JPS626906A - Production of polyester fiber - Google Patents
Production of polyester fiberInfo
- Publication number
- JPS626906A JPS626906A JP14455285A JP14455285A JPS626906A JP S626906 A JPS626906 A JP S626906A JP 14455285 A JP14455285 A JP 14455285A JP 14455285 A JP14455285 A JP 14455285A JP S626906 A JPS626906 A JP S626906A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- spinning
- polyester
- diameter
- particle diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
- Artificial Filaments (AREA)
Abstract
Description
【発明の詳細な説明】
[技術分野]
本発明は無機微粒子含有ポリエステル繊維を5000m
/分以上の超高速で溶融紡糸して得る方法に関する。ざ
らに詳しくは5000m/分以上の超高速紡糸を行なう
に際し、糸切れがなく、パック内圧上昇も少なく、かつ
長時間安定に紡糸し、かつ欠陥のない超高速紡糸糸を得
る方法に関する。Detailed Description of the Invention [Technical Field] The present invention is directed to the production of polyester fibers containing inorganic fine particles in a length of 5000 m.
The present invention relates to a method of obtaining the present invention by melt spinning at an ultra-high speed of 1 minute or more. More specifically, the present invention relates to a method for obtaining ultrahigh-speed spun yarn without yarn breakage, little increase in pack internal pressure, stable spinning for a long period of time, and no defects when performing ultrahigh-speed spinning at 5000 m/min or more.
[従来技術及びその問題点]
ポリエステルは無機微粒子、主に酸化チタンを用途に応
じて添加して紡糸するのが一般的である。かかるポリエ
ステルを溶融紡糸する場合、1000〜3500m/分
の紡糸速度で行なう □のが一般的であり、かつこ
の程度の速度では紡糸性も安定しており、かつ均一な糸
条が得られる。[Prior art and its problems] Polyester is generally spun by adding inorganic fine particles, mainly titanium oxide, depending on the purpose. When such polyester is melt-spun, it is generally carried out at a spinning speed of 1,000 to 3,500 m/min, and at this speed, spinnability is stable and uniform yarns can be obtained.
一方、近年紡糸速度はますます高速化されてきており、
これに伴って高速紡糸技術も長足の進歩を遂げているが
、紡糸速度が5000m/分以上になると、急激に紡糸
中の糸切れや単糸切れが発生し始め、安定した紡糸はで
きないのが現状である。これを解決するため、例えば米
国特許第4,134.’ 882@明細書等で、吐出す
る糸の半径方向の配向度分布を小さくする紡糸方法等が
提案されている。On the other hand, spinning speeds have been increasing rapidly in recent years.
Along with this, high-speed spinning technology has also made great progress, but when the spinning speed exceeds 5000 m/min, yarn breakage and single yarn breakage suddenly begin to occur during spinning, making stable spinning impossible. This is the current situation. To solve this problem, for example, US Pat. No. 4,134. ' 882@ specification etc. propose a spinning method that reduces the radial orientation distribution of discharged yarn.
又、特開昭56−96913号公報には糸切れ抑制のた
め超高速紡糸における分子配向時の結晶化を抑制する方
法が提案されているが、これらの結晶化を抑制する方法
を用いても工業生産プロセスの規模になると安定した紡
糸成績が得られないのが実情である。さらに得られた超
高速紡糸糸中にはボイドあるいはクラック状の欠陥が存
在し、糸物性に悪影響を及ぼすなどの問題があり、これ
らは解決されていない。In addition, Japanese Patent Application Laid-open No. 56-96913 proposes a method of suppressing crystallization during molecular orientation during ultrahigh-speed spinning in order to suppress yarn breakage, but even if these methods of suppressing crystallization are used, The reality is that stable spinning results cannot be obtained at the scale of industrial production processes. Furthermore, there are problems such as the presence of voids or crack-like defects in the obtained ultra-high speed spun yarn, which have an adverse effect on the physical properties of the yarn, and these problems have not been solved.
一方、超高速紡糸時の糸切れ抑制のため、特開昭59−
1712号公報に示されるような、特定のパック内で)
濾過を実施すると改善の効果は一応認められるものの、
紡糸開始時のパック内圧が高くなり、さらに経時による
内圧の上昇も大きく、パックライフが短くなる等の致命
的問題は十分に解決されていないのが現状である。On the other hand, in order to suppress yarn breakage during ultra-high speed spinning,
(within certain packs, such as those shown in Publication No. 1712)
Although the improvement effect can be recognized by implementing filtration,
At present, fatal problems such as an increase in the internal pressure of the pack at the start of spinning, a large increase in the internal pressure over time, and a shortening of the pack life have not been sufficiently resolved.
本発明者らは無機微粒子添加ポリエステルでの超高速紡
糸における前述の問題点の原因について鋭意検討を続け
た結果、
■ポリマ中に添加した無機微粒子の大ぎざや分散状態が
、糸切れ及び得られる超高速紡糸に生じるボイドあるい
はクラック状欠陥と大いに関係すること、
■粒子スラリ化工程で使用する特定の粒子分散剤がポリ
マ中に添加した無機微粒子の分散状態、あるいは紡糸時
のパック内圧上昇に密接に関係すること、
を見い出し本発明に到達したのである。The inventors of the present invention have continued to study the causes of the above-mentioned problems in ultra-high speed spinning using polyester containing inorganic fine particles, and have found that: (1) large serrations and dispersion of the inorganic fine particles added to the polymer can cause yarn breakage and This is largely related to voids or crack-like defects that occur during ultra-high-speed spinning. ■Specific particle dispersants used in the particle slurry process are closely related to the dispersion state of inorganic fine particles added to the polymer, or the increase in pack internal pressure during spinning. The present invention was achieved by discovering the following:
[発明の目的]
本発明は無機微粒子添加ポリエステルを5000m/分
以上の超高速で紡糸を行なうに際し、糸切れなく、長時
間安定して紡糸でき、かつ欠陥のない超高速紡糸糸を得
ることを目的とするものでおる。[Objective of the Invention] The present invention aims to obtain an ultra-high-speed spun yarn that can be stably spun for a long time without yarn breakage and has no defects when spinning polyester containing inorganic fine particles at an ultra-high speed of 5000 m/min or more. It is the purpose.
[発明の構成]
前記した本発明の目的は −
一トモ1=た1−外爵爵分各乎÷ポリエステル繊維を製
造するに際し、平均−次粒子径が2μ以下の不活性無機
−粒子(Adzを溶媒中で無機微粒子(A>の平均−次
粒子径の10〜4. OO0倍の径を有し、かつ平均=
#粒子径が0.5mm以下の粒子(B)、分散剤(C)
としてリン化合物およびアンモニア又は低級アミン化合
物を溶媒とともに攪拌し、しかるのち粒子(B)を分離
して得た、無機微粒子(A>のスラリをポリエステルの
製造反応系に添加して得たポリエステルを5000m/
分以上の紡糸速度で溶融紡糸することを特徴とするポリ
エステル繊維の製造方法によって達成される。[Structure of the Invention] The object of the present invention described above is - When producing polyester fiber, inert inorganic particles (Adz) having an average primary particle size of 2μ or less Inorganic fine particles (A> have a diameter of 10 to 4.OO0 times the average particle diameter of A>, and the average =
#Particles with a particle diameter of 0.5 mm or less (B), dispersant (C)
5000 m /
This is achieved by a method for producing polyester fiber characterized by melt spinning at a spinning speed of 1 minute or more.
以下に、詳細に本発明について説明する。The present invention will be explained in detail below.
本発明の最も重要な構成要件は超高速紡糸に供するポリ
マ中の無機微粒子の分散方法の規定にある。すなわち、
■平均−次粒子径が2μ以下の不活性無機微粒子(A>
を
■無機微粒子(A>の平均−次粒子径の10〜4000
倍の径を有し、かつ平均粒子径が0゜5mm以下の粒子
と、
■分散剤(C)としてリン化合物およびアンモニア又は
低級アミン化合物を溶媒中でともに攪拌し、
■しかるのち、粒子(B)を分離して得た無機微粒子ス
ラリを用いることが必須である。The most important component of the present invention lies in the definition of a method for dispersing inorganic fine particles in a polymer subjected to ultra-high speed spinning. That is, ■ Inert inorganic fine particles with an average primary particle size of 2μ or less (A>
■ Inorganic fine particles (A> average particle diameter of 10 to 4000
Particles having twice the diameter and an average particle diameter of 0°5 mm or less, (1) a phosphorus compound and ammonia or a lower amine compound as a dispersant (C) are stirred together in a solvent, (2) the particles (B ) is essential to use an inorganic fine particle slurry obtained by separating.
本発明ではさらに上記方法で得た無機微粒子スラリをポ
リエステルの製造系に添加して得たポリエステルを50
00m/分以上で超高速紡糸する。In the present invention, a polyester obtained by adding the inorganic fine particle slurry obtained by the above method to a polyester production system is further used.
Ultra high speed spinning is performed at 00 m/min or more.
本発明の不活性無機微粒子(△)の平均−次粒子径は2
μ以下とする必要があり、好ましくは1μ以下、更に好
ましくは0.7μ以下のものが使用されるが、合成時2
μ以下のものであれば、そのまま使用することができる
。一方、2μより大きい粒子径を有する合成無機化合物
や天然無機化合物の場合には、あらかじめ平均−次粒子
径が2μ以下となるように粉砕、分級して使用する。The average particle diameter of the inert inorganic fine particles (△) of the present invention is 2
It is necessary to make it less than μ, preferably less than 1μ, more preferably less than 0.7μ, but at the time of synthesis 2
If it is less than μ, it can be used as is. On the other hand, in the case of a synthetic inorganic compound or a natural inorganic compound having a particle size larger than 2μ, it is used after being crushed and classified in advance so that the average particle size is 2μ or less.
平均−次粒子径が2μより大きい場合には紡糸時に糸切
れや系中にタラツクやボイドの欠陥が発生し、また紡糸
パック内圧上昇の原因となり好ましくない。If the average primary particle diameter is larger than 2 .mu., it is not preferable because yarn breakage occurs during spinning, defects such as troughs and voids occur in the system, and the internal pressure of the spinning pack increases.
本発明の粒子(B)の平均径は不活性無機微粒子(A>
の平均−次粒子径の10〜4000倍であり、かつ0.
5mm以下であることが必要である。好ましくは15〜
3000倍、更に好ましくは20〜2000倍の粒子径
の粒子が使用され、粒子(B)の粒子径は0.3mm以
下が好ましく、更に好ましくは0.1mm以下のものが
使用される。The average diameter of the particles (B) of the present invention is inert inorganic fine particles (A>
is 10 to 4000 times the average primary particle diameter, and 0.
It is necessary that it is 5 mm or less. Preferably 15~
Particles with a particle size of 3000 times, more preferably 20 to 2000 times, are used, and the particle size of particles (B) is preferably 0.3 mm or less, and more preferably 0.1 mm or less.
本発明の粒子(B)の平均粒子径は不活性無機微粒子(
A>の平均−次粒子径の10倍より小さい場合にはスラ
リとの分離が困難となり、一方、4000倍より大きい
場合や、40QO倍よりも小さくてもO,!5mmを越
える場合には、分散効率が不十分となり凝集を解くこと
ができない。The average particle diameter of the particles (B) of the present invention is the inert inorganic fine particles (
If it is smaller than 10 times the average particle diameter of A>, it will be difficult to separate it from the slurry, while if it is larger than 4000 times or smaller than 40QO times, O,! If it exceeds 5 mm, the dispersion efficiency will be insufficient and the agglomeration cannot be broken down.
本発明の平均−次粒子径が2μ以下の不活性無機粒子(
△)とは、二酸化チタン、シリカ、アルミナ、ジルコニ
ア等の金属酸化物、カオリナイト、タルク、ゼオライト
等の酸化物、炭酸カルシウム等の炭酸塩、リン酸リチウ
ム、リン酸カルシウム等のリン酸塩、F7A酸カルシウ
ム、硫酸バリウム等の硫酸塩などの無機化合物で平均−
次粒子径が2μ以下のものをいう。前記無機化合物のう
ちでも特に二酸化チタン、カオリナイト、タルク、炭酸
カルシウムおよび硫酸バリウムが好ましい。Inert inorganic particles of the present invention having an average primary particle diameter of 2 μ or less (
△) refers to metal oxides such as titanium dioxide, silica, alumina, and zirconia, oxides such as kaolinite, talc, and zeolite, carbonates such as calcium carbonate, phosphates such as lithium phosphate, and calcium phosphate, and F7A acid. Average - for inorganic compounds such as sulfates such as calcium and barium sulfate
Refers to particles with a secondary particle diameter of 2μ or less. Among the inorganic compounds, titanium dioxide, kaolinite, talc, calcium carbonate, and barium sulfate are particularly preferred.
粒子(B)としては、アルミナ、ジルコニア等のセラミ
ックス、ガラス、スチールなどの粒子が使用される。中
でもセラミックス、ガラスの小球体が好ましい。As the particles (B), particles of ceramics such as alumina and zirconia, glass, steel, etc. are used. Among these, ceramic and glass small spheres are preferred.
本発明で使用する分散剤(C)としては、リン化合物お
よびアンモニア又は低級アミン化合物が使用される。好
ましいリン化合物としては、リン酸、亜リン酸、ホネホ
ン酸およびこれらの部分エステル化合物であり、具体的
には、リン酸、亜リン酸、リン酸モノエチルエステル、
リン酸メチルエチルエステル、リン酸ジ1チルエステル
、メチルホスホン酸、フェニルホスボン酸、モノメチル
エステル等を挙げることができる。もちろん、これらの
リン化合物の2種以上を併用してもかまわない。この中
でも、リン酸、亜リン酸、酸性リン酸エステルが特に好
ましい。As the dispersant (C) used in the present invention, a phosphorus compound and ammonia or a lower amine compound are used. Preferred phosphorus compounds include phosphoric acid, phosphorous acid, phonephonic acid, and partial ester compounds thereof; specifically, phosphoric acid, phosphorous acid, phosphoric acid monoethyl ester,
Examples include methyl ethyl phosphate, di-1-thyl phosphoric acid ester, methylphosphonic acid, phenylphosphonic acid, and monomethyl ester. Of course, two or more of these phosphorus compounds may be used in combination. Among these, phosphoric acid, phosphorous acid, and acidic phosphoric acid esters are particularly preferred.
アンモニア又は低級アミン化合物とは一般式R1R2R
3R4N又はR+R+R3R4N+X−(式中R1〜R
1は水素基又はC5以下の低級アルキル基、X−は水酸
基、ハロゲン等の対イオンを示す)で示される1〜4級
アミン化合物が使用され、具体的にはアンモニア、メチ
ルアミン、メチルエチルアミン、トリエチルアミン、テ
トラエチルアンモニウムハイドけtザイド、ジメチルプ
ロピルアミンを挙げることができる。勿論、これらのア
ンモニア又は低級アミン化合物の2種以上を併用しても
かまわない。特に好ましいアンモニア又は低級アミン化
合物としては3級アミン、4級アンモニウム化合物であ
る。アルキル基の炭素数がl上であると重合時ポリマの
着色等問題が生じ好ましくない。リン化合物およびアン
モニア又は低級アミン化合物の添加は、スラリ調整時に
別々に又は同時に添加してもかまわない1、前もって適
当な溶媒中で混合し、添加する方法も好適である。好ま
しいリン化合物/アンモニア又は低級アミン化合物のモ
ル比は5/1〜115であり、より好ましくは2/1〜
1/4、最も好ましくは1/1〜1/3である。Ammonia or lower amine compound has the general formula R1R2R
3R4N or R+R+R3R4N+X- (in the formula R1 to R
1 is a hydrogen group or a lower alkyl group of C5 or less, and X- is a counter ion such as a hydroxyl group or a halogen). Mention may be made of triethylamine, tetraethylammonium hydroxide, and dimethylpropylamine. Of course, two or more of these ammonia or lower amine compounds may be used in combination. Particularly preferred ammonia or lower amine compounds are tertiary amines and quaternary ammonium compounds. If the number of carbon atoms in the alkyl group is 1 or more, problems such as coloring of the polymer during polymerization occur, which is not preferable. The phosphorus compound and ammonia or lower amine compound may be added separately or simultaneously at the time of slurry preparation; however, it is also preferable to mix them in a suitable solvent in advance and then add them. The preferred molar ratio of phosphorus compound/ammonia or lower amine compound is 5/1 to 115, more preferably 2/1 to 115.
It is 1/4, most preferably 1/1 to 1/3.
モル比が上記範囲外になると分散効果が不十分になり、
ポリマ中で粒子が再度凝集する傾向がある。分散剤の添
加量はリン化合物とアンモニア又は低級アミン化合物の
総計として、使用する無機微粒子に対し重量比で、好ま
しくは1/1〜0.0001/1、より好ましくは0.
5/1〜0.001/1、最も好ましくは0.3/1〜
0.01/1である。分散剤の添加量が重量比で1/1
より多い場合には重合速度の低下、ジエチレングリコー
ルの副生量が増加する傾向にあり、一方0.0001/
1より少ない場合には分散性の改良効果が小さい。If the molar ratio is outside the above range, the dispersion effect will be insufficient,
There is a tendency for particles to reagglomerate in the polymer. The amount of the dispersant added is preferably 1/1 to 0.0001/1, more preferably 0.0001/1, as the total amount of the phosphorus compound and ammonia or lower amine compound, relative to the inorganic fine particles used.
5/1 to 0.001/1, most preferably 0.3/1 to
It is 0.01/1. The amount of dispersant added is 1/1 by weight
If the amount is more than 0.0001/2, the polymerization rate tends to decrease and the amount of diethylene glycol by-produced increases.
When it is less than 1, the effect of improving dispersibility is small.
本発明で使用するスラリ溶媒としては、水、メタノール
、エタノール、エチレングリコール等のアルコニル、ト
ルエン、キシレン、ペンタン等の炭化水素等を挙げるこ
とができる。特に好ましくはポリエステル製造原料とし
て使用するグリコールと同一のグリコールを使用するの
がポリマの品質の低下が少なく、また工程の汚染、紡糸
や操作の容易性から好ましい。Examples of the slurry solvent used in the present invention include water, alconyls such as methanol, ethanol, and ethylene glycol, and hydrocarbons such as toluene, xylene, and pentane. It is particularly preferable to use the same glycol as the one used as the raw material for producing polyester, since this will cause less deterioration in the quality of the polymer and will also prevent contamination during the process and facilitate spinning and operations.
攪拌処理は、用いる不活性無機微粒子(A)の種類、平
均−次粒子径および共存して使用する粒子(B)の種類
および径により変化するが通常の攪拌装置を用いて行な
うことができる。The stirring treatment can be carried out using a conventional stirring device, although it varies depending on the type and average particle size of the inert inorganic fine particles (A) used and the type and size of the particles (B) used together.
すなわち、プロペラ翼、かい型具、タービン翼、−十字
翼ディスク等の攪拌翼を1枚又は複数枚装置した攪拌装
置で、好ましくは100〜10゜ooorpm、更に好
ましくは5分〜10時間、更に好ましくは30分〜8時
間攪拌して行なう。That is, a stirring device equipped with one or more stirring blades such as propeller blades, paddle-shaped tools, turbine blades, and cross-shaped discs is used, and the stirring speed is preferably 100 to 10°ooorpm, more preferably 5 minutes to 10 hours, and more preferably Preferably, stirring is carried out for 30 minutes to 8 hours.
分散方法は連続式処理でも、回分式処理でもかまわない
が、回分式処理がより好ましい。The dispersion method may be continuous processing or batch processing, but batch processing is more preferable.
本発明の攪拌処理を行なったスラリは;濾過、デカンテ
ーション、その伯の方法で粒子(B)を分離し、そのま
ま、あるいはスラリを再度−過又はスーパーデカンタ等
で、スラリ中に残存する粗大粒子を除去した後、ポリエ
ステルの製造反応系に添加される。The slurry that has been subjected to the stirring treatment of the present invention: Separate the particles (B) by filtration, decantation, or the other method, and then use the slurry as it is, or filter the slurry again or use a super decanter to remove coarse particles remaining in the slurry. is added to the reaction system for producing polyester.
本発明の無機微粒子グリコールスラリはポリエステル製
造工程の任意の時点で添加することができる。好適には
エステル化又はエステル交換反応開始以前から重縮合開
始まで、すなわち、重合反応中、ポリマの固有粘度が0
.2を越えない間に添加される。本発明の不活性微粒子
(A>の添加量は本発明の効果を十分に発揮させるため
には重合反応後、得られるポリマに対して5.0重量%
以下の量添加することが好ましい。The inorganic fine particle glycol slurry of the present invention can be added at any point in the polyester manufacturing process. Preferably, the intrinsic viscosity of the polymer is 0 from before the start of the esterification or transesterification reaction to the start of the polycondensation reaction, that is, during the polymerization reaction.
.. Added at no more than 2 times. In order to fully exhibit the effects of the present invention, the amount of inert fine particles (A>) added is 5.0% by weight based on the polymer obtained after the polymerization reaction.
It is preferable to add the following amount.
また、本発明で言うポリエステルとは、繊維に成形し得
るポリエステルを主体とするものであればどのようなも
のでもよく、たとえばポリエチレンテレフタレート、ポ
リ−1,4−シクロヘキシレンジメチレンテレフタレー
ト、ポリテトラメチレンテレフタレート、ポリエチレン
2.6−ナフタリンジカルボキシレート、ポリエチレン
−α、゛β−ビス(2−クロルフェノキシ)エタン−4
,4′−ジカルボキシレート等が挙げられるが、ポリエ
ステル製造工程で添加する無機微粒子の凝集を促進させ
ない程度に、主成分以外の一部を他の二官能性カルボン
酸成分で置き換えたポリエステルであっても、またエチ
レングリコール成分の一部を他のジオール成分で置き換
えたポリエステルであってもよい。Furthermore, the polyester referred to in the present invention may be any polyester that can be formed into fibers, such as polyethylene terephthalate, poly-1,4-cyclohexylene dimethylene terephthalate, polytetramethylene Terephthalate, polyethylene 2.6-naphthalene dicarboxylate, polyethylene-α, β-bis(2-chlorophenoxy)ethane-4
, 4'-dicarboxylate, etc., but it is a polyester in which part of the non-main component is replaced with another difunctional carboxylic acid component to the extent that it does not promote aggregation of inorganic fine particles added in the polyester manufacturing process. It may also be a polyester in which a part of the ethylene glycol component is replaced with another diol component.
更に、各種添加剤、たとえば易染剤、ケ11燃剤、制電
剤、親水剤を必要に応じて共重合又は混合したポリエス
テルであってもよい。Furthermore, the polyester may be copolymerized or mixed with various additives, such as a dye-facilitating agent, a fuel agent, an antistatic agent, and a hydrophilic agent, as required.
このように、得られた不活性無機微粒子含有ポリエステ
ルを5000m/分以上の超高速紡糸することにより、
従来の方法における超高速紡糸の問題点が解決される。In this way, by spinning the obtained inert inorganic fine particle-containing polyester at an ultra-high speed of 5000 m/min or more,
The problems of ultra-high speed spinning in conventional methods are solved.
また、5000m/分以上の超高速紡糸で得られる単糸
デニールが5d以下、更に2d以下の糸に関してその効
果は著しい。Further, the effect is remarkable for yarns with a single yarn denier of 5 d or less, further 2 d or less obtained by ultra-high speed spinning of 5000 m/min or more.
ここで、本発明の5000m/分以上の紡糸速度の意味
を明確にするため、溶融紡糸工程の具体的な実施形態の
一例を第1図をもって説明する。溶融されたポリマはパ
ックハウジング2内のパック1から吐出されて糸条とな
る。吐出された糸条は冷却筒3で冷却固化されて給油装
置4にて給油され、5000m/分以上の紡糸速度で回
転する第1ゴテイロール(以下第1GDという)5と第
2ゴテイロール(以下第2GDという)5′を経て巻取
116に巻き取られる。Here, in order to clarify the meaning of the spinning speed of 5000 m/min or more in the present invention, an example of a specific embodiment of the melt spinning process will be described with reference to FIG. 1. The molten polymer is discharged from the pack 1 within the pack housing 2 and becomes yarn. The discharged yarn is cooled and solidified in a cooling cylinder 3, and then oiled in an oil supply device 4, where it is transferred to a first Gotei roll (hereinafter referred to as 1st GD) 5 and a second Gotei roll (hereinafter referred to as 2nd GD) that rotate at a spinning speed of 5000 m/min or more. ) 5' and is then wound onto a winder 116.
このように紡糸速度とは、口金から吐出された糸条が最
初に接する駆動ロール(第1GD)の表面速度を意味し
、巻取速度ではない。ただし、第1GD、第2GDを用
いない場合は巻取速度が紡糸速度となる。As described above, the spinning speed refers to the surface speed of the drive roll (first GD) with which the yarn discharged from the spinneret first contacts, and is not the winding speed. However, when the first GD and the second GD are not used, the winding speed becomes the spinning speed.
また、本発明においては第1GDと第2GDで連続的に
延伸を行なういわゆる直接紡糸延伸等も適用される。In addition, in the present invention, so-called direct spinning drawing, etc., in which drawing is performed continuously in the first GD and the second GD, is also applied.
[発明の効果]
本発明の特許請求の範囲に記載した無機微粒子の分散剤
及び分散方法を採用した特定の無機微粒子含有スラリを
用いると、ポリマ中に存在する凝集粒子量が極めて少な
く、かつ均一分散せしめたポリエステルを得ることがで
きるため、かかるポリニス東チルを5000m/分以上
の紡糸速度で溶融紡糸することによって、次のような効
果が発揮される。[Effects of the invention] When a specific inorganic fine particle-containing slurry employing the inorganic fine particle dispersant and dispersion method described in the claims of the present invention is used, the amount of aggregated particles present in the polymer is extremely small and uniform. Since a dispersed polyester can be obtained, the following effects can be exhibited by melt-spinning such polyvarnish tochill at a spinning speed of 5000 m/min or more.
すなわち、
(1)5000m/分以上の超高速紡糸において、糸切
れ、毛羽の発生もなく長時間にわたり安定して紡糸する
ことが可能となる。特に、細デニール糸の場合、その効
果が著しい。That is, (1) In ultra-high speed spinning of 5000 m/min or more, it becomes possible to perform stable spinning for a long period of time without yarn breakage or generation of fuzz. This effect is particularly remarkable in the case of fine denier yarns.
(2)5000m/分以上で安定して紡糸が可能となる
ことは超高速紡糸の高い生産性のメリットを生かし、ま
た、5000m/分以上の紡糸で得られる糸条は後で延
伸工程を経ずども実用繊維として十分使用できるため、
工程合理化メリットをも産み出す。従って、大幅なコス
トダウンができる。(2) Stable spinning at speeds of 5,000 m/min or higher takes advantage of the high productivity of ultra-high-speed spinning, and the yarn obtained by spinning at 5,000 m/min or higher undergoes a drawing process later. Because it can be used as a practical fiber,
It also produces process rationalization benefits. Therefore, it is possible to significantly reduce costs.
(3)得られる系中にはボイドあるいはクラック状の欠
陥がないため、均一性の高い繊維となり、糸物性も向上
する。(3) Since there are no defects such as voids or cracks in the resulting system, the fibers are highly uniform and the physical properties of the yarn are also improved.
(4)紡糸パック内圧上昇が少ないため、長時間にわた
り、安定して紡糸することが可能となる。(4) Since there is little increase in the internal pressure of the spinning pack, stable spinning can be performed over a long period of time.
以下本発明を実施例により更に詳細に説明する。The present invention will be explained in more detail below with reference to Examples.
なお。実施例中の物性は次のようにして測定した。In addition. The physical properties in Examples were measured as follows.
A、平均−次粒子径 BET方法で測定した。A, average particle size Measured using the BET method.
B、スラリ中粒度分布
光透過式遠心沈降型粒度分析器(島津製作所CP−2型
)で測定した。B. Particle size distribution in slurry Measured using a light transmission type centrifugal sedimentation type particle size analyzer (Shimadzu CP-2 model).
C,ポリマ中の凝集粗大粒子
少量のポリマを2枚のカバーグラス間にはさみ280’
Cにて溶融プレスし、急冷した後、顕微鏡観察し、複数
個の一次粒子同志が凝集し、粒径の粗くなった部分を凝
集粗大粒子と判定した。C. Agglomerated coarse particles in polymer A small amount of polymer is sandwiched between two cover glasses 280'
After melt-pressing at C and quenching, microscopic observation was performed, and portions where a plurality of primary particles aggregated with each other and the particle size became coarse were determined to be aggregated coarse particles.
粒子の分散性については、’1mm2に存在する平均−
次粒子径の4倍を越す大きさの凝集粗大粒子を観察して
次のように判定した。Regarding the dispersibility of particles, the average present in 1 mm2 -
Agglomerated coarse particles having a size exceeding 4 times the diameter of the next particle were observed and judged as follows.
1級:平均−次粒子径の4倍を越える大きさの凝集粗大
粒子が10個/mm2未満である。Grade 1: The number of aggregated coarse particles having a size more than four times the average primary particle diameter is less than 10 pieces/mm2.
2級:平均−次粒子径の4倍を越える大きさの凝集粗大
粒子が10個/mm2以上30個/mm2未満存在する
。2nd class: 10 or more and less than 30 aggregated coarse particles having a size of more than 4 times the average primary particle diameter are present.
3級:平均−次粒子径の4倍を越える大きざの凝集粗大
粒子が30個/mm2以上50個/mm2未満存在する
。Grade 3: Agglomerated coarse particles with a size more than 4 times the average primary particle diameter are present at 30 or more/mm2 but less than 50/mm2.
4級:平均−次粒子径の4倍を越える大きさの凝集粗大
粒子が50個/mm2以上存在する。Grade 4: 50 or more aggregated coarse particles with a size exceeding 4 times the average primary particle diameter are present.
D、固有粘度
O−クロロフェノールを溶媒として25°Cにおいて測
定した。D. Intrinsic viscosity measured at 25°C using O-chlorophenol as a solvent.
実施例1
平均一次粒子径0.37μの二酸化チタン12部にリン
酸0.4部、トリエチルアミン0゜4部、■ヂレングリ
]−ル100部および粒子径80μのガラスピーズ15
0部を、タービン翼を備えた攪拌装置に仕込み、200
Orpmで3時間攪拌した。攪拌終了後、400メツシ
ユの金網でガラスピーズを分離除去して二酸化チタンの
エチレングリコールスラリを得た。スラリ中の二酸化チ
タンの平均径は0.4μであった。 一方、ジメチルテ
レフタレート100部とエチレングリコール65部およ
び酢酸マンガン0.04部を仕込み140〜240’C
でエステル交換反応を行なった。次いで、三酸化アンチ
モン0.03部および前述した二酸化チタンのエチレン
グリコールスラリ3部を添加し、250〜290’Cで
高真空下に重合反応を行ない固有粘度0.65のポリマ
を得た。Example 1 12 parts of titanium dioxide with an average primary particle size of 0.37μ, 0.4 parts of phosphoric acid, 0.4 parts of triethylamine, 100 parts of dilene glycol, and 15 glass beads with a particle size of 80μ.
0 part was charged into a stirring device equipped with a turbine blade, and 200 parts
The mixture was stirred at Orpm for 3 hours. After stirring, the glass beads were separated and removed using a 400-mesh wire mesh to obtain an ethylene glycol slurry of titanium dioxide. The average diameter of titanium dioxide in the slurry was 0.4μ. On the other hand, 100 parts of dimethyl terephthalate, 65 parts of ethylene glycol, and 0.04 parts of manganese acetate were charged at 140-240'C.
The transesterification reaction was carried out. Next, 0.03 parts of antimony trioxide and 3 parts of the titanium dioxide ethylene glycol slurry described above were added, and a polymerization reaction was carried out under high vacuum at 250 to 290'C to obtain a polymer having an intrinsic viscosity of 0.65.
ポリマ中の粒子の分散状態を観察したところ凝集粗大粒
子は3個/mm2であり良好な分散状態であった。jq
られたポリマを用いて、紡糸温度305℃、口金単孔当
りの吐出ff11.3Q/分、パック内で粒度120メ
ツシユのサンド層を通過後、紡糸速度8200m/分で
溶融紡糸した。その結果を表1に示す。表1から明らか
な通り、本発明の方法によれば、紡糸時の糸切れ、整経
時の毛羽の発生が少なく、かつ本実施例で得られた糸を
透過光顕微鏡で観察した結果、系中にボイドやクラック
がない超高速紡糸糸が得られた。When the dispersion state of particles in the polymer was observed, the number of agglomerated coarse particles was 3/mm2, indicating a good dispersion state. jq
The resulting polymer was melt-spun at a spinning temperature of 305° C., a discharge rate of 11.3 Q/min per single hole of the nozzle, and a spinning speed of 8200 m/min after passing through a sand layer with a particle size of 120 mesh in a pack. The results are shown in Table 1. As is clear from Table 1, according to the method of the present invention, the occurrence of yarn breakage during spinning and fuzz during warping is small, and as a result of observing the yarn obtained in this example with a transmitted light microscope, it was found that An ultra-high speed spun yarn with no voids or cracks was obtained.
比較実施例に
酸化チタンのエチレングリコールスラリ調整法において
、リン酸0.4部、トリメチルアミン0.4部を添加し
ない以外は実施例1と全く同様にしてスラリを調整した
。得られたスラリ中の二酸化チタンの平均径は0.5μ
であった。In Comparative Example, a slurry was prepared in the same manner as in Example 1 except that 0.4 part of phosphoric acid and 0.4 part of trimethylamine were not added in the method for preparing an ethylene glycol slurry of titanium oxide. The average diameter of titanium dioxide in the obtained slurry was 0.5μ
Met.
得られたスラリを用いて実施例1と全く同様にしてポリ
エチレンテレフタレートを製造し、固有粘度0.65の
ポリマを得た。Using the obtained slurry, polyethylene terephthalate was produced in exactly the same manner as in Example 1 to obtain a polymer having an intrinsic viscosity of 0.65.
ポリマ中の粒子の分散状態を観察したところ、凝集粗大
粒子は10個/mm2で分散状態は満足すべきものでな
かった。When the state of dispersion of the particles in the polymer was observed, the number of aggregated coarse particles was 10 pieces/mm2, and the state of dispersion was not satisfactory.
得られたポリマを用い、紡糸温度305°C1口金単孔
当りの吐出量1.30/分、パック内で粒度120メツ
シユのサンド層を通過後、紡糸速度8200m/分で溶
融紡糸した。結果を表1に示す。The obtained polymer was melt-spun at a spinning temperature of 305° C., a discharge rate of 1.30/min per single spinneret hole, and a spinning speed of 8,200 m/min after passing through a sand layer with a particle size of 120 mesh in a pack. The results are shown in Table 1.
表1から明らかな通り、紡糸時のパック寿命は本発明の
半分以下であり、一方糸切れ回数は本発明の2倍近く発
生した。As is clear from Table 1, the pack life during spinning was less than half that of the present invention, and on the other hand, the number of yarn breakages occurred nearly twice that of the present invention.
比較実施例に
酸化チタンのエチレングリコールスラリ調整法において
、リン酸0.4部、i〜リメチルアミン0.4部、粒子
径80μのガラスピーズを添加しない以外は実施例1と
全く同様にしてスラリを調整した。得られたスラリ中の
二酸化チタンの平均径は0.7μであった。In the comparative example, a slurry was prepared in the same manner as in Example 1, except that 0.4 parts of phosphoric acid, 0.4 parts of i~lymethylamine, and glass beads with a particle size of 80μ were not added in the method for preparing an ethylene glycol slurry of titanium oxide. It was adjusted. The average diameter of titanium dioxide in the obtained slurry was 0.7μ.
得られたスラリを用いて実施例1と全く同様にしてポリ
エチレンテレフタレートを製造し、固有粘度0.65の
ポリマを得た。Using the obtained slurry, polyethylene terephthalate was produced in exactly the same manner as in Example 1 to obtain a polymer having an intrinsic viscosity of 0.65.
ポリマ中の粒子の分散状態を観察したところ、凝集粗大
粒子は35個/mm2で分散状態は不良であった。 ゛
得られたポリマを用いて、紡糸温度305°C10金単
孔当りの吐出a1.3Q/分、パック内で粒度120メ
ツシユのサンド層を通過後、紡糸速度8200m/分で
溶融紡糸した。結果を表1に示す。When the state of dispersion of particles in the polymer was observed, the number of aggregated coarse particles was 35/mm2, indicating that the state of dispersion was poor. The obtained polymer was melt-spun at a spinning temperature of 305° C., a discharge rate of 1.3 Q/min per 10-gold single hole, and a spinning speed of 8200 m/min after passing through a sand layer with a particle size of 120 mesh in a pack. The results are shown in Table 1.
表1から明らかな通り、紡糸時のパック寿命は短く、糸
切れも多発した。また、得られた系中にはボイドやクラ
ック状の欠陥が多数存在していた。As is clear from Table 1, the pack life during spinning was short and yarn breakage occurred frequently. In addition, many voids and crack-like defects were present in the obtained system.
実施例2
二酸化チタンの平均−次粒子径と使用するガラスピーズ
の径および分散剤の種類と添加量を表2に示したように
変更してスラリを調製したこと以外は実施例1と同様に
してポリエチレンテレフタレートを合成した。得られた
ポリエチレンテレフタレートを紡糸温度295°C10
金単孔当り吐出12.7q/分、パック内で粒度100
メツシユのサンド層を通過後、紡糸速度7800m/分
で溶融紡糸した。ポリマ中の分散状態及び紡糸時の糸切
れ発生回数、紡糸後のパック内圧上昇の程度は表2に示
す通りである。Example 2 A slurry was prepared in the same manner as in Example 1, except that the average primary particle diameter of titanium dioxide, the diameter of the glass beads used, and the type and amount of dispersant added were changed as shown in Table 2. Polyethylene terephthalate was synthesized. The obtained polyethylene terephthalate was spun at a temperature of 295°C10
Gold discharge per single hole 12.7q/min, particle size 100 in the pack
After passing through the sand layer of the mesh, it was melt-spun at a spinning speed of 7,800 m/min. Table 2 shows the dispersion state in the polymer, the number of times yarn breakage occurs during spinning, and the degree of increase in pack internal pressure after spinning.
表2において、実験NO,1は不活性無機微粒子(Δ)
の平均−次粒子径が大きいため、紡糸時のパック内圧が
大きく糸切れ発生回数も多い。In Table 2, Experiment No. 1 is inert inorganic fine particles (Δ)
Since the average primary particle size of the fiber is large, the internal pressure of the pack during spinning is large and the number of occurrences of yarn breakage is high.
また、実験No、 2は粒子(B)の粒子径が大きいた
め、ポリマ中の分散状態が悪く、紡糸時のパック内圧上
昇が大きく、また糸切れ回数も多いい。実験No、 3
は分散剤を使用していず、また実験No、 4.5は本
発明外の分散剤である。このため、ポリマ中の分散状態
も悪く、紡糸後のパック内圧上昇も中〜大であり実用に
適さなかった。In addition, in Experiment No. 2, since the particle size of the particles (B) was large, the dispersion state in the polymer was poor, the pack internal pressure increased greatly during spinning, and the number of yarn breakages was high. Experiment No. 3
Experiment No. 4.5 did not use a dispersant, and Experiment No. 4.5 used a dispersant other than the present invention. For this reason, the state of dispersion in the polymer was poor, and the pack internal pressure after spinning was medium to large, making it unsuitable for practical use.
本発明の無機粒子(A>の実施例である実験N。Experiment N is an example of the inorganic particles (A>) of the present invention.
、6は紡糸時のパック内圧上昇の程度が小さく、かつ糸
切れ回数も少ないため、極めて長時間安定に紡糸するこ
とができた。, 6 had a small increase in pack internal pressure during spinning, and the number of yarn breakages was also small, so that spinning could be carried out stably for an extremely long period of time.
第1図は本発明の溶融紡糸工程の一例を示す概略図であ
る。
1:パック
2二パンクハウジング
3:冷却筒
4:給油装置
5:第1GD
5′:第2GD
6:捲取機FIG. 1 is a schematic diagram showing an example of the melt spinning process of the present invention. 1: Pack 22 Punk housing 3: Cooling cylinder 4: Oil supply device 5: 1st GD 5': 2nd GD 6: Winding machine
Claims (1)
中で無機微粒子(A)の平均一次粒子径の10〜400
0倍の径を有し、かつ平均次粒子径が0.5mm以下の
粒子(B)、分散剤(C)としてリン化合物およびアン
モニア又は低級アミン化合物を溶媒とともに撹拌し、し
かるのち粒子(B)を分離して得た、無機微粒子(A)
のスラリをポリエステルの製造反応系に添加して得たポ
リエステルを5000m/分以上の紡糸速度で溶融紡糸
することを特徴とするポリエステル繊維の製造方法。[Scope of Claims] When producing polyester fibers, inert inorganic fine particles (A) having an average primary particle size of 2 μm or less are mixed in a solvent with an average primary particle size of 10 to 400 μm of the average primary particle size of the inorganic fine particles (A).
Particles (B) having a diameter of 0 times the diameter and an average particle diameter of 0.5 mm or less, a phosphorus compound and ammonia or a lower amine compound as a dispersant (C) are stirred with a solvent, and then particles (B) Inorganic fine particles (A) obtained by separating
1. A method for producing polyester fibers, which comprises melt-spinning a polyester obtained by adding a slurry of the above to a polyester production reaction system at a spinning speed of 5000 m/min or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14455285A JPS626906A (en) | 1985-07-03 | 1985-07-03 | Production of polyester fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14455285A JPS626906A (en) | 1985-07-03 | 1985-07-03 | Production of polyester fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS626906A true JPS626906A (en) | 1987-01-13 |
Family
ID=15364934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14455285A Pending JPS626906A (en) | 1985-07-03 | 1985-07-03 | Production of polyester fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS626906A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01280016A (en) * | 1988-04-26 | 1989-11-10 | Kuraray Co Ltd | Production of polyester fiber emitting far-infrared ray |
JPH01314723A (en) * | 1988-06-13 | 1989-12-19 | Kuraray Co Ltd | Far-infrared light irradiating polyester fiber |
JP2009097116A (en) * | 2007-10-17 | 2009-05-07 | Toray Ind Inc | Method for producing conjugate fiber |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5845227A (en) * | 1981-09-14 | 1983-03-16 | Toray Ind Inc | Preparation of polyester having excellent particle dispersibility |
JPS58118822A (en) * | 1982-01-08 | 1983-07-15 | Toray Ind Inc | Production of polyester |
JPS60112849A (en) * | 1983-11-24 | 1985-06-19 | Teijin Ltd | Polyester for fiber use |
-
1985
- 1985-07-03 JP JP14455285A patent/JPS626906A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5845227A (en) * | 1981-09-14 | 1983-03-16 | Toray Ind Inc | Preparation of polyester having excellent particle dispersibility |
JPS58118822A (en) * | 1982-01-08 | 1983-07-15 | Toray Ind Inc | Production of polyester |
JPS60112849A (en) * | 1983-11-24 | 1985-06-19 | Teijin Ltd | Polyester for fiber use |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01280016A (en) * | 1988-04-26 | 1989-11-10 | Kuraray Co Ltd | Production of polyester fiber emitting far-infrared ray |
JPH01314723A (en) * | 1988-06-13 | 1989-12-19 | Kuraray Co Ltd | Far-infrared light irradiating polyester fiber |
JP2009097116A (en) * | 2007-10-17 | 2009-05-07 | Toray Ind Inc | Method for producing conjugate fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3748819B2 (en) | Catalyst for producing polyester and method for producing polyester using the same | |
US4668732A (en) | Polyester composition and process for producing the same | |
JP6100979B2 (en) | Polytrimethylene terephthalate composition, polyester fiber and method for producing them | |
US5207959A (en) | Process for obtaining pet yarns with an improved production efficiency | |
JPS626913A (en) | Production of polyester yarn | |
JPS626906A (en) | Production of polyester fiber | |
JPS6215325A (en) | Production of polyester fiber | |
JPS6411068B2 (en) | ||
JPH0466928B2 (en) | ||
JPH0133572B2 (en) | ||
JP2565676B2 (en) | Aromatic polyester fiber manufacturing method | |
JPH0561367B2 (en) | ||
JPS6218423A (en) | Preparation of titanium slurry for polyester | |
JPH0672180B2 (en) | Method for preparing particle slurry for polyester | |
JPS6123623A (en) | Production of polyester | |
JPH11217492A (en) | Polyester resin composition for fiber | |
JPS6218424A (en) | Production of polyester | |
JPH0376715A (en) | Production of particle-containing polyester | |
JPS61225312A (en) | Production of aromatic polyester yarn | |
JPH0433888B2 (en) | ||
JPH01185355A (en) | Polyester composition | |
JPS63530B2 (en) | ||
JPS626911A (en) | Inorganic fine particle-containing polyester yarn | |
JPS6239166B2 (en) | ||
JPS63304022A (en) | Production of silica-containing polyester |