[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6267144A - Copper alloy for lead frame - Google Patents

Copper alloy for lead frame

Info

Publication number
JPS6267144A
JPS6267144A JP20447985A JP20447985A JPS6267144A JP S6267144 A JPS6267144 A JP S6267144A JP 20447985 A JP20447985 A JP 20447985A JP 20447985 A JP20447985 A JP 20447985A JP S6267144 A JPS6267144 A JP S6267144A
Authority
JP
Japan
Prior art keywords
copper alloy
grain size
final annealing
lead frame
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20447985A
Other languages
Japanese (ja)
Inventor
Tetsuo Kawahara
河原 哲男
Masahiro Tsuji
正博 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP20447985A priority Critical patent/JPS6267144A/en
Publication of JPS6267144A publication Critical patent/JPS6267144A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a copper alloy improved in various characteristics suitable for lead material for semiconductor equipment, particularly in bendability, by specifying respective quantities of Sn, Ni and P and also specifying the range of grain size after final annealing. CONSTITUTION:The copper alloy for lead frame has 10-30mu grain size after final annealing and consists of, by weight, 0,8-4.0% Sn, 0.05-1.0% Ni, 0.01$0.4% P and the balance Cu with inevitable impurities. this copper alloy for lead frame combines high electric conductivity with strength, heat resistance, bendability, solderability and corrosion resistance. Further, this alloy is inexpensive because it is a copper alloy and expensive additive elements are not contained too much and, in addition, it has a coefficient of thermal expansion close to that of seal resin, so that it can be suitably used for plastic package.

Description

【発明の詳細な説明】 〔目 的〕 本発明はトランジスタや集積回路(IC)などの半導体
機器のリード材に適する銅合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object] The present invention relates to a copper alloy suitable as a lead material for semiconductor devices such as transistors and integrated circuits (ICs).

〔従来技術及び問題点〕[Prior art and problems]

従来、半導体機器リード材としては、熱膨張係数が低く
、素子及びセラミックスとの接着及び封着性の良好なコ
バール(Fe−29Ni−18Go)、42合金などの
高ニッケル合金が好んで使われてきた。しかし、近年、
半導体回路の集積度の向上に伴い消費電力の高いICが
多くなってきたことと、封止材料として樹脂が多く使用
され、かつ素子とリードフレームの接着も改良が加えら
れてきたことにより、使用されるリード材も放熱性の良
い銅合金が使われるようになってきた。
Conventionally, high nickel alloys such as Kovar (Fe-29Ni-18Go) and 42 alloy have been favorably used as lead materials for semiconductor devices because of their low coefficient of thermal expansion and good adhesion and sealing properties with elements and ceramics. Ta. However, in recent years,
With the increase in the degree of integration of semiconductor circuits, the number of ICs with high power consumption has increased, resins are increasingly used as encapsulating materials, and improvements have been made in adhesion between elements and lead frames. Copper alloys with good heat dissipation are now being used as lead materials.

一般に半導体機器のリード材として以下のような特性が
要求されている。
Generally, lead materials for semiconductor devices are required to have the following properties.

(1)リードが電気信号伝達部であるとともに、パッケ
ージング工程中及び回路使用中に発生する熱を外部に放
出する機能を併せ持つことを要求されるため電気伝導性
(熱伝導性)が良好であること。
(1) The leads are required to have good electrical conductivity (thermal conductivity) because they are required to act as electrical signal transmission parts and also to release heat generated during the packaging process and circuit use to the outside. Something.

(2)リードとモールドとの密着性が半導体素子保護の
観点から重要であるため、リード材とモールド材の熱膨
張係数が近く、リードの表面に生成される酸化膜の密着
性が良好であること。
(2) Since the adhesion between the lead and the mold is important from the perspective of protecting the semiconductor element, the thermal expansion coefficients of the lead material and the mold material are close, and the adhesion of the oxide film formed on the surface of the lead is good. thing.

(3)パッケージング時に種々の加熱工程が加わるため
、耐熱性が良好であること。
(3) It must have good heat resistance since various heating processes are involved during packaging.

(4)リードはリード材をエツチング又は打抜き加工し
て作製されるため、これらの加工性が良好であること。
(4) Since the lead is manufactured by etching or punching the lead material, the workability of these materials must be good.

(5)リードは曲げ加工されるものが多く。また半導体
部品をささえる構造体である為、強度があり、曲げ加工
性が良好であること。
(5) Many leads are bent. Also, since it is a structure that supports semiconductor components, it must be strong and have good bending workability.

(6)リード表面に貴金属めっきを行うため、これら貴
金属とのめっき密着性が良好であること。
(6) Since the lead surface is plated with precious metals, the plating adhesion with these precious metals must be good.

(7)パッケージング後に封止材の外に露出している、
アウターリード部に半田付けするものが多いため、良好
な半田付は性を示すとともに、使用時の経時変化に対し
て耐剥離性を有すること。
(7) Exposed outside the sealing material after packaging;
Since many items are soldered to the outer leads, good soldering should not only show good soldering properties but also be resistant to peeling over time during use.

(8)機器の信頼性及び寿命の観点から耐食性が良好な
こと。
(8) Good corrosion resistance from the viewpoint of equipment reliability and lifespan.

(9)価格が紙庫であること。(9) The price is paper storage.

これら各種の要求特性に対し、従来より使用されている
無酸素銅、錫入り銅、りん青銅、コバール、42合金は
いずれも一長一短があり、これらの特性のすべてを満足
しえるものではなかった。
In response to these various required properties, the oxygen-free copper, tin-containing copper, phosphor bronze, Kovar, and 42 alloys that have been used conventionally all have advantages and disadvantages, and cannot satisfy all of these properties.

〔発明の構成〕[Structure of the invention]

本発明はかかる点に鑑みなされたもので、従来の銅合金
のもつ欠点を改良し、半導体機器のリード材として好適
な薄着性、特に曲げ性の改良された銅合金を提供するも
のである。
The present invention has been made in view of the above, and aims to improve the drawbacks of conventional copper alloys and provide a copper alloy with improved thin adhesion properties, particularly bendability, suitable as a lead material for semiconductor devices.

すなわち、本発明は最終焼鈍後の結晶粒度が10μを超
え、30μ以下である重量%でSn0.8−4.0%、
Ni 0,05〜1.0%、PO001〜0.4%、残
部Cu及び不可避的不純物から成るリードフレーム用銅
合金、及び最終焼鈍以前の焼鈍後の結晶粒度が10μを
超え、30μ以下である上記記載のリードフレーム用銅
合金、及び最終焼鈍後の結晶粒度が10μを超え、30
μ以下である重量%でS n 0.8〜4.0%、Ni
0.05〜1.0%、P0.01〜0.4%に副成分と
してAs、Cr、Mg、Mn、Sb、Fe、C01A1
、Ti、Zr、Be、Znのうち1種又は2種以上を総
量で0.o o i〜1.Owt、%含み、残部Cu及
び不可避的不純物から成るリードフレーム用銅合金及び
最終焼鈍以前の焼鈍後の結晶粒度が10μを超え、30
μ以下である上記記載のリードフレーム用銅合金である
That is, the present invention uses Sn0.8-4.0% in weight% whose grain size after final annealing is more than 10μ and less than 30μ.
Copper alloy for lead frame consisting of Ni 0.05-1.0%, PO001-0.4%, balance Cu and unavoidable impurities, and the crystal grain size after annealing before final annealing is more than 10 μ and 30 μ or less The copper alloy for lead frames described above, and the crystal grain size after final annealing exceeding 10μ,
Sn 0.8-4.0%, Ni in weight% less than μ
As, Cr, Mg, Mn, Sb, Fe, C01A1 as subcomponents in 0.05-1.0%, P0.01-0.4%
, Ti, Zr, Be, and Zn in a total amount of 0. o o i~1. Copper alloy for lead frames consisting of Owt, %, balance Cu and unavoidable impurities, and crystal grain size after annealing before final annealing exceeding 10μ, 30
The copper alloy for lead frames described above has a particle diameter of μ or less.

〔発明の詳細な説明〕[Detailed description of the invention]

次に本発明を構成する銅合金の合金成分及び結晶粒度に
ついて説明する。重量%でSn含有量を0.8〜4.0
%とする理由は、Sn含有量が0.8%未満では他成分
の共添をともなってもリ−ドフレーム材として期待する
強度が得られず、逆にSn含有量が4.0%を超えると
導電率が低下しリードフレーム材としての放熱性に問題
が生じるためである。Ni含有量を0.05〜1.0%
とする理由は、Ni含有量が0.05%未満ではNi添
加による強度向上が得られず、逆にNi含有量が1.0
%を超えると導電率が低下するためである6P含有量を
0.01〜0.4%とする理由は、P含有量が0.01
%未満ではP添加による強度向上、耐熱性の向上が得ら
れず、逆にP含有量が0.4%を超えると導電率が低下
するとともに、加工性が低下するためである。
Next, the alloy components and crystal grain size of the copper alloy constituting the present invention will be explained. Sn content in weight% from 0.8 to 4.0
% is because if the Sn content is less than 0.8%, the expected strength as a lead frame material cannot be obtained even with the co-addition of other components; This is because if it exceeds the range, the conductivity will decrease and problems will arise in the heat dissipation properties of the lead frame material. Ni content 0.05-1.0%
The reason for this is that if the Ni content is less than 0.05%, no strength improvement can be obtained by adding Ni;
The reason why the 6P content is set to 0.01 to 0.4% is that the conductivity decreases when the P content exceeds 0.01%.
This is because if the P content is less than 0.4%, no improvement in strength or heat resistance can be obtained by adding P, and conversely, if the P content exceeds 0.4%, the electrical conductivity and workability will decrease.

さらに副成分の含有量を0.01〜1.0%とする理由
は、副成分の含有量が0.01%未満では副成分添加に
よる強度向上が得られず、逆に副成分の含有量が1.0
%を超えると導電率が著しく低下するためである。
Furthermore, the reason why the content of the subcomponent is set to 0.01 to 1.0% is that if the content of the subcomponent is less than 0.01%, no strength improvement can be obtained by adding the subcomponent; is 1.0
This is because if it exceeds %, the conductivity will drop significantly.

次に最終焼鈍後あるいは最終焼鈍後と最終焼鈍以前の焼
鈍後の結晶粒度を10μを超え、30μ以下とする理由
は、10μ以下では材料の曲げ性が悪く、30μを超え
ると材料の期待する強度が得らないためである9なお最
終焼鈍とは再結晶焼鈍を意味するものであって、再結晶
を伴わない低温の歪取り焼鈍などはこの最終焼鈍に含ま
れない。
Next, the reason why the grain size after final annealing or after final annealing and after annealing before final annealing should be more than 10μ and less than 30μ is that if it is less than 10μ, the bendability of the material will be poor, and if it exceeds 30μ, the expected strength of the material will be reduced. 9. Final annealing means recrystallization annealing, and low-temperature strain relief annealing that does not involve recrystallization is not included in final annealing.

したがって本発明の合金に相当し最終焼鈍後に歪取り焼
鈍を行ったものも当然本発明に包含されるものである。
Therefore, alloys corresponding to the present invention which are subjected to strain relief annealing after final annealing are naturally included in the present invention.

〔効 果〕〔effect〕

かくして本発明によれば、高導電性でかつ強度、耐熱性
、曲げ加工性、半田付げ性、耐食性に優れたリードフレ
ーム用銅合金が得られる。また、銅合金であり、かつ高
価な添加元素を多量に含まないため、価格も低廉であり
、熱膨張係数は封止樹脂に近いためプラスチックパッケ
ージ用に適している。先行技術の合金においてこのよう
な総合的特性を具備するものはない。
Thus, according to the present invention, a copper alloy for lead frames is obtained which is highly conductive and has excellent strength, heat resistance, bending workability, solderability, and corrosion resistance. Furthermore, since it is a copper alloy and does not contain large amounts of expensive additive elements, it is inexpensive, and its coefficient of thermal expansion is close to that of sealing resin, making it suitable for plastic packages. No prior art alloy possesses such comprehensive properties.

次に、この発明の方法を実施例により説明する。Next, the method of the present invention will be explained using examples.

〔実施例〕〔Example〕

通常の大気溶解鋳造により第1表に示した化学組成のイ
ンゴットを作製した。このインゴットの表面研削を行っ
た後、650℃X4hrの非酸化性雰囲気での熱処理を
施した。さらに冷間圧延で板厚4画の板とした後、上記
と同様の熱処理を施し、冷間圧延により板厚1.5mの
板とした。
Ingots having the chemical compositions shown in Table 1 were produced by ordinary atmospheric melting casting. After the surface of this ingot was ground, it was heat-treated at 650°C for 4 hours in a non-oxidizing atmosphere. Further, after being cold rolled to form a plate with a thickness of 4 strokes, the same heat treatment as above was performed, and a plate with a thickness of 1.5 m was obtained by cold rolling.

この板に種々の熱処理条件で焼鈍し、酸洗を行った後、
冷間圧延により、板厚0.4mの板とした。
After annealing this plate under various heat treatment conditions and pickling,
A plate with a thickness of 0.4 m was obtained by cold rolling.

さらに再び種々の熱処理条件で焼鈍を行い酸洗した後、
最終冷間圧延により板厚0.2511I11の板を作製
した。その後250℃X3hrの歪取焼鈍を行った。以
上の熱処理工程中、焼鈍温度、焼鈍時間のコントロール
により、種々の結晶粒度の板を作製した。また、比較合
金として種々の製造工程のものを作製した。
After further annealing and pickling under various heat treatment conditions,
A plate having a thickness of 0.2511I11 was produced by final cold rolling. Thereafter, strain relief annealing was performed at 250°C for 3 hours. During the above heat treatment process, plates with various grain sizes were produced by controlling the annealing temperature and annealing time. Comparative alloys were also produced using various manufacturing processes.

このようにして調整された試料の、リード材としての評
価として、強度、伸びを引張試験により、耐熱性を加熱
時間5分における軟化温度により、電気伝導性(放熱性
)を導電率(%IAC8)によって示した。電気伝導性
と熱伝導性は相互に比例関係にあり、導電率で評価し得
るからである。
To evaluate the sample prepared in this way as a lead material, the strength and elongation were measured by a tensile test, the heat resistance was measured by the softening temperature at a heating time of 5 minutes, and the electrical conductivity (heat dissipation) was measured by the conductivity (%IAC8). ). This is because electrical conductivity and thermal conductivity are proportional to each other and can be evaluated by electrical conductivity.

半田付は性は、垂直式浸漬法で230±5℃の半田浴(
S n 60%、Pb40%)5秒間浸漬し、半田ぬれ
の状態を目視I!察することにより評価した。曲げ性は
t×10wxQ (lIIl1)の試験片を板厚と同一
の曲げ半径で圧延平行方向及び垂直方向の90°繰り返
し曲げを行い、破断に至までの回数で評価した。
Soldering is done using the vertical immersion method in a solder bath at 230±5℃ (
(Sn 60%, Pb 40%) Dip for 5 seconds and visually check the state of solder wetting. The evaluation was made by observing the results. The bendability was evaluated by repeatedly bending a test piece of t×10w×Q (lIIl1) at 90° in the direction parallel to rolling and in the perpendicular direction with the same bending radius as the plate thickness, and the number of times until breakage occurred.

第1表に示すごとく本発明合金は優れた強度、導電性、
耐熱性、半田付は性を示し、かつ銅合金であるため、価
格が低廉であるとともに熱膨張係数も封止材料としての
樹脂と近く、半導体機器のリードフレーム材としてあら
ゆる特性を満足する好適な材料であると言える。
As shown in Table 1, the alloy of the present invention has excellent strength, electrical conductivity,
It exhibits heat resistance and solderability, and since it is a copper alloy, it is inexpensive and has a thermal expansion coefficient close to that of resin as a sealing material, making it suitable as a lead frame material for semiconductor devices that satisfies all characteristics. It can be said that it is a material.

以下余白Margin below

Claims (1)

【特許請求の範囲】 1)最終焼鈍後の結晶粒度が10μを超え30μ以下で
ある重量%でSn0.8〜4.0%、Ni0.05〜1
.0%、P0.01〜0.4%、残部Cu及び不可避的
不純物から成るリードフレーム用銅合金。 2)最終焼鈍以前の焼鈍後の結晶粒度が10μを超え3
0μ以下である特許請求の範囲第1項記載のリードフレ
ーム用銅合金。 3)最終焼鈍後の結晶粒度が10μを超え、30μ以下
である重量%でSn0.8〜4.0%、Ni0.05〜
1.0%、P0.01〜0.4%に副成分としてAs、
Cr、Mg、Mn、Sb、Fe、Co、Al、Ti、Z
r、Be、Znのうち1種又は2種以上を総量で0.0
01〜1.0wt.%含み、残部Cu及び不可避的不純
物から成るリードフレーム用銅合金。 4)最終焼鈍以前の焼鈍後の結晶粒度が10μを超え3
0μ以下である特許請求の範囲第3項記載のリードフレ
ーム用銅合金。
[Scope of Claims] 1) Sn 0.8 to 4.0% and Ni 0.05 to 1 in weight percent whose grain size after final annealing is more than 10μ and less than 30μ.
.. A copper alloy for lead frames consisting of 0% P, 0.01 to 0.4% P, and the balance Cu and inevitable impurities. 2) The grain size after annealing before final annealing exceeds 10 μ3
The copper alloy for lead frames according to claim 1, which has a particle diameter of 0μ or less. 3) Sn 0.8-4.0%, Ni 0.05-4.0% by weight where the grain size after final annealing is more than 10μ and less than 30μ
1.0%, P0.01-0.4% with As as a subcomponent,
Cr, Mg, Mn, Sb, Fe, Co, Al, Ti, Z
The total amount of one or more of r, Be, and Zn is 0.0
01~1.0wt. Copper alloy for lead frames consisting of % Cu and unavoidable impurities. 4) The grain size after annealing before final annealing exceeds 10 μ3
The copper alloy for lead frames according to claim 3, which has a particle diameter of 0μ or less.
JP20447985A 1985-09-18 1985-09-18 Copper alloy for lead frame Pending JPS6267144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20447985A JPS6267144A (en) 1985-09-18 1985-09-18 Copper alloy for lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20447985A JPS6267144A (en) 1985-09-18 1985-09-18 Copper alloy for lead frame

Publications (1)

Publication Number Publication Date
JPS6267144A true JPS6267144A (en) 1987-03-26

Family

ID=16491202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20447985A Pending JPS6267144A (en) 1985-09-18 1985-09-18 Copper alloy for lead frame

Country Status (1)

Country Link
JP (1) JPS6267144A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156242A (en) * 1985-12-27 1987-07-11 Mitsubishi Electric Corp Copper-base alloy
JPS62207833A (en) * 1986-03-07 1987-09-12 Mitsubishi Shindo Kk Cu-alloy lead material for semiconductor device
JPS62278243A (en) * 1986-05-27 1987-12-03 Dowa Mining Co Ltd Copper alloy for lead frame and its production
JPH01316432A (en) * 1988-06-16 1989-12-21 Dowa Mining Co Ltd Copper alloy for electric conducting material having excellent weather resistance of solder
JPH0285330A (en) * 1988-09-20 1990-03-26 Mitsui Mining & Smelting Co Ltd Copper alloy having good press bendability and its manufacture
US5879476A (en) * 1995-10-12 1999-03-09 Hitachi Cable, Ltd. Copper alloy having improved corrosion resistance, commutator and motor using the same
WO2011093114A1 (en) * 2010-01-26 2011-08-04 三菱マテリアル株式会社 Copper alloy with high strength and high electrical conductivity
CN110306077A (en) * 2019-07-24 2019-10-08 宁波兴业盛泰集团有限公司 A kind of electric connector Vulcan metal and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156242A (en) * 1985-12-27 1987-07-11 Mitsubishi Electric Corp Copper-base alloy
JPS62207833A (en) * 1986-03-07 1987-09-12 Mitsubishi Shindo Kk Cu-alloy lead material for semiconductor device
JPH0564225B2 (en) * 1986-03-07 1993-09-14 Mitsubishi Shindo Kk
JPS62278243A (en) * 1986-05-27 1987-12-03 Dowa Mining Co Ltd Copper alloy for lead frame and its production
JPH01316432A (en) * 1988-06-16 1989-12-21 Dowa Mining Co Ltd Copper alloy for electric conducting material having excellent weather resistance of solder
JPH0285330A (en) * 1988-09-20 1990-03-26 Mitsui Mining & Smelting Co Ltd Copper alloy having good press bendability and its manufacture
JPH0469217B2 (en) * 1988-09-20 1992-11-05 Mitsui Mining & Smelting Co
US5879476A (en) * 1995-10-12 1999-03-09 Hitachi Cable, Ltd. Copper alloy having improved corrosion resistance, commutator and motor using the same
WO2011093114A1 (en) * 2010-01-26 2011-08-04 三菱マテリアル株式会社 Copper alloy with high strength and high electrical conductivity
CN110306077A (en) * 2019-07-24 2019-10-08 宁波兴业盛泰集团有限公司 A kind of electric connector Vulcan metal and preparation method thereof
CN110306077B (en) * 2019-07-24 2021-12-03 宁波兴业盛泰集团有限公司 Corrosion-resistant copper alloy for electric connector and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP2670670B2 (en) High strength and high conductivity copper alloy
JPH0372691B2 (en)
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPH0372045A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPS63143230A (en) Precipitation strengthening high tensile copper alloy having high electrical conductivity
JPS6260838A (en) Copper alloy for lead frame
JPS6267144A (en) Copper alloy for lead frame
JPH02163331A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPH0424417B2 (en)
JPH02122039A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPH02122035A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS639574B2 (en)
JPH06172896A (en) High-strength and high-conductivity copper alloy
JPS63125628A (en) Copper alloy for semiconductor device lead material
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPS6283441A (en) High strength alloy copper having high electric conductivity and superior resistance to stripping of solder by heat
JPS6393835A (en) Copper alloy for lead material of semiconductor equipment
JPS63192835A (en) Lead material for ceramic package
JPS5853700B2 (en) Copper alloy for lead material of semiconductor equipment
JPH01268833A (en) Copper alloy for lead material of semiconductor device
JPH01268834A (en) Copper alloy for lead material of semiconductor device
JPS6157379B2 (en)
JPS6283443A (en) High strength copper alloy having high electric conductivity for lead material for semiconductor appratus of electrically conductive spring material
JPS63192834A (en) Copper alloy excellent in thermal peeling resistance of tin or tin-alloy coating layer