JPS6271541A - Production of catalyst for cleaning up exhaust gas of engine - Google Patents
Production of catalyst for cleaning up exhaust gas of engineInfo
- Publication number
- JPS6271541A JPS6271541A JP60211638A JP21163885A JPS6271541A JP S6271541 A JPS6271541 A JP S6271541A JP 60211638 A JP60211638 A JP 60211638A JP 21163885 A JP21163885 A JP 21163885A JP S6271541 A JPS6271541 A JP S6271541A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- coating layer
- exhaust gas
- ceo2
- alumina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 80
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000004140 cleaning Methods 0.000 title abstract 2
- 239000011247 coating layer Substances 0.000 claims abstract description 26
- 239000010410 layer Substances 0.000 claims abstract description 21
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 20
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 16
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 8
- 239000010948 rhodium Substances 0.000 claims abstract description 8
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 5
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 5
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract description 20
- 230000000694 effects Effects 0.000 abstract description 12
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 abstract description 10
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 abstract description 10
- 230000006866 deterioration Effects 0.000 abstract description 5
- 238000005245 sintering Methods 0.000 abstract description 3
- 238000002485 combustion reaction Methods 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000000151 deposition Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 20
- 238000000746 purification Methods 0.000 description 18
- 230000007423 decrease Effects 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910000420 cerium oxide Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000010970 precious metal Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、内燃機関等、特に自動車から排出される排気
ガス中の一酸化炭素(以下、COという)、炭化水素(
以下、HCという)および酸化窒素(以下、NOXとい
う)を低減せしめるために用いられるエンジンの排気ガ
ス浄化用触媒の製造方法に関(従来技術)
従来より、自動車排気ガス中のCo5HC,NOxを浄
化する触媒として、白金(Pt)、ロジウム(Rh)、
パラジウム(Pd)等の貴金属をアルミナ(ALos)
に担持したしのが用いられている。又、これら貴金属の
触媒性能を向上させろために、酸素貯蔵能効果(排気ガ
ス中の酸素を取り込み、この酸素を触媒の浄化に寄与さ
せる効果)がある酸化セリウム(Cent)を、資金−
属といつし目こアルミナコート層に含有させ、排気ガス
の浄化率を高めようとした触媒が製造されてきている。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is directed to the treatment of carbon monoxide (hereinafter referred to as CO) and hydrocarbons (hereinafter referred to as CO) in exhaust gas emitted from internal combustion engines, etc., especially automobiles.
Related to a method for manufacturing a catalyst for purifying engine exhaust gas used to reduce HC (hereinafter referred to as HC) and nitrogen oxide (hereinafter referred to as NOX) (prior technology) Conventionally, Co5HC and NOx in automobile exhaust gas have been purified. Platinum (Pt), rhodium (Rh),
Precious metals such as palladium (Pd) are converted into alumina (ALos).
Shino is used. In addition, in order to improve the catalytic performance of these precious metals, we are investing in funding for cerium oxide (Cent), which has an oxygen storage effect (the effect of taking in oxygen from exhaust gas and contributing to the purification of the catalyst).
Catalysts have been manufactured in which they are included in the alumina coating layer to increase the purification rate of exhaust gas.
しかし、貴金属および年金属の触媒成分と、酸化セリウ
ム等の酸素貯蔵能付与剤(以下、O8C剤という)とを
アルミナコート層に共存させて担持する方法には、以下
に述べるような問題があった。However, the method of coexisting and supporting catalyst components of noble metals and metals and an oxygen storage capacity imparting agent (hereinafter referred to as O8C agent) such as cerium oxide on an alumina coat layer has the following problems. Ta.
(a)OSC剤はアルミナコート層に均一に担持されて
いるため、必ずしもボア付近の排気ガスと接触しやすい
領域に担持されていない。つまり、O8C剤の多くは、
排気ガスの拡散しずらい部分に担持されており、浄化反
応に関与せず、高浄化率が得られない。(a) Since the OSC agent is uniformly supported on the alumina coat layer, it is not necessarily supported in the area near the bore where it is likely to come into contact with exhaust gas. In other words, many O8C agents are
It is carried in parts of the exhaust gas that are difficult to diffuse, and does not participate in the purification reaction, making it impossible to obtain a high purification rate.
(b)OSC剤と、触媒成分およびアルミナとの直接的
な接触が多くなるため、O8C剤の熱不安定性がこれら
に悪影響をおよぼす。(b) Thermal instability of the O8C agent adversely affects the OSC agent due to its increased direct contact with the catalyst components and alumina.
(c) OSC剤が触媒成分といっしょに担持されて
いるため、両者が化合物をつくり、触媒成分の分散性を
低下させ、排気ガス浄化性能が低下する。(c) Since the OSC agent is supported together with the catalyst component, both of them form a compound, reducing the dispersibility of the catalyst component and reducing the exhaust gas purification performance.
また、触媒担体に、Pt、Pdなどを含有する触媒層を
設け、該触媒層の保護のためにアルミナまたはアルミナ
と酸化セリウム(アルミナに対して重量比で0.1〜0
.5%)の混合物からなる酸化物の被覆層を設けるよう
にしたものが提案されている(特開昭60−5230号
公報参照)。この公知技術の場合、Ce Otの含有量
が少なすぎるため、酸素貯蔵能効果を期待することがで
きない。そこで、被覆層ちゅうのCe0t含有量を増大
させる方法が考えられるが、その場合、触媒表面が排気
ガスにさらされ、高温状態になるところから、被覆層に
含有されたC e Otの結晶成長が助長されてシンタ
リングが起こり、Centの粒子径が増大することとな
り、触媒活性を大幅に低下させるという問題を招くおそ
れがある。In addition, a catalyst layer containing Pt, Pd, etc. is provided on the catalyst carrier, and in order to protect the catalyst layer, alumina or alumina and cerium oxide (0.1 to 0 in weight ratio to alumina) is provided.
.. 5%) has been proposed (see Japanese Patent Laid-Open No. 60-5230). In the case of this known technique, the content of Ce Ot is too small, so no effect on oxygen storage capacity can be expected. Therefore, a method can be considered to increase the CeOt content in the coating layer, but in that case, the catalyst surface is exposed to exhaust gas and becomes high temperature, so the crystal growth of CeOt contained in the coating layer is inhibited. As a result, sintering occurs and the particle size of Cent increases, which may lead to a problem of significantly reducing catalyst activity.
(発明の目的)
本発明は、上記の問題点に鑑みてなされたもので、貴金
属あるいは卑金属からなる触媒成分を含む触媒層の上面
にCentを含む被覆層を形成するに当たって、予じめ
CeO7を高温加熱処理することによって、高温状態に
おけるC e O2のンンタリングに伴う触媒活性低下
を防止せんとずろことを目的とするものである。(Object of the Invention) The present invention has been made in view of the above-mentioned problems, and when forming a coating layer containing Cent on the upper surface of a catalyst layer containing a catalyst component made of a noble metal or a base metal, CeO7 is added in advance. The purpose of the high-temperature heat treatment is to prevent a decrease in catalyst activity due to interning of C e O2 in a high-temperature state.
(目的を達成するための手段)
本発明では、上記目的を達成するための手段として、触
媒担体に、白金、パラジウムおよびロンラムよりなる群
から選ばれた少なくとも一種類の触媒成分を含有する触
媒層を担持し、該触媒層上に、Centを800〜10
00℃で1〜5時間加熱処理したのちアルミナと混合し
てコートした被覆層を形成するようにしている。(Means for achieving the object) In the present invention, as a means for achieving the above object, a catalyst layer containing at least one type of catalyst component selected from the group consisting of platinum, palladium, and ronram is provided on a catalyst carrier. is supported, and 800 to 10 Cent is supported on the catalyst layer.
After heat treatment at 00°C for 1 to 5 hours, the mixture is mixed with alumina to form a coating layer.
ここで、触媒成分としては、Pt、Rh5Pdなどの公
知成分およびそれらの二種以上の混合物が使用される。Here, as the catalyst component, known components such as Pt and Rh5Pd, and mixtures of two or more thereof are used.
前記高温加熱処理は、800〜1000℃の温度範囲で
1〜5時間行なわれる。なお、800℃以下、1時間以
下の加熱処理では、加熱処理の効果がうすく、熱安定性
を充分に向上させることができず、また、1000℃以
上、5時間以上の加熱処理では、Centの結晶化が促
進され、熱劣化による触媒性能の低下を起こすおそれが
ある。ちなみに、Centの加熱処理温度に対するH
C浄化率の変化を調べたところ、第2図図示の結果が得
られた。該テストに用いられた触媒の触媒成分は、P
tl、Og/ 11 、Rho、2g/ 11とされ、
加熱処理時間は、各温度ともに3時間とされた。また、
耐久テストは、900℃で50時間行なわれ、活性テス
トは、空燃比A/F=14.5、空間速度S、V= 6
0000/firで行なわれた。The high temperature heat treatment is performed at a temperature of 800 to 1000°C for 1 to 5 hours. In addition, heat treatment at 800°C or lower for 1 hour or less will have a weak effect and thermal stability cannot be sufficiently improved, and heat treatment at 1000°C or higher for 5 hours or longer will cause the Cent. Crystallization may be promoted and catalyst performance may deteriorate due to thermal deterioration. By the way, H for the heat treatment temperature of Cent
When the change in C purification rate was investigated, the results shown in Figure 2 were obtained. The catalyst component of the catalyst used in this test was P
tl, Og/11, Rho, 2g/11,
The heat treatment time was 3 hours at each temperature. Also,
The durability test was conducted at 900°C for 50 hours, and the activity test was conducted at an air-fuel ratio A/F = 14.5, a space velocity S, and a V = 6.
It was conducted at 0000/fir.
上記テストの結果から、加熱処理温度としては、800
〜1000℃の範囲が好ましいことがわかる。From the results of the above test, the heat treatment temperature is 800.
It turns out that the range of -1000 degreeC is preferable.
前記被覆層の組成は、50〜95重徹%のCe Otと
残部の活性アルミナとするのが望ましく、そのコーティ
ングは、CeO2、活性アルミナ、水和アルミナ、その
他方散剤からなる水性スラリーを用いて行う。The composition of the coating layer is preferably 50 to 95% by weight of CeOt and the balance of activated alumina, and the coating is performed using an aqueous slurry consisting of CeO2, activated alumina, hydrated alumina, and other dispersants. conduct.
上記製造方法により製造された排気ガス浄化用触媒の一
例が第1図に拡大して示されている。ここで、符号lは
触媒担体、2は触媒層、3は被覆層をそれぞれ示してい
る。該触媒担体1としては、コージライト等のセラミッ
クスからなるハニカム構造体あるいは耐熱金属及び耐熱
無機繊維よりなる各種担体が使用される。An example of an exhaust gas purifying catalyst manufactured by the above manufacturing method is shown in an enlarged scale in FIG. Here, numeral 1 represents a catalyst carrier, 2 represents a catalyst layer, and 3 represents a coating layer. As the catalyst carrier 1, a honeycomb structure made of ceramics such as cordierite or various carriers made of heat-resistant metals and heat-resistant inorganic fibers are used.
(作 用)
上記の如く、予じめCe O2を800〜1000℃で
1〜5時間加熱処理したことにより、CeO7の熱安定
性が増大され、高温状態において、CeO3の結晶成長
が抑制され、熱劣化に対して優れた性能を維持すること
ができる。(Function) As mentioned above, by heat-treating CeO2 in advance at 800 to 1000°C for 1 to 5 hours, the thermal stability of CeO7 is increased, and the crystal growth of CeO3 is suppressed in a high temperature state. Excellent performance can be maintained against thermal deterioration.
以下、本発明の好適な実施例を説明する。Hereinafter, preferred embodiments of the present invention will be described.
実施例
γ−アルミナ160g、ベーマイト160g、水500
cc。Example γ-alumina 160g, boehmite 160g, water 500g
cc.
濃硝酸4ccをホモミキザーにより10時間混合撹拌し
、アルミナウォッシュコート用スラリーを得た。4 cc of concentrated nitric acid was mixed and stirred using a homomixer for 10 hours to obtain a slurry for an alumina wash coat.
このスラリーにハニカム触媒担体(コージライト製)を
浸漬して引き上げた後、余分のスラリーを高圧エアブロ
−で除去し、130℃で1時間乾燥後、550℃で1時
間焼成した。A honeycomb catalyst carrier (made of cordierite) was immersed in this slurry and pulled up, the excess slurry was removed by high-pressure air blowing, dried at 130°C for 1 hour, and then calcined at 550°C for 1 hour.
このアルミナコートした触媒担体を所定の濃度の塩化白
金酸・塩化ロジウム混合水溶液に浸漬して引き上げた後
、200℃で1時間乾燥し、次いで600℃で2時間焼
成した。焼成後の貴金属含有量は白金(P L)1.o
g/ Q 、ロジウム(Rh)0.2g/ (l テア
−) タ。This alumina-coated catalyst carrier was immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride at a predetermined concentration, pulled up, dried at 200°C for 1 hour, and then calcined at 600°C for 2 hours. The precious metal content after firing is platinum (PL) 1. o
g/Q, rhodium (Rh) 0.2 g/(l tear) ta.
次いで、900℃で3時間加熱処理したCeO2粉末8
00gと水和アルミナ200gとをボールミルを用いて
、昆合し、この混合粉末に水1100ccを加えて混練
し、被覆層コート用スラリー液を得た。該スラリー液を
撹拌しながら先に作った触媒担体を浸漬したのち、引き
上げて、余分なスラリー液を高圧エアブロ−で除去し、
その後150℃で3時間乾燥し、700°Cで3時間焼
成した。これによって、触媒担体l上に形成された触媒
層2(Pt、Rhを含む)の上面に、80重量%のCe
O2と20重量%のγ−アルミナとからなる被覆層3が
形成されてなる排気ガス浄化用触媒が得られた(第1図
参照)。CeO2 powder 8 was then heat-treated at 900°C for 3 hours.
00g and 200g of hydrated alumina were combined using a ball mill, and 1100cc of water was added to this mixed powder and kneaded to obtain a slurry liquid for coating the coating layer. While stirring the slurry liquid, the previously prepared catalyst carrier was immersed, and then pulled up and the excess slurry liquid was removed by high-pressure air blowing.
Thereafter, it was dried at 150°C for 3 hours and fired at 700°C for 3 hours. As a result, 80% by weight of Ce is deposited on the upper surface of the catalyst layer 2 (containing Pt and Rh) formed on the catalyst carrier
An exhaust gas purifying catalyst was obtained in which a coating layer 3 consisting of O2 and 20% by weight of γ-alumina was formed (see FIG. 1).
また、上記実施例で得られた排気ガス浄化用触媒の耐熱
テスト後のtt C浄化性能を、Centの加熱前処理
を行なわなかった触媒(比較例)と比較して評価テスト
を行ったところ、第3図及び第4図に示す結果が得られ
た。In addition, an evaluation test was conducted by comparing the tt C purification performance of the exhaust gas purification catalyst obtained in the above example after the heat resistance test with that of the catalyst (comparative example) that was not subjected to Cent heating pretreatment. The results shown in FIGS. 3 and 4 were obtained.
なお、活性測定条件を、空燃比A/F=14.7±0.
9、空間速度S、V= 600(to/firとして評
価テストを行った。The activity measurement conditions were air-fuel ratio A/F=14.7±0.
9. Evaluation test was conducted with space velocity S, V = 600 (to/fir).
上記評価テストの結果によると、本発明の実施例により
製造された排気ガス浄化用触媒と比較例との性能差は、
フレッシュ時ならびに比較的触媒温度が低い場合には明
確でないが、触媒温度が高くなると、顕昔に表れる。こ
のことは、加熱前処理によってCe Otのシンタリン
グが抑制された結果にほかならない。According to the results of the above evaluation test, the performance difference between the exhaust gas purification catalyst manufactured according to the example of the present invention and the comparative example is as follows.
This is not obvious when the catalyst is fresh or when the catalyst temperature is relatively low, but it becomes apparent when the catalyst temperature becomes high. This is nothing but the result that sintering of Ce Ot was suppressed by the heating pretreatment.
本実施例においては、酸化セリウムの被覆層中における
含有量を80重量%としているが、CeO。In this example, the content of cerium oxide in the coating layer is 80% by weight, but CeO.
含有量は、50〜95重量%の範囲とすることができる
。The content can range from 50 to 95% by weight.
一般に、被覆層中のCeO,含有量が減少するに従って
触媒性能は次第に低下し、50%以下では急激に低下す
る。その理由は、CeO,の濃度が低下すると、活性成
分との相互作用が得られなくなるからである。ちなみに
、被覆層中におけるCeO。Generally, as the CeO content in the coating layer decreases, the catalyst performance gradually decreases, and below 50%, the catalyst performance decreases rapidly. The reason is that when the concentration of CeO decreases, interaction with the active ingredient is no longer obtained. By the way, CeO in the coating layer.
の含有量(重量%)に対する400℃におけるCOの浄
化率(%)の変化を測定した結果が第5図に示されてい
る。本結果は、活性測定条件を、空燃比A/F= 14
.7±0.9、空間速度5J=60000/Hrとし、
台上エンジンにおいて排気ガス温度850℃で300
II r運転した耐久テスト後の触媒を用いて評価した
ものである。これによれば、Ce Otが50%以下に
なるとCO浄化率が大幅に低下して(・る。The results of measuring changes in the CO purification rate (%) at 400° C. with respect to the content (% by weight) of CO are shown in FIG. This result shows that the activity measurement conditions are air-fuel ratio A/F=14.
.. 7±0.9, space velocity 5J=60000/Hr,
300 at an exhaust gas temperature of 850℃ in a bench engine
This is an evaluation using a catalyst after a durability test conducted in IIr. According to this, when CeOt falls below 50%, the CO purification rate decreases significantly (・ru).
一方、CeO,の含有量が高くなると、触媒活性は向上
するが、Ce Oy自体の結合力が弱いために、物理的
強度(耐剥舷性)が減少し、耐久性が低減する。ちなみ
に1、被覆層中におけるC e Otの含有量(重量%
)を変化させて、剥離テストを行ったとこる、男−1に
示す法要が得られたーここで一当I!ll量−(テスト
前のコート付着屯−テスト後のコート付着量)/(テス
ト前のコート付着量)、また、テスト方法としては、直
径1インチ、高さ1インチの円筒テストピースを600
℃で30分間加熱、次に25℃の水中で冷却という手順
を三日繰り返した後、充分乾燥し、剥離量を測定する方
法が採用された。On the other hand, when the content of CeO increases, the catalytic activity improves, but since the bonding force of CeOy itself is weak, the physical strength (resistance to peeling) decreases and the durability decreases. Incidentally, 1. The content of C e Ot in the coating layer (wt%)
) was changed and a peel test was performed, and the memorial service shown in Man-1 was obtained - here it is! ll amount - (Coat adhesion volume before test - Coat adhesion amount after test) / (Coat adhesion amount before test) Also, as a test method, 600 cylindrical test pieces with a diameter of 1 inch and a height of 1 inch were used.
After repeating the procedure of heating at ℃ for 30 minutes and then cooling in 25 ℃ water for three days, it was thoroughly dried and the amount of peeling was measured.
表−1 上記剥離テストの結果から、被覆層中のCeO。Table-1 From the results of the above peel test, CeO in the coating layer.
含有量は、95%以下とするのが好ましいことがわかる
。It can be seen that the content is preferably 95% or less.
前記被覆層の触媒担体に対する付着割合が5重量%以下
では触媒層の表面を効果的に被覆することができなくな
るため、触媒性能が急激に低下し、40重量%を越える
と、活性成分と排気ガスとの接触が阻害されるため、急
激に触媒性能が低下する。If the adhesion ratio of the coating layer to the catalyst carrier is less than 5% by weight, the surface of the catalyst layer cannot be effectively coated, resulting in a rapid decline in catalyst performance, and if it exceeds 40% by weight, active components and exhaust gas Since contact with gas is inhibited, catalyst performance rapidly decreases.
このことを勘案すると、被覆層の付着割合を5〜40重
量%とするのが望ましい。なお、被覆層の厚さは、20
〜40μとするのが望ましい。Taking this into consideration, it is desirable that the adhesion ratio of the coating layer be 5 to 40% by weight. The thickness of the coating layer is 20
It is desirable to set it to 40μ.
(発明の効果)
収車の如く 、本発明方法によれば、活性触媒成分(P
t、 Rh、等)を含有する触媒層と、CeO。(Effect of the invention) According to the method of the present invention, the active catalyst component (P
t, Rh, etc.) and a catalyst layer containing CeO.
を含有する被覆層とが分離された触媒かえられるととも
に、CeO,の高温加熱処理によって、被覆層中でのC
eO,の熱安定性が増大せしめられることとなるので、
活性触媒成分とceO*とが化合物を形成することがな
くなるばかりでなく、高温条件下における(:、 e
Otのンンタリングによる性能低下をも防止することが
でき、排気ガス浄化性能を著しく向上させることができ
るという優れた効果がある。In addition to replacing the catalyst separated from the coating layer containing CeO, carbon in the coating layer is removed by high-temperature heat treatment of CeO.
Since the thermal stability of eO, will be increased,
Not only does the active catalyst component and ceO* not form a compound, but also (:, e
This has the excellent effect of being able to prevent performance deterioration due to Ot interpolation and significantly improving exhaust gas purification performance.
さらに、触媒層上面かCe O2を含む被覆層で被覆さ
れるところから、触媒層が還元雰囲気になり易くなり、
排気ガス中のNOxの浄化性能が一段と向上するという
利点もある。Furthermore, since the top surface of the catalyst layer is covered with a coating layer containing CeO2, the catalyst layer is likely to be in a reducing atmosphere.
There is also the advantage that the purification performance of NOx in exhaust gas is further improved.
第1図は、本発明にかかる排気ガス浄化用触媒の製造方
法により製造された触媒の一例を示す拡大図、第2図は
、本発明の製造方法におけるCeO7の加熱前処理温度
に対するHC浄化率の変化を示す特性図、第3図は、本
発明の実施例により得られた触媒と比較例とにおける触
媒加熱温度に対するHC浄化率が50%となる触媒人口
温度の変化(耐熱テスト後)を示す特性図、第4図は、
本発明の実施例と比較例とにおける触媒加熱温度に対す
る触媒入口温度400℃でのHC浄化率の変化を示す特
性図、第5図は、排気ガス浄化用触媒における被覆層中
のCent含有量(重量%)に対する排気ガス中のCO
浄化率(%)の変化を示す特性図である。
l・・・・・触媒担体
2・・・・・触媒層
3・・・・・被覆層
出 願 人 マ ツ ダ 株式会社 外1名/・・・
・・触媒担体
2・・・・・触媒層
3・・・・・被!12層
熱処理温度(°C)
触媒加熱温度(’CX 30 Hr )触媒加熱温度(
℃×50Ir)
被覆層中におけるCeO2含*ra(…量%)第5図FIG. 1 is an enlarged view showing an example of a catalyst manufactured by the method for manufacturing an exhaust gas purification catalyst according to the present invention, and FIG. 2 is an enlarged view showing the HC purification rate with respect to the heating pretreatment temperature of CeO7 in the manufacturing method of the present invention. FIG. 3 shows the change in the catalyst population temperature (after the heat resistance test) at which the HC purification rate is 50% with respect to the catalyst heating temperature in the catalyst obtained by the example of the present invention and the comparative example. The characteristic diagram shown in Fig. 4 is as follows.
FIG. 5 is a characteristic diagram showing the change in HC purification rate at a catalyst inlet temperature of 400°C with respect to the catalyst heating temperature in Examples and Comparative Examples of the present invention. CO in exhaust gas relative to weight %)
FIG. 3 is a characteristic diagram showing changes in purification rate (%). l...Catalyst carrier 2...Catalyst layer 3...Coating layer Applicant: Mazda Motor Corporation and 1 other person/...
...Catalyst carrier 2...Catalyst layer 3...Covered! 12-layer heat treatment temperature (°C) Catalyst heating temperature ('CX 30 Hr) Catalyst heating temperature ('CX 30 Hr)
℃×50Ir) CeO2 content in the coating layer *ra (…amount %) Figure 5
Claims (1)
なる群から選ばれた少なくとも一種類の触媒成分を含有
する触媒層を担持し、該触媒層上に、CeO_2を80
0〜1000℃で1〜5時間加熱処理したのちアルミナ
と混合してコートした被覆層を形成することを特徴とす
るエンジンの排気ガス浄化用触媒の製造方法。1. A catalyst layer containing at least one catalyst component selected from the group consisting of platinum, palladium, and rhodium is supported on a catalyst carrier, and 80% of CeO_2 is placed on the catalyst layer.
A method for producing a catalyst for purifying engine exhaust gas, which comprises heat-treating at 0 to 1000°C for 1 to 5 hours and then mixing with alumina to form a coated coating layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60211638A JPS6271541A (en) | 1985-09-24 | 1985-09-24 | Production of catalyst for cleaning up exhaust gas of engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60211638A JPS6271541A (en) | 1985-09-24 | 1985-09-24 | Production of catalyst for cleaning up exhaust gas of engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6271541A true JPS6271541A (en) | 1987-04-02 |
JPH0582257B2 JPH0582257B2 (en) | 1993-11-18 |
Family
ID=16609088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60211638A Granted JPS6271541A (en) | 1985-09-24 | 1985-09-24 | Production of catalyst for cleaning up exhaust gas of engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6271541A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011104485A (en) * | 2009-11-13 | 2011-06-02 | Toyota Motor Corp | Catalyst for purifying exhaust gas |
JP2019531883A (en) * | 2016-09-02 | 2019-11-07 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company | Improved NOx trap |
-
1985
- 1985-09-24 JP JP60211638A patent/JPS6271541A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011104485A (en) * | 2009-11-13 | 2011-06-02 | Toyota Motor Corp | Catalyst for purifying exhaust gas |
JP2019531883A (en) * | 2016-09-02 | 2019-11-07 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company | Improved NOx trap |
JP2022169500A (en) * | 2016-09-02 | 2022-11-09 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | Improved NOx trap |
Also Published As
Publication number | Publication date |
---|---|
JPH0582257B2 (en) | 1993-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3956437B2 (en) | Exhaust gas purification catalyst | |
JPH0338250A (en) | Exhaust gas purification catalyst | |
JPH0760117A (en) | Exhaust gas purifying catalyst | |
JP2730750B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JPH0626672B2 (en) | Exhaust purification catalyst and method of manufacturing the same | |
WO2006046316A1 (en) | Catalyst for exhaust gas purification | |
JPH05237390A (en) | Catalyst for purification of exhaust gas | |
JPS59127649A (en) | Catalyst for purifying exhaust gas | |
JPS63156545A (en) | Catalyst for purifying exhaust gas | |
JPH08131830A (en) | Catalyst for purification of exhaust gas | |
JPH01127044A (en) | Catalyst for clarifying exhaust gas | |
JPS6271538A (en) | Catalyst for cleaning up exhaust gas of engine | |
JPS6271536A (en) | Catalyst for cleaning up exhaust gas of engine | |
JPH11285644A (en) | Production of catalyst | |
JPS62282641A (en) | Production of catalyst for purifying exhaust gas | |
JPH0578378B2 (en) | ||
JPH0622675B2 (en) | Engine exhaust gas purification catalyst | |
JPS6271541A (en) | Production of catalyst for cleaning up exhaust gas of engine | |
JPS6271540A (en) | Catalyst for cleaning up exhaust gas of engine | |
JPS6031828A (en) | Catalyst for purifying exhaust gas and its preparation | |
JPS6178438A (en) | Monolithic catalyst for purifying exhaust gas | |
JPH05277370A (en) | Catalyst for purification of exhaust gas from engine | |
JP2533516B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JPH0578379B2 (en) | ||
JP3826476B2 (en) | Exhaust gas purification catalyst and method for producing the same |