[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6271555A - Production of silicon nitride sintered body using ball stone - Google Patents

Production of silicon nitride sintered body using ball stone

Info

Publication number
JPS6271555A
JPS6271555A JP60213492A JP21349285A JPS6271555A JP S6271555 A JPS6271555 A JP S6271555A JP 60213492 A JP60213492 A JP 60213492A JP 21349285 A JP21349285 A JP 21349285A JP S6271555 A JPS6271555 A JP S6271555A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
cobblestone
raw material
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60213492A
Other languages
Japanese (ja)
Inventor
隆雄 相馬
知典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP60213492A priority Critical patent/JPS6271555A/en
Publication of JPS6271555A publication Critical patent/JPS6271555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crushing And Grinding (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は原料粉末を粉砕、混合して均一な微粉末を得る
のに使用する玉石および、その玉石を用いた窒化珪素焼
結体の製造法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a boulder used to obtain a uniform fine powder by crushing and mixing raw material powder, and the production of a silicon nitride sintered body using the boulder. It is about law.

(従来の技術) 窒化珪素焼結体の製造工程中、粉砕混合工程において用
いられるボールミル、振動ミル等では、原料粉末を粉砕
混合して均一な微粉末を得るのに玉石を使用している。
(Prior Art) Ball mills, vibration mills, and the like used in the pulverization and mixing process during the manufacturing process of silicon nitride sintered bodies use cobblestones to pulverize and mix raw material powders to obtain uniform fine powders.

従来公知の玉石としては、鉄やタングステンカーバイド
のほか特開昭54−88909号公報において窒化珪素
焼結体からなる窒化珪素質原料粉砕用玉石が開示されて
いる。また、特開昭54−97614号公報においては
、アルミニウム、ジルコニウム、マグネシウム、ベリリ
ウムもしくは(および)イツトリウムの酸化物もしくは
ケイ酸塩からなる玉石が開示されている。
Conventionally known boulders include iron and tungsten carbide, and JP-A-54-88909 discloses a boulder for grinding silicon nitride raw materials made of sintered silicon nitride. Further, Japanese Patent Application Laid-open No. 54-97614 discloses a boulder made of an oxide or silicate of aluminum, zirconium, magnesium, beryllium, and/or yttrium.

(発明が解決しようとする問題点) しかしながら上述した従来の玉石においては、玉石が摩
耗して玉石成分が原料粉末中に混入することがあった。
(Problems to be Solved by the Invention) However, in the conventional cobblestones described above, the cobblestones are sometimes worn and cobblestone components are mixed into the raw material powder.

そのため、混入した玉石成分の作用により焼結体の緻密
化が阻害されたり特性が劣化し、特にPe、 WC,Z
rO2玉石の場合は高温特性が劣化する欠点があった。
Therefore, the densification of the sintered body is inhibited and the properties deteriorate due to the action of the mixed cobblestone components, especially Pe, WC, and Z.
In the case of rO2 boulders, there was a drawback that the high temperature characteristics deteriorated.

また、比重の軽い例えば^’ zOs、Si、J、玉石
では優れた粉砕効果を得ることができないため、室温強
度の低い焼結体しか得ることができなかった。
Further, since excellent pulverization effects cannot be obtained with stones having a light specific gravity such as ^' zOs, Si, J, and cobblestone, only sintered bodies with low room temperature strength could be obtained.

本発明の目的は上述した不具合を解消して、原料粉末を
均一に粉砕して微粉末を得ることができると共に、玉石
成分が摩耗により原料粉末中に混入しても焼結体に悪影
響を与えることのない玉石および玉石を用いる窒化珪素
焼結体の製造法を提供しようとするものである。
The purpose of the present invention is to solve the above-mentioned problems, to obtain a fine powder by uniformly pulverizing the raw material powder, and even if cobblestone components are mixed into the raw material powder due to wear, it will not have an adverse effect on the sintered body. The present invention aims to provide a cobblestone and a method for manufacturing a silicon nitride sintered body using the cobblestone.

(問題点を解決するための手段) 本発明の玉石はCe01を主成分とすることを特徴とす
るものであり、また本発明の窒化珪素焼結体の製造法は
窒化珪素出発原料粉末をCentを主成分とする玉石を
用いて粉砕混合し、成形、焼成するものである。
(Means for Solving the Problems) The boulder of the present invention is characterized by containing Ce01 as a main component, and the method for producing a silicon nitride sintered body of the present invention uses a silicon nitride starting material powder as a centrifugal powder. The main ingredient is cobblestone, which is crushed, mixed, shaped, and fired.

(作 用) 上述した構成において、CeO□を主成分とする玉石は
比重が高(粉砕効果が高いと共に、たとえCe01成分
が原料粉末中に混入しても焼結体の緻密化を阻害したり
特性を劣化させることなく、むしろ緻密化促進や特性向
上に役立つため良好な性状の焼結体を得ることができる
(Function) In the above-mentioned configuration, the cobblestone mainly composed of CeO□ has a high specific gravity (high pulverizing effect, and even if the Ce01 component is mixed into the raw material powder, it will not inhibit the densification of the sintered body. It is possible to obtain a sintered body with good properties because it does not deteriorate the properties, but rather helps promote densification and improve the properties.

以下、CeO2玉石およびこれを用いる窒化珪素焼結体
の製造法について詳細に説明する。まず、窒化珪素出発
原料粉末を準備する。この窒化珪素出発原料粉末は、窒
化珪素原料粉末単味でもよいしまた窒化珪素原料粉末と
焼結助剤との調合粉末であってもよい。焼結助剤として
はYz03JgO+A l 203゜等をそのままある
いは水溶液として添加する。
Hereinafter, CeO2 boulders and a method for producing a silicon nitride sintered body using the same will be described in detail. First, a silicon nitride starting material powder is prepared. This silicon nitride starting raw material powder may be a single silicon nitride raw material powder, or may be a blended powder of silicon nitride raw material powder and a sintering aid. As a sintering aid, Yz03JgO+A1203° or the like is added as it is or as an aqueous solution.

次に、この窒化珪素出発原料粉末をCeO,玉石を用い
て粉砕機により粉砕混合する。粉砕機としては、湿式、
乾式のどちらでも使用でき例えばボールミル、アトライ
ターミル、振動ミル等を使用する。その後、得られた成
形用粉末を乾式プレス、射出成形、スリップキャスト等
により成形し、得られた成形体を常圧焼結、加圧焼結、
ホットプレス(IP) 、ホントアイソステインクプレ
ス(IIIP)等の方法で焼成して窒化珪素焼結体を得
る。このうち常圧焼結時の条件としては、1600℃〜
2000℃の温度で窒素ガス雰囲気下で焼成を行うと好
適である。
Next, this silicon nitride starting material powder is pulverized and mixed using a pulverizer using CeO and cobblestones. As a crusher, wet type,
Either dry method can be used, for example, a ball mill, attritor mill, vibration mill, etc. Thereafter, the obtained molding powder is molded by dry pressing, injection molding, slip casting, etc., and the resulting molded body is subjected to pressureless sintering, pressure sintering,
A silicon nitride sintered body is obtained by firing by a method such as hot press (IP) or true isostain ink press (IIIP). Among these, the conditions for pressureless sintering are 1600℃~
It is preferable to perform the firing at a temperature of 2000° C. in a nitrogen gas atmosphere.

なお、上述した例のうち窒化珪素出発原料粉末として窒
化珪素原料粉末と焼結助剤との調合粉末を使用する場合
、窒化珪素原料粉末をCeO,玉石により粉砕後焼結助
剤と混合しても好適に成形用粉末を得ることができる。
In addition, in the above-mentioned example, when using a blended powder of silicon nitride raw material powder and a sintering aid as the silicon nitride starting raw material powder, the silicon nitride raw material powder is crushed with CeO, a cobblestone, and then mixed with the sintering aid. A powder for molding can also be suitably obtained.

(実施例) スJlfL1 純度99.9重量%、平均粒径0.4 #o++Ce0
z粉末原料98重量%と焼結助剤として純度99重量%
、平均粒径1〜2μ−のMgOおよびSing各0.5
重量%とYtOs 5重量%とを調合し、ナイロン樹脂
被覆鉄製玉石を用いて粉砕混合し、有機バインダーを加
えて乾燥造粒し成形用粉末を得た。これを10m+■φ
の球形金型にて成形し、空気中、1500℃で5時間焼
成して本発明のCeO,を主成分とする玉石を得た。
(Example) Su JlfL1 Purity 99.9% by weight, average particle size 0.4 #o++Ce0
Z powder raw material 98% by weight and sintering aid purity 99% by weight
, 0.5 each of MgO and Sing with an average particle size of 1 to 2 μ-
% by weight and 5% by weight of YtOs, pulverized and mixed using nylon resin-coated iron cobblestones, added with an organic binder, and dried and granulated to obtain a powder for molding. This is 10m+■φ
It was molded in a spherical mold and fired in air at 1500° C. for 5 hours to obtain the cobblestone of the present invention whose main component is CeO.

本玉石の嵩密度は6.858/cm3であった。The bulk density of this cobblestone was 6.858/cm3.

1血1 純度97.1重量%、平均粒径0.7μm、BET比表
面積20m”/gの窒化珪素原料粉末と純度98〜99
重量%、平均粒径0.6〜2μIII 、BET比表面
積8〜30m t / gの八l zoz+srO,Y
gOzおよびMgOの各原料粉末とを第1表・記載の割
合で調合し、実施例1に記載したCe01を主成分とす
る玉石と内容積1.21のナイロン樹脂製容器を用いて
、原料調合物200.に対して玉石3kg、水500y
a 1を加え回転数20回/分のポットミルで48時間
粉砕した。
1 Blood 1 Silicon nitride raw material powder with purity 97.1% by weight, average particle size 0.7 μm, BET specific surface area 20 m”/g and purity 98-99
weight%, average particle size 0.6-2μIII, BET specific surface area 8-30mt/g, 8l zoz+srO,Y
The raw material powders of gOz and MgO were mixed in the proportions listed in Table 1, and the raw materials were mixed using the cobblestones mainly composed of Ce01 described in Example 1 and a nylon resin container with an internal volume of 1.21. Things 200. 3kg of boulders and 500y of water
a1 was added and pulverized for 48 hours in a pot mill with a rotation speed of 20 times/min.

その後、乾燥し粒径100μ彌に造粒し成形用粉末とし
た。次に3 ton/cm”の圧力で静水圧プレスし6
0X60X6 m+aの成形体を作成し、1700℃で
各30分間窒素雰囲気下で無加圧焼結し本発明の窒化珪
素原料粉末1,6.11を得た。
Thereafter, it was dried and granulated to a particle size of 100 μm to obtain a powder for molding. Next, it was hydrostatically pressed at a pressure of 3 ton/cm".
A molded body of 0×60×6 m+a was prepared and sintered without pressure in a nitrogen atmosphere at 1700° C. for 30 minutes each to obtain silicon nitride raw material powder 1, 6.11 of the present invention.

また、これらと同じ調合組成の粉末をZrO,、WC。In addition, powders with the same formulation composition as these were used as ZrO, WC.

Aj!to*、Si3N4をそれぞれ主成分とする玉石
で同じ条件で混合、粉砕、乾燥、造粒、成形、焼成を行
い第1表記載の比較例2〜5.7〜10.12〜15を
得た。但しこれら比較例においては、玉石はZrO。
Aj! Comparative Examples 2 to 5.7 to 10.12 to 15 listed in Table 1 were obtained by mixing, pulverizing, drying, granulating, molding, and firing under the same conditions using cobblestones containing to* and Si3N4 as main components, respectively. . However, in these comparative examples, the boulders are ZrO.

玉石3kg、WC玉石8kg、 al、o、玉石2.5
kg、5iJ4玉石1.8 kgを使用した。
Cobblestone 3kg, WC cobblestone 8kg, al, o, cobblestone 2.5
1.8 kg of 5iJ4 boulders were used.

これらの焼結体の嵩密度、室温および1200℃におけ
る四点曲げ強度を測定し、その結果を第1表に示した。
The bulk density and four-point bending strength at room temperature and 1200° C. of these sintered bodies were measured, and the results are shown in Table 1.

焼結体の嵩密度はアルキメデス法により測定した。四点
曲げ強度はJIS R−1601rファインセラミック
スの曲げ強さ試験法」に従って測定した。
The bulk density of the sintered body was measured by the Archimedes method. The four-point bending strength was measured according to JIS R-1601r Fine Ceramics Bending Strength Test Method.

第1表からも明らかなとおり、CeO,玉石により粉砕
した原料を成形、焼成した本発明の窒化珪素焼結体11
m1. Na6および阻11は粉砕効果のために比較例
Na2〜5、隘7〜10、−12〜15よりも室温強度
が高い。また本発明の窒化珪素焼結体11m1.l1h
6はCeO,が混入しても粒界相が劣化することがなく
室温強度に比較して高温強度が低下しない。これに対し
て比較例隘2〜5.11h7〜10は玉石成分の混入の
ため高温で強度が低下した。
As is clear from Table 1, the silicon nitride sintered body 11 of the present invention is formed by molding and firing raw materials crushed by CeO and cobblestones.
m1. Na6 and No.11 have higher room temperature strengths than Comparative Examples Na2-5, No.7-10, and -12-15 due to the crushing effect. Moreover, the silicon nitride sintered body of the present invention 11m1. l1h
In No. 6, even if CeO is mixed, the grain boundary phase does not deteriorate and the high temperature strength does not decrease compared to the room temperature strength. On the other hand, in Comparative Examples Nos. 2 to 5, 11 and 7 to 10, the strength decreased at high temperatures due to the inclusion of cobblestone components.

失立五主 実施例2と同じ窒化珪素原料粉末を実施例1に示したC
eO□を主成分とする玉石と内容積1.21のナイロン
樹脂静容器を用いて、窒化珪素原料粉末200gに対し
て玉石3kg+水500m lを加え、回転数20回/
分のボットミルで100時間粉砕した。この粉砕物を実
施例2と同じAll 103.SrO,’ttOxおよ
びMgOの各原料粉末と第2表記載の割合で調合し、ナ
イロン被覆鉄製玉石とナイロン樹脂製容器を用いて混合
した。つづいて実施例2と同じように乾燥、造粒、成形
、焼成を行い、第2表記載の本発明の窒化珪素焼結体の
製造法による窒化珪素焼結体Na16.22.28を得
た。また、同じ窒化珪素原料粉末を鉄、 Zr01JC
,A 41 gos、 5isNaをそれぞれ主成分と
する玉石と同じ容器を用い同条件で粉砕した。但し、こ
れら比較例においては、鉄玉石4.5kg。
The same silicon nitride raw material powder as in Example 2 was used as C shown in Example 1.
Using cobblestones whose main component is eO
Milled in a minute bot mill for 100 hours. This pulverized product was prepared as All 103. as in Example 2. Each raw material powder of SrO, 'ttOx, and MgO was prepared in the proportions shown in Table 2, and mixed using a nylon-coated iron cobblestone and a nylon resin container. Subsequently, drying, granulation, molding, and firing were performed in the same manner as in Example 2 to obtain a silicon nitride sintered body Na16.22.28 according to the method for producing a silicon nitride sintered body of the present invention as shown in Table 2. . In addition, the same silicon nitride raw material powder is used as iron, Zr01JC
, A 41 gos, and 5isNa were crushed under the same conditions using the same container as the cobblestones whose main components were, respectively. However, in these comparative examples, the iron cobble weight was 4.5 kg.

ZrO2玉石3kg、WC玉石8kg、 AltOs玉
石2 、5 k g + S i s N a玉石1.
8 kgを使用した。これらの粉砕物はCeO,玉石の
場合と同様に第2表記載のとおり調合し、混合、乾燥、
成形、焼成して第2表記載の比較例の窒化珪素原料粉末
17〜21. Ni23〜27.隘29〜33を得た。
3 kg of ZrO2 cobbles, 8 kg of WC cobbles, 2 AltOs cobbles, 5 kg + S i s Na cobbles 1.
8 kg was used. These pulverized materials were mixed, dried, and mixed as described in Table 2 in the same manner as for CeO and cobblestone.
After molding and firing, silicon nitride raw material powders 17 to 21 of Comparative Examples listed in Table 2 were prepared. Ni23-27. Obtained numbers 29-33.

実施例1と同じ方法で測定したこれらの焼結体の嵩密度
、室温および1200℃における四点曲げ強度を測定し
、その結果を第2表に示した。
The bulk density and four-point bending strength at room temperature and 1200° C. of these sintered bodies were measured using the same method as in Example 1, and the results are shown in Table 2.

第2表からも明らかなとおり、CeO,玉石により、粉
砕した原料を成形、焼成した本発明の窒化珪素焼結体N
116. N122および嵐28は粉砕効果のために比
較例Na17〜21、Na 23〜27.1lh29〜
33よりも室温強度が高い。また本発明の窒化珪素焼結
体N116゜11h22はCeO,が混入しても粒界相
が劣化することがなく室温強度に比較して高温強度が低
下しない。
As is clear from Table 2, the silicon nitride sintered body N of the present invention is formed by molding and firing the crushed raw material with CeO and cobblestones.
116. N122 and Arashi 28 are comparative examples Na17~21, Na23~27.1lh29~ due to the crushing effect.
The room temperature strength is higher than that of No. 33. Further, in the silicon nitride sintered body N116°11h22 of the present invention, even if CeO is mixed, the grain boundary phase does not deteriorate, and the high temperature strength does not decrease compared to the room temperature strength.

これに対して比較例11h17〜21、l1h23〜2
7は玉石成分の混入のため、高温で強度が低下した。
In contrast, comparative examples 11h17-21, l1h23-2
In No. 7, the strength decreased at high temperatures due to the inclusion of cobblestone components.

(発明の効果) 以上詳細に説明したとこる−から明らかなように、本発
明の玉石および玉石を用いる窒化珪素焼結体の製造法に
よれば、CeO□玉石の比重が高いため、ZrO□、W
C,Fe玉石と同様粉砕効率が高く、原料の凝集体を破
壊し、添加物をよく分散するので均一な焼結体を得るこ
とができる。このため、高密度で室温強度の高い焼結体
が得られる。
(Effects of the Invention) As is clear from the above detailed explanation, according to the cobblestone and the method for producing a silicon nitride sintered body using the cobblestone of the present invention, since the specific gravity of CeO□ cobblestone is high, ZrO□ ,W
Like C,Fe boulders, it has high pulverization efficiency, breaks aggregates of raw materials, and disperses additives well, making it possible to obtain uniform sintered bodies. Therefore, a sintered body with high density and room temperature strength can be obtained.

また、玉石中のCeO,成分が原料粉末中に混入しても
粒界相の性質を劣化させない、このため、CeO,が混
入することが特に粒界相が結晶化して高温強度が高い素
地(例えばYz(h −MgO系階6〜10゜−22〜
27およびYtOs−A l tit系11hl〜5.
I’&L16〜21)の高温強度を室温強度に対して低
下させることはない。
In addition, even if the CeO component in the cobblestone is mixed into the raw material powder, it does not deteriorate the properties of the grain boundary phase.For this reason, the presence of CeO will cause the grain boundary phase to crystallize, resulting in a matrix with high high-temperature strength ( For example, Yz(h -MgO series 6~10°-22~
27 and YtOs-Al tit system 11hl~5.
The high temperature strength of I'&L16-21) is not reduced relative to the room temperature strength.

Claims (1)

【特許請求の範囲】 1、CeO_2を主成分とすることを特徴とする粉砕混
合用玉石。 2、窒化珪素出発原料粉末をCeO_2を主成分とする
玉石を用いて粉砕混合し、成形、焼成することを特徴と
する窒化珪素焼結体の製造法。
[Claims] 1. A cobblestone for grinding and mixing, characterized by containing CeO_2 as a main component. 2. A method for producing a silicon nitride sintered body, which comprises pulverizing and mixing a silicon nitride starting material powder using cobblestones containing CeO_2 as a main component, shaping and firing.
JP60213492A 1985-09-26 1985-09-26 Production of silicon nitride sintered body using ball stone Pending JPS6271555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60213492A JPS6271555A (en) 1985-09-26 1985-09-26 Production of silicon nitride sintered body using ball stone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60213492A JPS6271555A (en) 1985-09-26 1985-09-26 Production of silicon nitride sintered body using ball stone

Publications (1)

Publication Number Publication Date
JPS6271555A true JPS6271555A (en) 1987-04-02

Family

ID=16640094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60213492A Pending JPS6271555A (en) 1985-09-26 1985-09-26 Production of silicon nitride sintered body using ball stone

Country Status (1)

Country Link
JP (1) JPS6271555A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144911A (en) * 1977-05-24 1978-12-16 Denki Kagaku Kogyo Kk Heat resistance high strength complex material of silicon nitride
JPS5497614A (en) * 1978-01-03 1979-08-01 Max Planck Gesellschaft Sintering of silicon nitride formed body
JPS5627471A (en) * 1979-08-15 1981-03-17 Casio Comput Co Ltd Totalized data comparison system of electronic register
JPS5852950A (en) * 1981-09-24 1983-03-29 小型ガス冷房技術研究組合 Heat pump driven by prime mover

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144911A (en) * 1977-05-24 1978-12-16 Denki Kagaku Kogyo Kk Heat resistance high strength complex material of silicon nitride
JPS5497614A (en) * 1978-01-03 1979-08-01 Max Planck Gesellschaft Sintering of silicon nitride formed body
JPS5627471A (en) * 1979-08-15 1981-03-17 Casio Comput Co Ltd Totalized data comparison system of electronic register
JPS5852950A (en) * 1981-09-24 1983-03-29 小型ガス冷房技術研究組合 Heat pump driven by prime mover

Similar Documents

Publication Publication Date Title
JPS6140621B2 (en)
JPH0218309B2 (en)
JPS6125677B2 (en)
JPH01230478A (en) Homogeneous sintered silicon nitride and production thereof
CN104446495A (en) Silicon nitride ceramic material and preparation method thereof
JPS6271555A (en) Production of silicon nitride sintered body using ball stone
JP2882877B2 (en) Zirconia porcelain and method for producing the same
JPS6186466A (en) Spinel ceramics
JPH0515667B2 (en)
JPH04502000A (en) High-strength multiphase silicon nitride ceramic material and its manufacturing method
JP2000159570A (en) Production of compact cordierite sintered product
JPS6141872B2 (en)
JPS60141671A (en) Manufacture of zirconia sintered body
JPS62275067A (en) Manufacture of silicon nitride sintered body
JPS61117153A (en) Manufacture of alumina sintered body
JPH0283265A (en) Production of silicon nitride
JP3312436B2 (en) Processing of recyclable ceramics
JPH0283264A (en) Method for producing silicon nitride ceramics and ceramic balls for ball mills used in the production
JPH05301775A (en) Member for pulverizer composed of silicon nitride-based sintered compact
JP2710385B2 (en) Sinterable aluminum nitride powder and method for producing the same
JPH0383851A (en) Mullite-based sintered compact and production thereof
JPH0236545B2 (en)
JPS6090870A (en) Manufacture of high strength zirconia ceramic
JPH0545537B2 (en)
JPH0214822A (en) Readily sinterable zirconia powder