into the mold; thereafter, the molten alloy is pressurized by a punch. The molding is removed from the mold after cooling and the intended fiber reinforced metal is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は繊維、ウィスカー等の強化材をマトリックス金
属中に分散してなる繊維強化金属の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a fiber-reinforced metal in which reinforcing materials such as fibers and whiskers are dispersed in a matrix metal.

〔従来の技術〕[Conventional technology]

従来より繊維強化金属の製造方法としては、種々のもの
が知られているが生産性が高く最も実用的な方法として
高圧鋳造法がある。この方法は強化材となる繊維、ウィ
スカーを予め所定の形状、強化材の含有率となるようバ
インダを用いて予成形体とし、この予成形体にマトリッ
クスとなるアルミニウム等の金属を溶融状態で加圧含浸
させることにより強化材とマトリックス金属との複合化
を行うものである。そしてこの方法におけるバインダと
しては、特開昭57−1)8855号公報に開示されて
いるように、ワックス等の加熱により消失させ得る有機
化合物系のバインダ(以下有機バインダと称する)を用
いる方法、特開昭58−34150号公報に開示されて
いるように水ガラス等の加熱しても消失しない無機化合
物系のバインダ(以下無機バインダと称する)を用いる
方法が知られている。
Various methods have been known for manufacturing fiber-reinforced metals, but high-pressure casting is the most practical method with high productivity. In this method, fibers and whiskers that serve as reinforcing materials are preformed using a binder so that they have a predetermined shape and content of reinforcing materials, and a metal such as aluminum that serves as a matrix is added to this preform in a molten state. The reinforcing material and matrix metal are composited by pressure impregnation. As the binder in this method, as disclosed in JP-A No. 57-1) 8855, a method using an organic compound binder (hereinafter referred to as organic binder) that can be eliminated by heating wax or the like; As disclosed in Japanese Unexamined Patent Publication No. 58-34150, a method using an inorganic compound binder (hereinafter referred to as inorganic binder) that does not disappear even when heated, such as water glass, is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで繊維強化金属は耐破壊強度、低熱膨張率、耐摩
耗性等の優れた金属材料であるが、このうち例えば耐摩
耗特性に対しては一般に強化材の含有率が低いほうが優
れていることが知られており、また熱膨張率をマトリッ
クス金属自身よりも少しだけ小さくしたい場合、あるい
は強化材となる繊維、ウィスカーが高価である場合等に
は強化材の含有率の低い予成形体を製作する必要がある
By the way, fiber-reinforced metal is a metal material with excellent fracture resistance, low coefficient of thermal expansion, and wear resistance, but it is generally known that a lower content of reinforcing material is better in terms of wear resistance, for example. In addition, if you want to make the coefficient of thermal expansion slightly smaller than that of the matrix metal itself, or if the reinforcing fibers or whiskers are expensive, a preform with a low reinforcing material content is manufactured. There is a need.

上記のような強化材含有率の低い予成形体を有機バイン
ダを用いて成形すると成形後有機バインダを加熱消失し
た後の形状を保持する強度が非常に小さいために高圧鋳
造の際に圧縮力に対して所定形状が保持されず、強化材
の均一分散が不可能となる。
When a preform with a low reinforcing material content as described above is molded using an organic binder, the strength to maintain the shape after the organic binder is heated and disappears after molding is very small, so it is difficult to apply compressive force during high-pressure casting. On the other hand, the predetermined shape is not maintained, making it impossible to uniformly disperse the reinforcing material.

また無機バンイダを用いて成形する場合は、無機バイ′
ンダを水等で希釈して用いなければならないが、予成形
体の成形後乾燥時に希釈剤の蒸発に伴う予成形体表面へ
の移動がおこり、この移動によって無機バインダも予成
形体表面へ移動してしまい、内部の強度が非常に低下し
てやはり高圧鋳造の際に圧縮力に対して形状を保持でき
ない。またこれを防止するために大量の無機バインダを
用いると、この無機バインダが強化材である繊維または
ウィスカーとマトリックス金属との結合を妨げるために
繊維強化金属自体の強度特性の大1)】な低下をきたす
という問題があった。
In addition, when molding using an inorganic binder,
The binder must be diluted with water, etc., but when the preform is dried after forming, the diluent evaporates and moves to the surface of the preform, and this movement also causes the inorganic binder to move to the surface of the preform. As a result, the internal strength is extremely reduced and the shape cannot be maintained against compressive force during high-pressure casting. Furthermore, if a large amount of inorganic binder is used to prevent this, the strength properties of the fiber-reinforced metal itself will be significantly reduced because the inorganic binder will prevent the bonding of the reinforcing fibers or whiskers with the matrix metal. There was a problem of causing

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明は上記の如き問題点を解消するために加熱
により消失する組成物と加熱により消失しない組成物と
を混合せしめ揮発性溶媒により希釈してなるバインダを
用いて予成形体を成形するという繊維強化金属の製造方
法を採用するものである。
Therefore, in order to solve the above-mentioned problems, the present invention involves mixing a composition that disappears by heating with a composition that does not disappear by heating, and then forming a preform using a binder obtained by diluting the mixture with a volatile solvent. This method employs a manufacturing method for fiber-reinforced metal.

〔作用〕[Effect]

上記手段によれは、バインダを希釈している揮発性溶媒
が、予成形体乾燥時に予成形体表面へ移動しても、有機
バインダの混在により無機バインダの予成形体表面への
移動が抑制され、乾燥後も内部にも無機バインダがほぼ
均一に存在しているので、加熱により有機バインダを消
失させても内部までほぼ均一の強度を保持した予成形体
が形成される。
According to the above means, even if the volatile solvent diluting the binder moves to the surface of the preform during drying, the inorganic binder is inhibited from moving to the surface of the preform due to the presence of the organic binder. Since the inorganic binder is almost uniformly present inside the preform even after drying, a preformed body that maintains almost uniform strength throughout the inside even if the organic binder is eliminated by heating is formed.

〔発明の効果〕〔Effect of the invention〕

従って本発明によれは所定の予成形体の形状を維持した
まま、強化材を均一に分布させた特性の優れた繊維強化
金属を生産性よく製造できるという優れた効果がある。
Therefore, the present invention has the excellent effect that a fiber-reinforced metal with excellent properties in which the reinforcing material is uniformly distributed can be manufactured with high productivity while maintaining the predetermined shape of the preform.

〔実施例〕〔Example〕

以下本発明を図に示す実施例に基づいて詳細に説明する
。第1図は本発明の繊維強化金属の製造方法を工程順に
説明する流れ図で、lは容器2内に所¥量秤取されたチ
タン酸カリウム繊維(K2O・6TiOz) 、(平均
径0.1μ、平均長さ20μ)である。そしてこのチタ
ン酸カリウム繊維1に、無機バインダとしてケイ酸ソー
ダを5〜20倍に水で希釈した溶液3をチタン酸カリウ
ム繊維に対してケイ酸ソーダに換算して2wt%、およ
び有機バインダとしてポリビニルアルコール(PVA)
を水またはエチルアルコールで5〜20倍に希釈した溶
液4をチタン酸カリウム繊1fl: 1に対しPVAに
換算して3wt%加えた。ここでバインダを希釈するの
はバインダがチタン酸カリウム熱維1に均一に分散、付
着するようにするためである。
The present invention will be explained in detail below based on embodiments shown in the drawings. FIG. 1 is a flowchart explaining the manufacturing method of fiber-reinforced metal of the present invention step by step, where l is potassium titanate fiber (K2O.6TiOz) weighed in a predetermined amount in a container 2, (average diameter 0.1 μm). , average length 20μ). Then, to this potassium titanate fiber 1, a solution 3 in which sodium silicate was diluted 5 to 20 times with water was added as an inorganic binder to 2 wt% of the potassium titanate fiber in terms of sodium silicate, and polyvinyl as an organic binder. Alcohol (PVA)
Solution 4, which was diluted 5 to 20 times with water or ethyl alcohol, was added in an amount of 3 wt % in terms of PVA per 1 fl:1 potassium titanate fiber. The reason for diluting the binder here is to ensure that the binder is uniformly dispersed and adhered to the potassium titanate thermal fibers 1.

これを次に攪拌棒5で十分に混練し1.さらに均一な予
成形体を得るために30メソシュ/インチの目の粗さの
ふるい8を用いて、粒状となった混合物9を分級する。
Next, thoroughly knead this with a stirring rod 5.1. In order to further obtain a uniform preform, the granulated mixture 9 is classified using a sieve 8 having a mesh size of 30 mesh/inch.

分級された(ふるい8の目を通過した)混合物9aを成
形型10内に所定量入れパンチ1)により約10kg/
−の加圧力でチタン酸カリウム繊維の体積含有率Vfが
8%となるように圧縮成形した。
A predetermined amount of the classified mixture 9a (passed through the sieve 8) is put into the mold 10 and punched 1) to give about 10 kg/
Compression molding was carried out under a pressure of - so that the volume content Vf of the potassium titanate fibers was 8%.

次にこの成形体12を脱型し、100〜120℃に保っ
た乾燥炉13で十分乾燥させた後、炉温を300℃以上
に上げPVAを分解消失させることによって予成形体1
4を製造した。
Next, this molded body 12 is demolded, and after being sufficiently dried in a drying oven 13 kept at 100 to 120°C, the furnace temperature is raised to 300°C or higher to decompose and eliminate PVA, thereby making the preformed body 12.
4 was manufactured.

次にこの予成形体を複合化させチタン酸カリウム繊維強
化アルミニウムとするには、この予成形体を約500℃
に予熱した金型に入れ、850〜900℃のアルミニウ
ム溶湯を注ぎ込んだ後すみやかにパンチにより500k
g/aa以上の圧力で加圧し、十分冷却するまで加圧力
を保持した後加圧を除き脱型することにより製造するこ
とができた。
Next, in order to composite this preform into potassium titanate fiber-reinforced aluminum, the preform is heated to approximately 500°C.
After pouring molten aluminum at 850-900℃ into a preheated mold, immediately punch it to 500k.
It could be produced by pressurizing at a pressure of g/aa or more, holding the pressure until it was sufficiently cooled, and then removing the pressure and demolding.

第1表は無機バインダであるケイ酸ソーダと、有機バイ
ンダであるPVAの使用量を種々変化させて上述の方法
で予成形体、チタン酸カリウム繊維強化アルミニウムを
製作し、それぞれの圧縮強度および曲げ強度を測定した
結果を示すものである。
Table 1 shows the compressive strength and bending strength of preforms and potassium titanate fiber-reinforced aluminum produced by the method described above by varying the amounts of sodium silicate, an inorganic binder, and PVA, an organic binder. This shows the results of measuring strength.

以下余白 表から明らかな如く、無機バインダであるケイ酸ソーダ
のみではバインダ量を増加させると、予成形体の圧縮強
度は向上するものの繊維強化金属の曲げ強度はあまり向
上せず無機バインダが多くなると繊維とマトリックス金
属との結合が阻害されていることが示唆される。またケ
イ酸ソーダ2&4t%で、「機バインダであるPVAを
2〜5wt%で混合して用いると予成形体圧縮強度が向
上するとともに、繊維強化金属の曲げ強度も大巾に向上
していることがわかる。これはすでに説明したようにバ
インダを希釈している水が、予成形体乾燥時に予成形体
表面へ移動してもPVAの混在によりケイ酸ソーダの予
成形体表面への移動が抑制され、乾燥後も内部にもケイ
酸ソーダがほぼ均一に存在しているので加熱によりPV
Aを消失させても内部までほぼ均一の強度を保持した予
成形体が形成されるためと考えられる。なおPVAの量
は7wt%となると繊維強化金属の曲げ強度が急激に低
下しているが、これはPVAの加熱分解によって化成す
る無定形炭素が残存し、無機バインダを多く用いた場合
と同様に繊維とマトリックス金属との結合が阻害される
ためと考えられる。
As is clear from the margin table below, when using only sodium silicate, which is an inorganic binder, increasing the amount of binder improves the compressive strength of the preform, but the bending strength of the fiber reinforced metal does not improve much, and when the amount of inorganic binder increases. This suggests that the bond between the fibers and the matrix metal is inhibited. In addition, when using 2 and 4 t% of sodium silicate and 2 to 5 wt% of PVA, which is a mechanical binder, the compressive strength of the preform improves, and the bending strength of the fiber-reinforced metal also significantly improves. This is because, as already explained, even if the water diluting the binder moves to the surface of the preform during drying, the presence of PVA prevents the movement of sodium silicate to the surface of the preform. Even after drying, sodium silicate is almost uniformly present inside the interior, so PV is heated.
This is thought to be because even if A is eliminated, a preformed body is formed that maintains substantially uniform strength throughout the interior. When the amount of PVA reaches 7wt%, the bending strength of the fiber-reinforced metal decreases rapidly, but this is because amorphous carbon, which is converted by thermal decomposition of PVA, remains, similar to when a large amount of inorganic binder is used. This is thought to be because the bond between the fibers and the matrix metal is inhibited.

以上の結果より無機バインダの使用量は強化材である繊
維の2〜3wt%、有機バインダの使用量は繊維の2〜
4wt%が適当であると結論される。
From the above results, the amount of inorganic binder used is 2 to 3 wt% of the fiber, which is a reinforcing material, and the amount of organic binder used is 2 to 3 wt% of the fiber, which is a reinforcing material.
It is concluded that 4 wt% is appropriate.

また第2表および第3表は本発明の方法により製作した
チタン酸カリウム繊維強化アルミニウムおよびStCウ
ィスカー強化アルミニウムの体積含有率と摩擦、Pj耗
時特性測定した結果を示したものである。
Tables 2 and 3 show the results of measuring the volume content, friction, and Pj wear characteristics of potassium titanate fiber-reinforced aluminum and StC whisker-reinforced aluminum produced by the method of the present invention.

第2表 第3表 表かられかるように本発明の方法により製作した繊維強
化金属は体積含有率5〜15%で摩擦係数。
As can be seen from Tables 2 and 3, the fiber-reinforced metal produced by the method of the present invention has a coefficient of friction at a volume content of 5 to 15%.

摩耗量とも小さくまた鋳鉄CFCD70)に対する焼付
荷重も大きくこのような低含有率繊維強化金属に適用し
て有効であることがわかる。なおそれぞれの実験におけ
る条件は、焼付荷重は、対鋳鉄(FCD70)に対し面
接触、周速2 m/see 。
It can be seen that the amount of wear is small and the seizure load against cast iron CFCD70) is large, making it effective when applied to such low content fiber reinforced metals. The conditions for each experiment were: the seizure load was surface contact with cast iron (FCD70), and the circumferential speed was 2 m/see.

オイル潤滑下にて10kgごと30秒ごとに荷重を増大
させ、摩擦係数が0.5を越えた時を焼付荷重とした。
The load was increased every 10 kg every 30 seconds under oil lubrication, and the seizure load was determined when the friction coefficient exceeded 0.5.

また摩擦係数と摩耗量は同様の試験装置にて80kg/
cdの荷重で、前者は30分試験中の回転トルクから、
後者は30分後の重tjJ2少より体積に換算して求め
た。
In addition, the friction coefficient and wear amount were measured at 80 kg/kg using the same test equipment.
CD load, the former is from the rotational torque during the 30 minute test,
The latter was calculated by converting it into volume from the weight tjJ2 less after 30 minutes.

本発明において適用し得る強化材は、上記のチタン酸カ
リウム繊維の他にSiCウィスカー。
Reinforcing materials that can be applied in the present invention include SiC whiskers in addition to the above-mentioned potassium titanate fibers.

Si、N、ウィスカー、短繊維カーボンファイバ。Si, N, whiskers, short carbon fiber.

短繊維シリカアルミファイバ等の繊維があり、その体積
含有率Vf5〜15%の低含有率の繊維強化金属に有効
に使用でき、マトリックス金属としては、′アルミニウ
ムの他にアルミニウム合金、マグネシウム、亜鉛、鉛、
銅等が使用できる。
There are fibers such as short fiber silica aluminum fibers, which can be effectively used for fiber-reinforced metals with a low volume content of Vf 5 to 15%.As matrix metals, in addition to aluminum, aluminum alloys, magnesium, zinc, lead,
Copper etc. can be used.

また本発明の加熱により消失するバンイダとしてはPV
Aの他にポリアセタール、ポリブチラール、ワックス、
でんぷん等の有機バインダが、加熱により消失しないバ
ンイダとしてはケイ酸ソーダの他にエチルシリケート、
コロイダルシリカ。
In addition, as a band which disappears by heating in the present invention, PV
In addition to A, polyacetal, polybutyral, wax,
In addition to sodium silicate, organic binders such as starch that do not disappear when heated include ethyl silicate,
Colloidal silica.

ケイ酸リチウム等のケイ酸塩からなる無機バインダが有
効に使用できる。
Inorganic binders made of silicates such as lithium silicate can be effectively used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の繊維強化金属の製造方法を説明する工
程図である。 ■・・・チタン酸カリウム繊維、3・・・無機バインダ
。 4・・・有機バインダ、14・・・予成形体。
FIG. 1 is a process diagram illustrating the method for manufacturing fiber-reinforced metal of the present invention. ■... Potassium titanate fiber, 3... Inorganic binder. 4... Organic binder, 14... Preformed body.

Claims (3)

【特許請求の範囲】[Claims] (1)繊維またはウィスカー状の強化材を予めバインダ
を用いて予成形体となし、該予成形体にマトリックス金
属を充填してなる繊維強化金属の製造方法において、 加熱により消失する組成物と加熱により消失しない組成
物とを混合せしめ揮発性溶媒により希釈してなるバイン
ダを用いて予成形体を成形することを特徴とする繊維強
化金属の製造方法。
(1) A method for producing a fiber reinforced metal in which a reinforcing material in the form of fibers or whiskers is preformed using a binder and the preform is filled with a matrix metal, which comprises: a composition that disappears upon heating; 1. A method for producing a fiber-reinforced metal, which comprises forming a preform using a binder prepared by mixing a binder with a composition that does not disappear with a volatile solvent and diluting the binder with a volatile solvent.
(2)前記加熱により消失する組成物は、前記強化材に
対して2〜4wt%、前記加熱により消失しない組成物
は強化材に対し2〜3wt%であることを特徴とする特
許請求の範囲第1項記載の繊維強化金属の製造方法。
(2) Claims characterized in that the composition that disappears upon heating is 2 to 4 wt% based on the reinforcing material, and the composition that does not disappear upon heating is 2 to 3 wt% based on the reinforcing material. 2. The method for producing a fiber-reinforced metal according to item 1.
(3)前記強化材の体積含有率は5〜15%であること
を特徴とする特許請求の範囲第1項記載の繊維強化金属
の製造方法。
(3) The method for producing a fiber-reinforced metal according to claim 1, wherein the volume content of the reinforcing material is 5 to 15%.
JP21527685A 1985-09-27 1985-09-27 Production of fiber reinforced metal Pending JPS6274034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21527685A JPS6274034A (en) 1985-09-27 1985-09-27 Production of fiber reinforced metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21527685A JPS6274034A (en) 1985-09-27 1985-09-27 Production of fiber reinforced metal

Publications (1)

Publication Number Publication Date
JPS6274034A true JPS6274034A (en) 1987-04-04

Family

ID=16669629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21527685A Pending JPS6274034A (en) 1985-09-27 1985-09-27 Production of fiber reinforced metal

Country Status (1)

Country Link
JP (1) JPS6274034A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295050A (en) * 1987-03-02 1988-12-01 バテル メモリアル インスティチュート Manufacture of metallic or alloy casted composite material reinforced by fiber or granular substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295050A (en) * 1987-03-02 1988-12-01 バテル メモリアル インスティチュート Manufacture of metallic or alloy casted composite material reinforced by fiber or granular substance

Similar Documents

Publication Publication Date Title
DE68920263T2 (en) Method for manufacturing a composite body element reinforced by ceramics for motor vehicles.
US4506721A (en) Method for production of fiber-reinforced composite material
DE68920267T2 (en) Process for the production of a composite material reinforced by ceramic.
US5791397A (en) Processes for producing Mg-based composite materials
JP4429505B2 (en) Method for producing low volume fraction metal-based preform
EP0380973B1 (en) Reinforced materials
CN111690840A (en) Amorphous phase silicate particle and SiC particle reinforced aluminum matrix composite material and preparation
JPS6274034A (en) Production of fiber reinforced metal
JP3094148B2 (en) Manufacturing method of lightweight refractory
JPH04168201A (en) Manufacture of ceramic reinforced al alloy composite material
JP4359409B2 (en) Metal composite and method for producing the same
JPH03138326A (en) Manufacture of aluminum borate whisker reinforced metal matrix composite
JP2007016286A (en) Metal matrix composite and its manufacturing method
CN114292126A (en) Preparation method of porous ceramic locally-reinforced composite material automobile brake pad
CN109261891B (en) Coating for die-casting mold and preparation method thereof
JPS6354056B2 (en)
JP2788448B2 (en) Method for producing fiber composite member
JP7382105B1 (en) High-strength metal matrix composite and method for producing high-strength metal matrix composite
JPH01283330A (en) Manufacture of aluminum-based composite member
JPS61127836A (en) Manufacture of potassium titanate fiber reinforced metal material
JP3171287B2 (en) Fiber molding for reinforced metal and method for producing the same
JPH0564692B2 (en)
CN102191443B (en) Preparation method of alumina fiber reinforced magnesium-matrix composite
JPH0551650B2 (en)
JP3962779B2 (en) Method for producing preform for fiber reinforced composite material and method for producing fiber reinforced composite material