JPS627124A - Annealing device for semiconductor substrate - Google Patents
Annealing device for semiconductor substrateInfo
- Publication number
- JPS627124A JPS627124A JP14749285A JP14749285A JPS627124A JP S627124 A JPS627124 A JP S627124A JP 14749285 A JP14749285 A JP 14749285A JP 14749285 A JP14749285 A JP 14749285A JP S627124 A JPS627124 A JP S627124A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- ion
- vacuum chamber
- annealing
- implantation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は半導体装置の製造装置に関し、更に詳細にはp
型あるいはn型導電層がイオン注入された半導体、ある
いは誘電体、磁性体等におけるイオン注入層のアニール
処理装置に関するものである。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a semiconductor device manufacturing apparatus, and more specifically,
The present invention relates to an annealing treatment apparatus for an ion-implanted layer of a semiconductor, a dielectric material, a magnetic material, etc. into which an ion-implanted conductive layer or an n-type conductive layer is implanted.
〈従来技術〉
一般に半導体や誘電体、磁性体等にイオン注入法を適用
する場合、注入時に誘起された格子欠陥がその後の熱処
理によっても完全には回復せず、更に不都合なことには
、熱処理時に基板の構成元素の一部が抜は出すことがあ
る。このような構成元素の飛び出しは基板結晶内に多量
の空孔を発生させ、これら空孔、成るいはこれら空孔と
注入不純物、空孔と基板構成元素との結合によって生じ
た複合欠陥等が複雑な振舞をし、この種のイオン法人法
を用いた電子デバイスの特性を著しく損なう原因になっ
ていた。<Prior art> Generally, when applying ion implantation to semiconductors, dielectrics, magnetic materials, etc., lattice defects induced during implantation are not completely recovered even by subsequent heat treatment, and even more inconveniently, heat treatment Sometimes some of the constituent elements of the substrate may be removed. Such protrusion of constituent elements generates a large number of vacancies in the substrate crystal, and these vacancies, or these vacancies and implanted impurities, or complex defects caused by the combination of vacancies and substrate constituent elements, etc. It behaves in a complicated manner, and has caused significant damage to the characteristics of electronic devices using this type of ion corporation method.
このような不都合に対して、基板構成元素の抜は出しに
よる空孔の発生を抑え、同時に注入不純物の抜は出しを
も抑えて注入層の高品質化を図る目的で、イオン注入工
程後注入層表面を絶縁体あるいは誘電体等の保護膜で被
覆して結晶性の熱回復を行う、いわゆるキャップアニー
ル法が考案されてきた。しかしながらこのようなキャッ
プアニール法では、熱回復のための7二−μに先立つそ
蒸着法やCVD法によシ注入層表面に保護膜を形成する
手間が必要となるばかシではなく、一般には保護膜と基
板材料の熱膨張係数の差に基づきアニール時注入層表面
に歪が導入され、イオン注入元素の分布が設定した分布
から大きくずれ、デバイス特性の制御性、性能低下を招
く問題等があった。To deal with these inconveniences, in order to suppress the generation of vacancies due to the extraction of substrate constituent elements and at the same time to suppress the extraction of implanted impurities and to improve the quality of the implanted layer, implantation after the ion implantation process is performed. A so-called cap annealing method has been devised in which the surface of the layer is covered with a protective film such as an insulator or dielectric to thermally recover the crystallinity. However, such a cap annealing method is not a foolproof method as it requires the time and effort of forming a protective film on the surface of the injection layer by a vapor deposition method or a CVD method prior to thermal recovery. Due to the difference in thermal expansion coefficient between the protective film and the substrate material, strain is introduced to the surface of the implanted layer during annealing, causing the distribution of ion-implanted elements to deviate significantly from the set distribution, resulting in problems such as deterioration of controllability of device characteristics and performance. there were.
一方キイップアニールによる前記問題点を避は得る方法
として、誘電体や絶縁体からなる保護膜を被覆すること
な、く、例えばQaA8基板へのイオン注入層のアニー
ル時には適当なAsH3(アルシン)分圧を有する不活
性ガス中で基板をアニールする方法が提案されている。On the other hand, as a way to avoid the above-mentioned problems caused by keep annealing, for example, when annealing an ion-implanted layer on a QaA8 substrate, an appropriate amount of AsH3 (arsine) is added without covering it with a protective film made of a dielectric or an insulator. A method has been proposed in which a substrate is annealed in a pressurized inert gas.
上記キャップレスアニール法では、保護膜゛(キャップ
)を形成する手間も省け、またアニール時の基板と保護
膜の熱膨張係数の差に基づく歪の影響によってイオン注
入元素の分布が大きくずれるということも少なく、また
イオン注入GaAs基板熱処理時には、特に分解圧の高
いAsの分解をASH3の解離によるAs圧で抑制され
るので比較的高品質のイオン注入層が得られる。しかし
、このアニール法で使用されるAsH,ガスは猛毒であ
る為実用上重大な欠点を有していた。The above-mentioned capless annealing method eliminates the trouble of forming a protective film (cap), and also eliminates the possibility that the distribution of ion-implanted elements will be significantly shifted due to the influence of strain caused by the difference in thermal expansion coefficient between the substrate and the protective film during annealing. In addition, during the heat treatment of the ion-implanted GaAs substrate, the decomposition of As, which has a particularly high decomposition pressure, is suppressed by the As pressure caused by the dissociation of ASH3, so that an ion-implanted layer of relatively high quality can be obtained. However, the AsH gas used in this annealing method is highly toxic and has a serious drawback in practical use.
〈発明の目的〉
従って本発明の目的は、前記ASH3ガスの様な猛毒ガ
スを用いることなく、また保護膜形成の手間も省き、か
つアニール時に基板構成元素の分解によって生じるイオ
ン注入層の結晶品質の低下を抑制できるイオン注入層の
結晶回復の為のアニール装置全提供することである。<Object of the Invention> Therefore, the object of the present invention is to eliminate the use of a highly poisonous gas such as the ASH3 gas, eliminate the trouble of forming a protective film, and improve the crystal quality of the ion-implanted layer caused by the decomposition of the constituent elements of the substrate during annealing. An object of the present invention is to provide an entire annealing apparatus for crystal recovery of an ion-implanted layer that can suppress a decrease in crystallinity.
〈実施例〉
第1図は、本発明による一実施例のイオン注入層のア二
一・ル装置を示す模式図で、第2図はアンドープ半絶縁
性GaAs基板にSi(シリコン)イオンを注入してア
ニールした後のキャリア濃度分布を、従来のキャップア
ニール法と、本発明によるアニール法装置を用いた場合
との比較図である。<Example> Fig. 1 is a schematic diagram showing an ion-implanted layer annealing device according to an embodiment of the present invention, and Fig. 2 shows an example of implanting Si (silicon) ions into an undoped semi-insulating GaAs substrate. FIG. 4 is a comparison diagram of carrier concentration distributions after annealing in a conventional cap annealing method and in a case using an annealing method apparatus according to the present invention.
第1図のアニール装置に於いて、■は真空チャンバーで
、2は排気系を示し、上記真空チャンバ1を1×10″
1〜1×10−6トールの真空度に維持できる性能を有
する。In the annealing apparatus shown in Fig. 1, ■ is a vacuum chamber, 2 is an exhaust system, and the vacuum chamber 1 is
It has the ability to maintain a vacuum level of 1 to 1 x 10-6 Torr.
上記真空チャンバ1の壁面には分子線源3が取付けられ
ている。この分子線源3は、アニールされるべき基板6
を構成している材料の特に抜は出し易い材料、本実施例
では固体砒素が充填され、加熱することによって真空チ
ャンバ1内に適当な砒素分子線を発生させうる。真空チ
ャンバ1内にはイオン注入後の基板6を加熱する為の赤
外線ランプ4及び基板6を保持する為のサセプタ5が設
けられている。7は基板6を搬入及び搬出する為の予備
室であり、I X 10−”〜lXl0−’)−μの真
空度を得ることが可能であり、またこの予備室7と真空
チャンバ1はゲートパルプ8によシ遮断され得る。A molecular beam source 3 is attached to the wall of the vacuum chamber 1. This molecular beam source 3 is connected to a substrate 6 to be annealed.
The vacuum chamber 1 is filled with a material that is particularly easy to extract, solid arsenic in this embodiment, and can be heated to generate an appropriate arsenic molecular beam within the vacuum chamber 1. Inside the vacuum chamber 1, an infrared lamp 4 for heating the substrate 6 after ion implantation and a susceptor 5 for holding the substrate 6 are provided. Reference numeral 7 denotes a preliminary chamber for loading and unloading the substrate 6, and it is possible to obtain a degree of vacuum of IX10-''~lXl0-')-μ, and this preliminary chamber 7 and the vacuum chamber 1 have a gate It can be blocked by pulp 8.
次に上記装置を使用したアニール方法を説明する。市販
のアンドーグ半絶縁性GaAs基板に”S i イオ
ンヲ加速!圧100 Kevテ5X10′212のドー
ズ量でイオン注入を行なった後、このイオン注入GaA
s基板を上記アニール装置を用いてアニーlvヲ行った
。先ずアニール装置の予備室7にイオン注入GaAs基
板6を装着し、予備室7をlXl0−”)−ルの真空度
に排気した。その後ゲートパルプ8を開放し、イオン注
入G aAsめlXl0 ト−A/に排気されている
。砒素分子線源3を350〜450℃に加熱し、赤外線
ランプ4によシイオン注入基板6を900℃に数秒間加
熱しアニー/L’を行なった。この基板加熱法では基板
温度を室温から900℃迄上昇させるのに数秒間しか要
せず又900℃から室温まで基板温度を降下させるのに
1分程度の時間であった。ゲートパルプ8を再び開放し
て当該アニール処理済みのイオン注入基板を搬出し、イ
オン注入層のキャリア濃度分布を通常のショットキー接
合を用いた電圧−容量法によシ測定した。その結果を第
2図に示す。Next, an annealing method using the above apparatus will be explained. After ion implantation was performed on a commercially available Andog semi-insulating GaAs substrate at a pressure of 100 Kev and a dose of 5 x 10'212, the ion-implanted GaAs
The S substrate was annealed using the above-mentioned annealing apparatus. First, the ion-implanted GaAs substrate 6 was placed in the preliminary chamber 7 of the annealing apparatus, and the preliminary chamber 7 was evacuated to a vacuum level of 1X10-'').Then, the gate pulp 8 was opened, and the ion-implanted GaAs substrate 6 was evacuated to a vacuum level of 1X10-''). The arsenic molecular beam source 3 was heated to 350 to 450°C, and the ion-implanted substrate 6 was heated to 900°C for several seconds using the infrared lamp 4 to perform annealing/L'.This substrate heating In the method, it took only a few seconds to raise the substrate temperature from room temperature to 900°C, and about 1 minute to lower the substrate temperature from 900°C to room temperature.The gate pulp 8 was opened again. The annealed ion-implanted substrate was taken out, and the carrier concentration distribution of the ion-implanted layer was measured by a voltage-capacitance method using an ordinary Schottky junction.The results are shown in FIG.
同図に於いて点線aはLSII論に基づ< ”Si+イ
オン注入原子のGaAs基板表面からの分布を示し、一
点鎖線すは従来の5iOzキヤツプによる85゛0℃、
15分の電気炉アニールによるアユーp後のキャリア濃
度分布を示し、実線Cが本発明によるアニール後のキャ
リア濃度分布の結果であシ、両試料共にイオン注入条件
は同一であυ、アニール条件だけが異なる。In the figure, the dotted line a shows the distribution of Si+ ion implanted atoms from the GaAs substrate surface based on the LSII theory, and the dashed line shows the distribution of Si+ ion-implanted atoms from the GaAs substrate surface based on the LSII theory, and the dashed line shows the distribution of the Si+ ion-implanted atoms from the surface of the GaAs substrate.
It shows the carrier concentration distribution after AYP due to electric furnace annealing for 15 minutes, and the solid line C is the result of the carrier concentration distribution after annealing according to the present invention.The ion implantation conditions are the same for both samples, υ, and only the annealing conditions. are different.
第2図の曲線す、cの比較からも明らかな様に本発明例
の方がよ!DLSS理論aによる分布に近く、濃度分布
がティμ部に於いて本実施例Cの方が従来法すより急峻
であシ、またピークキャリア濃度も曲線Cが大きく、S
i不純物原子の電気的活性化率が高い。As is clear from the comparison of curves S and c in Figure 2, the example of the present invention is better! It is close to the distribution according to DLSS theory a, and the concentration distribution in this embodiment C is steeper than that in the conventional method in the tee μ part.
The electrical activation rate of i-impurity atoms is high.
なお本実施例に於いてはGaAsイオン注入基板を用い
た砒素分子線下でのアニールの例について説明したが、
GaPやIwPのイオン注入基板に対しては燐分子線源
を、又InAsPやG aA sPに対しては砒素及び
燐用02つの分子線源を用いることによシ同様の効果が
期待できる。In this example, an example of annealing under an arsenic molecular beam using a GaAs ion-implanted substrate was explained.
Similar effects can be expected by using a phosphorus molecular beam source for GaP or IwP ion-implanted substrates, and by using arsenic and phosphorus molecular beam sources for InAsP or GaA sP.
〈発明の効果〉
本発明によるイオン注入層のア二−μ法を用いることに
より、よシ急峻な不純物濃度分布が得られ、且つ高い電
気的活性化率が得られることになり、イオン注入at活
性層とするGaAsFETの相互コンダクタンスの高性
能化が図れ、GaAsFETやGaAsFETICの特
性制御が容易となる。<Effects of the Invention> By using the Annie-μ method of the ion implantation layer according to the present invention, a much steeper impurity concentration distribution and a higher electrical activation rate can be obtained. The mutual conductance of the GaAsFET used as the active layer can be improved, and the characteristics of the GaAsFET and GaAsFETIC can be easily controlled.
また、本発明によるアニール法ではA s H3(アル
シン)等の猛毒ガスを使用しないので作業の安全性確保
の点で有利となる等の効果を有する。Further, since the annealing method according to the present invention does not use a highly poisonous gas such as As H3 (arsine), it is advantageous in ensuring work safety.
第1図は本発明に用いたイオン注入層アニール装置の概
念図、第2図は本発明に屯るアニール装置の一実施例に
於いて得られたキャリア濃度分布と従来のアニール法に
よって得らたキャリア濃度分布の比較を示した図である
。
1:真空チャンバ 3:分子線源 4:赤ljラン
プ 5:サセプタ 6:基板代理人 弁理士 福
士 愛 彦(他2名)イブゾよX層了、−14(貫
第1図
’4@()tm)
べηり了褒毅AしンAP
第2!iFig. 1 is a conceptual diagram of the ion-implanted layer annealing apparatus used in the present invention, and Fig. 2 shows the carrier concentration distribution obtained in an embodiment of the annealing apparatus according to the present invention and the carrier concentration distribution obtained by the conventional annealing method. FIG. 3 is a diagram showing a comparison of carrier concentration distributions. 1: Vacuum chamber 3: Molecular beam source 4: Red lj lamp 5: Susceptor 6: Substrate agent Patent attorney Yoshihiko Fukushi (and 2 others) ) tm) Be η Reward Reward A Shin AP Part 2! i
Claims (1)
ャンバ内に取付けられて被アニール基板に熱線を照射す
るための熱源と、 上記真空チャンバ内に基板構成元素の少なくとも1つの
分子線を発生する分子線源とを備えてなり、 分子線雰囲気中で半導体基板のイオン注入層をアニール
処理することを特徴とする半導体基板のアニール装置。[Claims] 1. A vacuum chamber coupled to a vacuum evacuation system, a heat source installed in the vacuum chamber for irradiating the substrate to be annealed with heat rays, and at least one of the substrate constituent elements in the vacuum chamber. What is claimed is: 1. An annealing apparatus for a semiconductor substrate, comprising: a molecular beam source that generates one molecular beam; and annealing an ion-implanted layer of a semiconductor substrate in a molecular beam atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14749285A JPS627124A (en) | 1985-07-02 | 1985-07-02 | Annealing device for semiconductor substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14749285A JPS627124A (en) | 1985-07-02 | 1985-07-02 | Annealing device for semiconductor substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS627124A true JPS627124A (en) | 1987-01-14 |
JPH0421335B2 JPH0421335B2 (en) | 1992-04-09 |
Family
ID=15431611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14749285A Granted JPS627124A (en) | 1985-07-02 | 1985-07-02 | Annealing device for semiconductor substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS627124A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63228711A (en) * | 1987-03-18 | 1988-09-22 | Fujitsu Ltd | Manufacture of iii-v compound semiconductor layer |
JPH01307440A (en) * | 1988-06-06 | 1989-12-12 | Hajime Ishimaru | Vacuum vessel |
JPH02249228A (en) * | 1989-03-22 | 1990-10-05 | Nec Corp | Short time heat treating method |
CN113493904A (en) * | 2020-03-19 | 2021-10-12 | 中国科学院沈阳科学仪器股份有限公司 | High-temperature high-vacuum annealing furnace |
-
1985
- 1985-07-02 JP JP14749285A patent/JPS627124A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63228711A (en) * | 1987-03-18 | 1988-09-22 | Fujitsu Ltd | Manufacture of iii-v compound semiconductor layer |
JPH01307440A (en) * | 1988-06-06 | 1989-12-12 | Hajime Ishimaru | Vacuum vessel |
JPH02249228A (en) * | 1989-03-22 | 1990-10-05 | Nec Corp | Short time heat treating method |
CN113493904A (en) * | 2020-03-19 | 2021-10-12 | 中国科学院沈阳科学仪器股份有限公司 | High-temperature high-vacuum annealing furnace |
Also Published As
Publication number | Publication date |
---|---|
JPH0421335B2 (en) | 1992-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4312681A (en) | Annealing of ion implanted III-V compounds in the presence of another III-V | |
US4879259A (en) | Rapid thermal annealing of gallium arsenide with trimethyl arsenic overpressure | |
Kasahara et al. | Capless anneal of ion‐implanted GaAs in controlled arsenic vapor | |
JPH0580817B2 (en) | ||
GB1454237A (en) | Method for manufacturing a semiconductor device | |
Hunsperger et al. | Electrical properties of zinc and cadmium ion implanted layers in gallium arsenide | |
JPS627124A (en) | Annealing device for semiconductor substrate | |
JP2002502123A (en) | Rapid heat treatment method for ion-implanted silicon. | |
US4820651A (en) | Method of treating bodies of III-V compound semiconductor material | |
EP0813232B1 (en) | Method of reducing the amount of carbon in an interface between an epitaxial film and a Si substrate | |
US5874352A (en) | Method of producing MIS transistors having a gate electrode of matched conductivity type | |
Liu et al. | Rapid capless annealing of 28 Si, 64 Zn, and 9 Be implants in GaAs | |
JP2679011B2 (en) | Method of introducing impurity atoms | |
JP2694625B2 (en) | Method for etching compound semiconductor substrate and method for manufacturing the same | |
JPS5933255B2 (en) | Manufacturing method of semiconductor device | |
JPH05251378A (en) | Manufacture of semiconductor device | |
JPS6132414A (en) | Thin film forming equipment | |
Danilov et al. | Electrical isolation of a silicon δ-doped layer in GaAs by ion irradiation | |
Kassabov et al. | UV radiation effects of argon plasma on Si− SiO2 structures | |
Biedenbender et al. | Chemical Nature of Silicon Nitride‐Indium Phosphide Interface and Rapid Thermal Annealing for InP MISFETs | |
JP3105481B2 (en) | Method for doping donor impurities into silicon carbide semiconductor | |
Banholzer et al. | Chlorine levels in SiO2 formed using TCA and LPCVD at low temperatures | |
JP3098289B2 (en) | Heat treatment method for GaAs substrate | |
KR0129133B1 (en) | METHOD FOR PROCESSING SURFACE OF GaAs SUBSTRATE | |
Chen et al. | Thermal stability of TiSi2 on ion implanted silicon |