[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6268510A - Method for preparing ceramics filter material - Google Patents

Method for preparing ceramics filter material

Info

Publication number
JPS6268510A
JPS6268510A JP20957685A JP20957685A JPS6268510A JP S6268510 A JPS6268510 A JP S6268510A JP 20957685 A JP20957685 A JP 20957685A JP 20957685 A JP20957685 A JP 20957685A JP S6268510 A JPS6268510 A JP S6268510A
Authority
JP
Japan
Prior art keywords
slurry
support
impregnated
mineral powder
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20957685A
Other languages
Japanese (ja)
Inventor
Soji Nishiyama
総治 西山
Takashi Tominaga
孝志 富永
Hideshi Asoshina
阿蘇品 英志
Tsunetaka Matsumoto
松本 恒隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP20957685A priority Critical patent/JPS6268510A/en
Publication of JPS6268510A publication Critical patent/JPS6268510A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

PURPOSE:To obtain ceramic filtering material having excellent separation performance, large permeability, and high mechanical strength, by impregnating such substances that can be removed afterward into a porous ceramics before slurry of mineral powder is applied thereon. CONSTITUTION:Porous ceramics support having porosity of 30-60% and average pore diameter of 0.1-30mum is used. Water, organic liquid and solid which are removable after the slurry has been applied are impregnated into this support. When the quantity of slurry which is impregnated is in the range of 80-99.5% of the pore volume, the slurry is impregnated slightly into the body of the support, resulting in higher strength thereof. Under this condition, slurry composed of mineral powder, binder of mineral matter, and dispersion medium is applied over the support. Minute particles of metallic oxides with a diameter of tens - thousands Angstrom are used as mineral powder. Thickness of coating layer is prepared so as to become 1-50mum after firing. Said support is fired at a temperature of 500-1,200 deg.C after impregnated matters have been removed by drying.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は限外ろ適用として特に好適なセラミックスろ
過材の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a ceramic filter medium particularly suitable for ultrafilter applications.

〔従来の技術〕[Conventional technology]

ろ過材としてセラミックス多孔体を用いて限外ろ過など
を行う場合には、その分離効率を考えると、ろ過材は可
能な限り薄くすることが望ましい。
When performing ultrafiltration using a ceramic porous body as a filter medium, it is desirable to make the filter medium as thin as possible in consideration of its separation efficiency.

しかし、セラミックス多孔体を単独で薄膜状に成形する
ことは困難で、また強度面においても問題である。そこ
で、透過の障害とならないような、孔径が大きくかつ充
分な強度を有する多孔質セラミックスからなる支持体層
と、分離機能を有する可能な限り薄い微孔層とからなる
二重構造、あるいはさらに上記両層間に中間層を設けた
多層構造のろ過材が提案されている。
However, it is difficult to form a ceramic porous body alone into a thin film, and there are also problems in terms of strength. Therefore, a dual structure consisting of a support layer made of porous ceramics with a large pore size and sufficient strength that does not impede permeation, and a microporous layer as thin as possible with a separation function, or the above-mentioned A multilayered filter medium with an intermediate layer between both layers has been proposed.

このような多層構造を有するろ過材を作製するのに、こ
れまで多孔質セラミックス上に微粉末を付着させて粉末
層を形成する方法が採用されている。この粉末層を形成
する方法としては乾式法と湿式法とがある。乾式法には
、多孔質セラミックスからなる支持管内に弾性体チュー
ブを挿入するとともに、上記支持管と上記チューブとの
間に微粉末を充填し、その後上記チューブ内の圧力を高
め、空隙内の微粉末を上記支持管に圧着せしめる方法な
どがある(たとえば特開昭50−77410号公報)。
In order to produce a filter medium having such a multilayer structure, a method of depositing fine powder on porous ceramics to form a powder layer has been employed. There are two methods for forming this powder layer: a dry method and a wet method. In the dry method, an elastic tube is inserted into a support tube made of porous ceramics, fine powder is filled between the support tube and the tube, and then the pressure inside the tube is increased to remove the fine particles in the void. There is a method of compressing the powder onto the support tube (for example, Japanese Patent Laid-Open No. 77410/1983).

一方、湿式法としては、多孔質セラミックスからなる支
持管を回転させ、支持管内部に微粉末スラリーを供給し
、遠心力によって微粉末を付着させる遠心成形法(たと
えば特開昭50−19057号公報、同50−7741
1号公報)や、スラリーの表面電位を利用して電気泳動
によって多孔質セラミックスからなる支持管にスラリー
を付着させる電気泳動法などがある。
On the other hand, as a wet method, a centrifugal molding method in which a support tube made of porous ceramics is rotated, a fine powder slurry is supplied into the support tube, and the fine powder is adhered by centrifugal force (for example, Japanese Patent Laid-Open No. 19057/1983) , 50-7741
1), and an electrophoresis method in which slurry is deposited on a support tube made of porous ceramics by electrophoresis using the surface potential of the slurry.

また、多層構造のセラミックスろ過材を得る他の方法と
して、粗孔性基質からなるセラミックスに浸漬などによ
り微粒子を充填する方法(たとえば特開昭57−182
964号公報)や、ち密層と支持体層とからなるセラミ
ックス多層構造体をち密層の構成粒子よりさらに小さな
活性層用粒子を含むスラリーに浸漬、含浸する方法(た
とえば特開昭60−97023号公報)などが、提案さ
れている。
Another method for obtaining a ceramic filter medium with a multilayer structure is to fill ceramics made of a coarse porous matrix with fine particles by immersion (for example, in Japanese Patent Laid-Open No. 57-182
No. 964), or a method of immersing a ceramic multilayer structure consisting of a dense layer and a support layer in a slurry containing active layer particles smaller than the particles constituting the dense layer (for example, Japanese Patent Laid-Open No. 60-97023). Public bulletin), etc. have been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、これらの従来法では、いずれも分離機能
を有する微孔性薄膜層の機械的強度が充分でな(、たと
えば限外ろ過に用いた場合、洗浄などの操作により薄膜
層が容易に欠落してしまう問題があった。また、微孔性
薄膜層を構成する微粒子を焼結することによりある程度
粒子間の接合強度が得られるものの、高い接合強度を得
ようとすると粒子の焼結が進みすぎてろ過材としての透
過性が著しく悪化して分離効率が低下してしまうという
問題があった。
However, in all of these conventional methods, the mechanical strength of the microporous thin membrane layer that has a separation function is insufficient (for example, when used for ultrafiltration, the thin membrane layer is easily broken due to operations such as washing). In addition, although it is possible to obtain a certain degree of bonding strength between particles by sintering the fine particles that make up the microporous thin film layer, in order to obtain high bonding strength, the sintering of the particles may progress too much. However, there was a problem in that the permeability as a filter medium deteriorated significantly and the separation efficiency decreased.

したがって、この発明は、上記従来法の如き問題点を持
たない、限外ろ適用などとしてその分離性能にすぐれる
とともに、透過性が大きくて分離効率が良好であり、し
かも機械的強度のすぐれたセラミックスろ過材を得るこ
とを目的とする。
Therefore, the present invention does not have the problems of the conventional methods described above, has excellent separation performance when applied to ultrafiltration, has high permeability, good separation efficiency, and has excellent mechanical strength. The purpose is to obtain ceramic filter media.

〔問題点を解決するための手段〕[Means for solving problems]

この発明者らは、上記目的を達成するために鋭意検討し
た結果、孔径が大きくてかつ充分な機械的強度を有する
多孔質セラミックスからなる支持体にあらかじめ水、有
機溶剤などの物質を含浸させておき、これに鉱物質粉体
からなる微粒子とともに水ガラスなどの無機質バインダ
ーを含ませた特定のスラリーを塗布したのち、これを焼
成することにより、上記支持体上に上記微粒子が上記バ
インダーからなるフリットにより融着された構造の微孔
性薄膜層を形成するようにしたときには、限外ろ適用な
どとしてその分離性能にすぐれるとともに、透過性が太
き(て分離効率が良好であり、しかも機械的強度の大き
いセラミックスろ過材が得られることを知り、この発明
を完成するに至った。
As a result of intensive studies to achieve the above object, the inventors found that a support made of porous ceramics having a large pore size and sufficient mechanical strength was impregnated with a substance such as water or an organic solvent in advance. A specific slurry containing fine particles of mineral powder and an inorganic binder such as water glass is applied to this, and by firing this, the fine particles are deposited on the support to create a frit made of the binder. When a microporous thin film layer with a fused structure is formed, it has excellent separation performance when applied to ultrafiltration, has high permeability (and has good separation efficiency, and is easy to use mechanically). After learning that it was possible to obtain a ceramic filter medium with high mechanical strength, he completed this invention.

すなわち、この発明は、多孔質セラミックス上に鉱物質
粉体と分散媒とこの分散媒に可溶な無機質バインダーと
を含むスラリーを塗布し、その後焼成して微孔性薄膜層
を形成する方法であって、かつ上記スラリーを塗布する
前の多孔質セラミックスに上記スラリーの塗布後に除去
可能な物質をあらかじめ含浸させておくことを特徴とす
るセラミックスろ過材の製造方法に係るものである。
That is, the present invention is a method in which a slurry containing mineral powder, a dispersion medium, and an inorganic binder soluble in the dispersion medium is applied onto porous ceramics, and then fired to form a microporous thin film layer. The present invention relates to a method for producing a ceramic filter medium, characterized in that porous ceramics before applying the slurry are impregnated with a substance that can be removed after applying the slurry.

このように、この発明の方法においては、支持体トして
の多孔質セラミックスに最終的につまりスラリーの塗布
後に除去可能な物質をあらかじめ含浸させているので、
この上に塗布される微粉末スラリーは上記セラミックス
内にほとんど浸透しない。このため、上記スラリーに水
ガラスなどの分散媒に可溶性の無機質バインダーを含ま
せているにもかかわらず、形成される塗布層は均一な組
成を有するものとなる。
In this way, in the method of the present invention, the porous ceramic support is pre-impregnated with a substance that can be removed after the slurry is applied.
The fine powder slurry applied thereon hardly penetrates into the ceramic. Therefore, even though the slurry contains an inorganic binder soluble in a dispersion medium such as water glass, the formed coating layer has a uniform composition.

一方、微粉末スラリーに上記の如き分散媒に可溶性の無
機質バインダーを含ませたことにより、多孔質セラミッ
クス上への塗布層の形成が容易となって、ひび割れのな
い塗膜性状の良好な塗布層を形成できる。しかも、上記
バインダーは焼成時に鉱物質粉体粒子のフリット成分と
して作用し、つまり上記バインダーが有機質バインダの
ように焼成時に焼失することなく溶融して、鉱物質粉体
粒子間を適度に埋めて各粒子を融着する機能を果たすた
め、粉体粒子間の接合強度が大きくなり、かつ焼成段階
でのひび割れ防止にも貢献する。
On the other hand, by including an inorganic binder soluble in the dispersion medium as described above in the fine powder slurry, it becomes easy to form a coating layer on porous ceramics, resulting in a coating layer with good coating properties and no cracks. can be formed. Furthermore, the binder acts as a frit component for the mineral powder particles during firing, meaning that unlike organic binders, the binder does not burn out during firing, but instead melts and appropriately fills the spaces between the mineral powder particles. Since it functions to fuse particles together, it increases the bonding strength between powder particles and also contributes to preventing cracks during the firing stage.

したがって、この発明の方法にて形成される微孔性薄膜
層は、鉱物質粉体粒子が無機質バインダーからなるフリ
ットにより均一組成にて融着接合された微細な空隙構造
を有して、かつひび割れのない膜性状に非常にすぐれた
ものとなるため、これが限外ろ適用などとしての分離性
能の向上に大きく寄与するとともに、分離効率を支配す
る透過性の維持にも好結果をもたらすことになる。
Therefore, the microporous thin film layer formed by the method of the present invention has a fine pore structure in which mineral powder particles are fused and bonded with a uniform composition by a frit made of an inorganic binder, and has a fine pore structure with no cracks. The membrane properties are very good, with no pores, which greatly contributes to improving separation performance when used in ultrafiltration applications, and also brings good results to maintaining permeability, which governs separation efficiency. .

しかも、この微孔性薄膜層は、多孔質セラミックスから
なる支持体に接合支持されているが、前記焼成段階で無
機質バインダーからなるフリットが上記セラミックスの
内部に一部流入することによってその界面強度の向上に
大きく寄与するため、上記支持体との接合強度が極めて
大きいものとなる。このため、長期間使用しても上記薄
膜層が支持体から剥離することも、また汚染時の洗浄に
際して簡単に欠落するおそれもなく、機械的強度に非常
にすぐれたセラミックスろ過材を提供することが可能と
なる。
In addition, this microporous thin film layer is bonded and supported by a support made of porous ceramics, but during the firing step, a part of the frit made of an inorganic binder flows into the ceramics, thereby reducing the interfacial strength. Since it greatly contributes to improvement, the bonding strength with the support body becomes extremely high. Therefore, it is possible to provide a ceramic filter medium which has excellent mechanical strength and has no fear that the thin film layer peels off from the support even after long-term use, nor is it easily chipped during cleaning in the event of contamination. becomes possible.

さらに、このろ過材は、実質的にセラミックス。Furthermore, this filter material is essentially ceramic.

鉱物質粉体および無機質バインダーからなる無機物質の
みで構成されているため、耐圧性、耐熱性。
Composed only of inorganic substances consisting of mineral powder and inorganic binder, so it is resistant to pressure and heat.

耐薬品性などにすぐれており、この点からも各種流体の
分離用、特に限外ろ適用として非常に好適である。
It has excellent chemical resistance, and from this point of view, it is very suitable for separating various fluids, especially for ultrafiltration.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明において支持体として用いる多孔質セラミック
スとしては、たとえばシリカ、アルミナ、マグネシア、
チタニア、ジールコニアなどを主成分とする焼結体が挙
げられる。このセラミックスの空孔率は通常30〜60
%、平均孔径は通常0.1〜30μmの範囲のものが好
ましい。
Examples of porous ceramics used as a support in this invention include silica, alumina, magnesia,
Examples include sintered bodies containing titania, zirconia, etc. as main components. The porosity of this ceramic is usually 30 to 60.
%, and the average pore diameter is usually preferably in the range of 0.1 to 30 μm.

この発明においては、まず上記の多孔質セラミックスに
、後述するスラリーの塗布後に除去可能な水、有機液体
または固体からなる物質を含浸させる。有機液体として
は、アルコール、アセトン、グリセリンなどの極性溶剤
やトルエン、ヘキサンのような非極性溶剤を用いること
ができ、また有機固体としてはポリエチレングリコール
などの有機高分子を用いることができる。これら物質の
中でも特に好ましくは、水または水に可溶な有機溶剤を
用いるのがよい。
In this invention, the porous ceramic described above is first impregnated with a substance made of water, an organic liquid, or a solid that can be removed after applying a slurry as described below. As the organic liquid, a polar solvent such as alcohol, acetone, or glycerin, or a nonpolar solvent such as toluene or hexane can be used, and as the organic solid, an organic polymer such as polyethylene glycol can be used. Among these substances, it is particularly preferable to use water or a water-soluble organic solvent.

これらの物質を多孔質セラミックスに含浸させるもので
あるが、この際含浸量が空孔容積の80〜99.5%と
なるように含浸量をある程度低減させるようにすると、
すなわち多孔質セラミックスの空孔のごく一部が未含浸
状態となるように含浸させた場合には、スラリーまたは
その液状成分が僅かにセラミックス内に入り込み、この
状態で焼成されることにより、アンカーリング効果をよ
り高めることができる。
These substances are impregnated into porous ceramics, but at this time, if the amount of impregnation is reduced to a certain extent so that the amount of impregnation is 80 to 99.5% of the pore volume,
In other words, when porous ceramics is impregnated so that only a small portion of the pores are left unimpregnated, the slurry or its liquid component slightly enters the ceramic and is fired in this state, resulting in an anchor ring. The effect can be further enhanced.

つぎに、このようにして水、有機溶剤などを含浸させた
多孔質セラミックスに、鉱物質粉体、無機質バインダー
および分散媒からなるスラリーを塗布する。鉱物質粉体
としては、クレー、シリカなどの天然系、あるいは金属
酸化物、金属炭化物・金属窒化物などの人造系を用いる
ことができるが・人造シリカ、アールミナ、チタニア、
ジルコニアなどの金属酸化物からなる数lO〜数100
人の微粒子を用いることが好ましい。
Next, a slurry consisting of mineral powder, an inorganic binder, and a dispersion medium is applied to the porous ceramic impregnated with water, an organic solvent, etc. in this manner. As the mineral powder, natural types such as clay and silica, or artificial types such as metal oxides, metal carbides, and metal nitrides can be used. Artificial silica, alumina, titania,
Several liters to several hundreds of metal oxides such as zirconia
Preferably, human microparticles are used.

また、無機質バインダーとしては、塗布時においてスラ
リーに展延性を付与するとともに、焼成時においてフリ
ットとして骨材つまり鉱物質粉体の接着機能を有するも
のであって、たとえば水ガラスや金属アルコキシドの加
水分解物、ポリカルボシランなどの分散媒に可溶な無機
物を挙げることができる。さらに、分散媒としては、水
、アルコールなどの加熱乾燥により揮散除去しやすい媒
体が好ましく用いられる。
In addition, the inorganic binder imparts spreadability to the slurry during application and has the function of adhering aggregate, that is, mineral powder, as a frit during firing. Examples include inorganic substances soluble in dispersion media such as polycarbosilane and polycarbosilane. Furthermore, as the dispersion medium, a medium that can be easily volatilized and removed by heating and drying, such as water or alcohol, is preferably used.

このスラリーの粘度は、加える分散媒および無機質バイ
ンダーの量により適宜調節できるが、好ましくは鉱物質
粉体:分散媒:無機質バインダー−5〜40 : !1
5〜40:0.02〜20(重量比)の範囲とされる。
The viscosity of this slurry can be adjusted appropriately by the amounts of the dispersion medium and inorganic binder added, but preferably mineral powder:dispersion medium:inorganic binder -5 to 40:! 1
The range is 5-40:0.02-20 (weight ratio).

また、無機質バインダーの量は鉱物質粉体に対して0.
5重量%以下では焼成後の鉱物質粉体の接合強度が充分
でなく、50重量%以上では薄膜層が無孔化するので好
ましくない。
Further, the amount of the inorganic binder is 0.0% relative to the mineral powder.
If it is less than 5% by weight, the bonding strength of the mineral powder after firing will not be sufficient, and if it is more than 50% by weight, the thin film layer will become non-porous, which is not preferable.

スラリーの塗布方法は、支持体となる多孔質セラミック
スが平板状であれば、たとえばドクターブレード法によ
り、また管状であれば、たとえば管の内径より塗布厚み
分だけ小さな球や弾丸状物を通過させて管内面に塗布す
る方法などを任意に探用できるものである。この際の塗
布厚みとしては、最終的に乾燥し、焼成して形成される
微孔性薄膜層の厚みが一般に1〜50μm程度となるよ
うにするのがよい。
The slurry can be applied by, for example, a doctor blade method if the porous ceramic support is a flat plate, or by passing a ball or bullet-like object smaller than the inner diameter of the tube by the coating thickness if it is a tube. You can use any method you like to apply it to the inner surface of the tube. The coating thickness at this time is preferably such that the thickness of the microporous thin film layer that is finally formed by drying and firing is generally about 1 to 50 μm.

上記のようにして多孔質セラミックス上にスラリーを塗
布したのち、乾燥して、この乾燥工程で上記セラミック
スに含浸されている前記物質を除去するか、あるいは上
記乾燥工程では除去せずに炉内に入れて徐々に昇温しで
除去し、さらに500〜1,200℃で焼成することに
より、骨材となる鉱物質粉体を無機質バインダーからな
るフリットにより融着させ、目的とする多孔質セラミッ
クスからなる支持体層と微孔性薄膜層とからなる分離性
能2分離効率および機械的強度にすくれたろ過材を容易
に製造することができる。
After applying the slurry onto the porous ceramic as described above, it is dried and the substance impregnated in the ceramic is removed in this drying process, or it is not removed in the drying process and is placed in a furnace. By gradually raising the temperature and removing it, and further firing at 500 to 1,200℃, the mineral powder that becomes the aggregate is fused with a frit made of an inorganic binder, and the desired porous ceramic is It is possible to easily produce a filtration medium with excellent separation performance, 2 separation efficiency, and mechanical strength, which is composed of a support layer and a microporous thin film layer.

〔発明の効果〕 以上のように、この発明においては、多孔質セラミック
スからなる支持体にあらかじめ除去可能な物質を含浸さ
せておき、これに鉱物質粉体とさらに分散媒に可溶の無
機質バインダーとを含むスラリーを塗布し、その後焼成
するという簡華な方法により、分離性能9分離効率およ
び機械的強度にすぐれ、また耐圧性、耐熱性、耐薬品性
などにもすぐれる、各種流体の分離用、特に限外ろ適用
として好適な積層構造のセラミックスろ過材を得ること
ができる。
[Effects of the Invention] As described above, in this invention, a support made of porous ceramics is impregnated with a removable substance in advance, and mineral powder and an inorganic binder soluble in a dispersion medium are added to the support. Separation performance 9 Separation of various fluids with excellent separation efficiency and mechanical strength, as well as excellent pressure resistance, heat resistance, chemical resistance, etc., using a simple method of applying a slurry containing and then firing. It is possible to obtain a ceramic filter medium having a laminated structure suitable for use in applications, especially ultrafiltration.

〔実施例〕〔Example〕

つぎに、実施例によりこの発明をさらに詳細に説明する
Next, the present invention will be explained in more detail with reference to Examples.

実施例1 アルミナを主成分とする平均孔径0.4μm、空孔率5
0.1%で、厚み2.0flの多孔質セラミックス板を
水中に浸漬し、減圧することにより多孔質セラミックス
板内部に水を完全に含浸させた。さらに80°Cのオー
ブンを用いて乾燥させることにより、この多孔質セラミ
ックス板内部の空孔への水の充填率を98%に調節した
Example 1 Alumina-based material with average pore diameter of 0.4 μm and porosity of 5
0.1%, a porous ceramic plate with a thickness of 2.0 fl was immersed in water and the pressure was reduced to completely impregnate the inside of the porous ceramic plate with water. Further, by drying in an oven at 80°C, the filling rate of water into the pores inside this porous ceramic plate was adjusted to 98%.

つぎに、この含浸セラミックス板に、平均粒子径が20
0人の酸化アルミニウム28.8重量部と水ガラス10
.5重量部と水60.6重量部からなるスラリーを、塗
布量が固形分で1.8 x 10−3g/c4となるよ
うに塗布した。この塗布後、100℃で3時間乾燥して
、上記スラリーおよびセラミックス板中の水を除去した
のち、900°Cで焼成することにより、多孔質セラミ
ックスからなる支持体層と厚み9μmの微孔性薄膜層と
からなる、両層の密着性および接合強度の良好なセラミ
ックスろ過材が得られた。
Next, this impregnated ceramic plate was coated with an average particle size of 20
0 aluminum oxide 28.8 parts by weight and water glass 10
.. A slurry consisting of 5 parts by weight and 60.6 parts by weight of water was applied so that the coating amount was 1.8 x 10-3 g/c4 in terms of solid content. After this coating, the slurry and the water in the ceramic plate were removed by drying at 100°C for 3 hours, and then fired at 900°C to create a support layer made of porous ceramics and a microporous layer with a thickness of 9 μm. A ceramic filter medium consisting of a thin film layer and having good adhesion and bonding strength between both layers was obtained.

このろ過材を用いてラテックスの分離を試みたところ、
支持体層のみでは分離が不可能であった0、09μmの
ポリスチレンラテックスが99.9重量%の排除率で分
離された。一方、透水速度は杓1、0 m l /分−
ct−atmで、支持体層のみの場合と変化がなかった
When we tried to separate latex using this filter material, we found that
Polystyrene latex of 0.09 μm, which could not be separated using only the support layer, was separated with an exclusion rate of 99.9% by weight. On the other hand, the water permeation rate is 1,0 ml/min.
There was no change in ct-atm compared to the case with only the support layer.

実施例2 シリカを主成分とする平均孔径0.5μm、空孔率49
.0%で、厚み2.Onの多孔質セラミックス板をグリ
セリン中に浸漬し、減圧することにより多孔質セラミッ
クス板内部にグリセリンを完全に含浸させた。つぎに、
この含浸セラミックスに、平均粒子径が200人の酸化
チタン28.8重量部と水ガラス10.5重量部と水6
0.6重量部からなるスラリーを、塗布量が固形分で1
.8X10−’E/ crMとなるように塗布した。
Example 2 Mainly composed of silica, average pore diameter 0.5 μm, porosity 49
.. 0%, thickness 2. The porous ceramic plate of On was immersed in glycerin and the pressure was reduced to completely impregnate the inside of the porous ceramic plate with glycerin. next,
To this impregnated ceramic, 28.8 parts by weight of titanium oxide with an average particle size of 200, 10.5 parts by weight of water glass, and 6 parts by weight of water were added.
A slurry consisting of 0.6 parts by weight is coated with a solid content of 1
.. It was coated at 8×10-'E/crM.

その後、300℃で5時間保持して、グリセリンを除去
したのち、1.100℃で焼成することにより、多孔質
セラミックスからなる支持体層と厚み9μmの微孔性薄
膜層とからなる、両層の密着性および接合強度の良好な
セラミックスろ過材が得られた。このろ過材を用いてラ
テックスの分離を試みたとごろ、実施例1の場合と同様
の性能が得られた。
Thereafter, the glycerin was removed by holding at 300°C for 5 hours, and then firing at 1.100°C, resulting in a double layer consisting of a support layer made of porous ceramics and a microporous thin film layer with a thickness of 9 μm. A ceramic filter medium with good adhesion and bonding strength was obtained. When latex separation was attempted using this filter medium, performance similar to that of Example 1 was obtained.

Claims (4)

【特許請求の範囲】[Claims] (1)多孔質セラミックス上に鉱物質粉体と分散媒とこ
の分散媒に可溶な無機質バインダーとを含むスラリーを
塗布し、その後焼成して微孔性薄膜層を形成する方法で
あつて、かつ上記スラリーを塗布する前の多孔質セラミ
ックスに上記スラリーの塗布後に除去可能な物質をあら
かじめ含浸させておくことを特徴とするセラミックスろ
過材の製造方法。
(1) A method in which a slurry containing mineral powder, a dispersion medium, and an inorganic binder soluble in the dispersion medium is applied onto porous ceramics, and then fired to form a microporous thin film layer, A method for manufacturing a ceramic filter medium, characterized in that, before applying the slurry, the porous ceramic is impregnated with a substance that can be removed after the slurry is applied.
(2)鉱物質粉体が数10〜数100Åの粒子径を有す
る金属酸化物である特許請求の範囲第(1)項記載のセ
ラミックスろ過材の製造方法。
(2) The method for manufacturing a ceramic filter medium according to claim (1), wherein the mineral powder is a metal oxide having a particle size of several tens to several hundreds of angstroms.
(3)多孔質セラミックスにおける除去可能な物質の含
浸率が空孔容積の80〜99.5%である特許請求の範
囲第(1)項または第(2)項記載のセラミックスろ過
材の製造方法。
(3) The method for producing a ceramic filter medium according to claim (1) or (2), wherein the impregnation rate of the removable substance in the porous ceramic is 80 to 99.5% of the pore volume. .
(4)除去可能な物質が水または水に可溶な有機溶剤で
ある特許請求の範囲第(1)〜(3)項のいずれかに記
載のセラミックスろ過材の製造方法。
(4) The method for producing a ceramic filter medium according to any one of claims (1) to (3), wherein the removable substance is water or a water-soluble organic solvent.
JP20957685A 1985-09-21 1985-09-21 Method for preparing ceramics filter material Pending JPS6268510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20957685A JPS6268510A (en) 1985-09-21 1985-09-21 Method for preparing ceramics filter material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20957685A JPS6268510A (en) 1985-09-21 1985-09-21 Method for preparing ceramics filter material

Publications (1)

Publication Number Publication Date
JPS6268510A true JPS6268510A (en) 1987-03-28

Family

ID=16575119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20957685A Pending JPS6268510A (en) 1985-09-21 1985-09-21 Method for preparing ceramics filter material

Country Status (1)

Country Link
JP (1) JPS6268510A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274815A (en) * 1988-04-25 1989-11-02 Toto Ltd Production of ceramics filter
JPH0231811A (en) * 1988-06-04 1990-02-01 Herding Gmbh Filter for separating solid particle from hot gaseous or liquid medium
KR100430478B1 (en) * 2001-02-05 2004-05-10 박재구 Manufacturing method of porous ceramic filter for dust collection
WO2015098386A1 (en) * 2013-12-27 2015-07-02 富士フイルム株式会社 Inorganic filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274815A (en) * 1988-04-25 1989-11-02 Toto Ltd Production of ceramics filter
JPH0231811A (en) * 1988-06-04 1990-02-01 Herding Gmbh Filter for separating solid particle from hot gaseous or liquid medium
KR100430478B1 (en) * 2001-02-05 2004-05-10 박재구 Manufacturing method of porous ceramic filter for dust collection
WO2015098386A1 (en) * 2013-12-27 2015-07-02 富士フイルム株式会社 Inorganic filter

Similar Documents

Publication Publication Date Title
US5190654A (en) Process for producing an ultra-thin and asymmetric mineral membrane
US5776382A (en) Fabrication method for ceramic core of a dental prosthesis
JP3774037B2 (en) Porous ceramic membrane using titania as binder, ceramic filter using the same, and method for producing the same
JP2010509035A (en) Separation membrane porous body composite and method for producing separation membrane porous body composite
JP2537657B2 (en) ▲ Ro ▼ Permanent membrane and its manufacturing method
EP1063005B1 (en) Ceramic membrane
JP2005028248A (en) Fluid separating filter, its manufacturing method and fuel cell system
JPS6268510A (en) Method for preparing ceramics filter material
JP2005503261A (en) Novel inorganic nanofiltration membrane
JP2002066280A (en) Gas separation filter and method for manufacturing the same
KR101811199B1 (en) COMPOSITION FOR SiC SUPPORT LAYER AND SiC MEMBRANE HAVING AN Al2O3 COATING LAYER USING THE SAME AND METHOD FOR MANUFACTURING THE SAME
WO1990015661A1 (en) Porous ceramic membrane and method
JP2600105B2 (en) Method for forming SiC film
US5609741A (en) Method of manufacturing a composite material
JP2004089838A (en) Separation membrane module and its manufacturing method
JP4024704B2 (en) Manufacturing method of multilayer ceramic filter
JP2001072479A (en) Silicon carbide porous body and production thereof
JPS6097023A (en) Gas diffusing porous substance and its preparation
JPH01133988A (en) Production of reticular silica whisker-porous ceramic composite
JP3358350B2 (en) Method for producing porous ceramic hollow fiber laminated with multilayer thin film
RU2205061C1 (en) Method of manufacturing filter elements with ceramic active layer on porous carbon support
JP2003220319A (en) Separation membrane module and manufacturing method thereof
JPH06198148A (en) Production of inorganic porous membrane
JP4654429B2 (en) Ceramic multilayer structure and manufacturing method thereof
JP3589559B2 (en) Ceramic porous film, ceramic porous body using the same, and methods for producing them