[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6264846A - Method for producing polyethylene stretched molded body - Google Patents

Method for producing polyethylene stretched molded body

Info

Publication number
JPS6264846A
JPS6264846A JP20443385A JP20443385A JPS6264846A JP S6264846 A JPS6264846 A JP S6264846A JP 20443385 A JP20443385 A JP 20443385A JP 20443385 A JP20443385 A JP 20443385A JP S6264846 A JPS6264846 A JP S6264846A
Authority
JP
Japan
Prior art keywords
stretching
density
ethylene
mfr
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20443385A
Other languages
Japanese (ja)
Inventor
Koji Nishida
耕治 西田
Takeshi Okamoto
武 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP20443385A priority Critical patent/JPS6264846A/en
Publication of JPS6264846A publication Critical patent/JPS6264846A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はポリエチレンの延伸成形体の製造方法に関し、
特に、低延伸倍率のポリエチレン延伸成形体の製造に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a stretched polyethylene article,
In particular, it relates to the production of polyethylene stretched molded bodies with low stretching ratios.

[従来の技術] 高圧法ポリエチレンは、特に加工性が良好で、化学的に
安定であり、透明性および柔軟性等の物理的性質がすぐ
れているので、各種の用途、例えばフィルム、ブロー成
形、射出成形、チューブ、ラミネート、電線被覆、鋼管
被覆等巾広く使用されてきた。しかしながら、昨今、一
般食品包装用の瓶においては、剛性、クリープ特性等の
機械的強度の高い材料を使用して製品の軽量化を図るこ
とが要求されている。また、輸液瓶のような医療用薬品
瓶では、軽量化と共に輸送時の破損率を減少させるため
、従来のガラス瓶からプラスチック瓶への切替えが行な
われているが、高圧法ポリエチレンでは滅菌処理の温度
に耐えられず、滅菌処理に際して変形や瓶同士の融着等
の問題があり、この分野でも滅菌処理に耐え、かつ、種
々の薬品に耐えられる材料が要望されている。
[Prior Art] High-pressure polyethylene has particularly good processability, is chemically stable, and has excellent physical properties such as transparency and flexibility, so it can be used for various purposes, such as films, blow molding, It has been widely used in injection molding, tubes, laminates, wire coatings, steel pipe coatings, etc. However, in recent years, there has been a demand for bottles for general food packaging to use materials with high mechanical strength such as rigidity and creep properties to reduce the weight of the product. In addition, for medical drug bottles such as infusion bottles, conventional glass bottles are being replaced with plastic bottles in order to reduce weight and reduce the chance of breakage during transportation. However, there are problems such as deformation and fusion of bottles during sterilization, and there is a need in this field for materials that can withstand sterilization and various chemicals.

近時開発された低密度エチレン・αオレフィン共重合体
は、密度が高圧法ポリエチレンと同程度でありながら、
高剛性、高融点であり、かつ、耐環境応力亀裂性および
耐クリープ特性が良好であるので、上記の各用途におけ
る要求に応える適性を有する素材である。しかしながら
、このエチレン・αオレフィン共重合体は、ラジカル重
合による高圧法ポリエチレンよりも結晶化度が高く、か
つ、その結晶サイズが大きいので、内部Hazeが高く
、透明とはいえない。さらに、分子量分布が狭いので、
押出成形に際してシャークスキンを発生し易く、それに
起因する外部Hazeが高くなり、全体として不透明な
製品となる欠点がある。
The recently developed low-density ethylene/α-olefin copolymer has a density similar to that of high-pressure polyethylene, but
It has high rigidity and a high melting point, and has good environmental stress cracking resistance and creep resistance, so it is a material that is suitable to meet the demands of each of the above uses. However, this ethylene/α-olefin copolymer has a higher degree of crystallinity than high-pressure polyethylene produced by radical polymerization, and has a larger crystal size, so it has a high internal haze and cannot be said to be transparent. Furthermore, since the molecular weight distribution is narrow,
Shark skin tends to occur during extrusion molding, resulting in high external haze, resulting in a product that is opaque as a whole.

これ等の欠点を改良する手法としては、従来、内部Ha
zeについては、(イ)急冷、(ロ)核剤の添加、(ハ
)エチレン・αオレフィン共重合体の密度を低下させる
等の知見がある。一方、外部Hazeの改良手法として
は、(ニ)グイリップ幅を広げ押出剪断速度を低下させ
る、(ホ)加工性の良好な高圧法ポリエチレンを6oz
以−L混合する、(へ)エチレン拳αオレフィン共重合
体よりも高MFHの高圧法ポリエチレンを5〜75重量
2混合する(米国特許第3178152号)、(ト)成
形時の樹脂温度を高くする等が知られている。
Conventionally, as a method to improve these drawbacks, internal Ha
Regarding ze, there is knowledge that (a) quenching, (b) addition of a nucleating agent, and (c) lowering the density of the ethylene/α-olefin copolymer. On the other hand, methods for improving external haze include (d) widening the grip width and lowering the extrusion shear rate, and (e) using high-pressure polyethylene with good processability in 6 oz.
(f) Mix 5 to 75 weight 2 of high-pressure polyethylene with a higher MFH than the ethylene fiber α-olefin copolymer (U.S. Pat. No. 3,178,152), (f) raise the resin temperature during molding. It is known that

しかしながら、(イ)の急冷は、肉圧0.2m+*以上
の中空製品の製造時には有効な冷却法が少なく、わずか
に炭酸ガスで冷却する方法が文献上では知られているに
すぎない。最近では中空製品に充填される内容物が液体
である場合、その液体でブローしながら冷却賦形する方
法が開発されたが、これは容積のtoot充満率でない
と透明ムラができ、かつ、マヨネーズ、ケチャツプの如
き粘稠な液体には適用できない欠点もある。(ロ)の核
剤の添加による内部Hazeの改良は、医療用途に用い
られる製品ではブリードアウトの懸念から敬遠される。
However, there are few cooling methods that are effective for the rapid cooling in (a) when manufacturing hollow products with a wall pressure of 0.2 m+* or more, and only a method of cooling with carbon dioxide gas is known in the literature. Recently, when the contents to be filled into a hollow product are liquid, a method has been developed in which the contents are cooled and shaped while being blown with the liquid. However, it also has the disadvantage that it cannot be applied to viscous liquids such as ketchup. (b) Improvement of internal haze by adding a nucleating agent is avoided in products used for medical purposes due to concerns about bleed-out.

(ハ)の密度低下による内部Hazeへの効果は、密度
を0.850〜0.880g/c■3にした場合にやっ
と発現5れるが、一方で耐熱性の低下を招来するので好
ましくない。外部Hazeを改良するための(ニ)のグ
イリップの変更は、当然にグイの新調を必要とし、また
、ブロー成形ではリップ幅を随峙(例えば10〜80点
)自動的に変更して押出パリソンの肉圧制御をするので
、製品の肉厚によってはリップ幅が狭くなり、やはりシ
ャークスキンを発生させる。(ホ)または(へ)の高圧
法ポリエチレンの配合は1機械的強度、耐環境応力亀裂
性が満足されない、(ト)の樹脂温度の昇温はドローダ
ウンを引起すので利用できない。
The effect (c) on internal haze due to density reduction can only be realized when the density is set to 0.850 to 0.880 g/c3, but this is not preferable because it causes a decrease in heat resistance. Changing the grip lip in (d) to improve external haze naturally requires a new grip, and in blow molding, the lip width is automatically changed (for example, from 10 to 80 points) to improve the extrusion parison. Since the wall pressure is controlled, depending on the wall thickness of the product, the lip width may become narrower, resulting in shark skin. (E) or (F) high-pressure polyethylene blends are unsatisfactory in terms of mechanical strength and environmental stress cracking resistance, and (G) cannot be used because raising the resin temperature causes drawdown.

この他に内部Hazeを改良する手法としては、ポリプ
ロピレンの場合における二軸延伸、または高密度ポリエ
チレンにおける短区間−軸延伸法が知られている。この
延伸法のエチレン・αオレフィン共重合体への適用は、
特公昭52−794号公報にも記載されているように、
密度が0.940g/ ell’未満では結晶配向が起
り難く、延伸倍率が4倍以上では延伸切れを起すこと、
また、我々の検討では4倍以内の延伸倍率であっても延
伸ムラの発生することが判明しており、いずれにおいて
もこれらの延伸法は実質上利用できない不都合があった
Other known methods for improving internal haze include biaxial stretching in the case of polypropylene, and short-section-axial stretching in the case of high-density polyethylene. Application of this stretching method to ethylene/α-olefin copolymer is as follows:
As stated in Japanese Patent Publication No. 52-794,
When the density is less than 0.940 g/ell', crystal orientation is difficult to occur, and when the stretching ratio is 4 times or more, stretching breakage occurs;
In addition, our studies have revealed that stretching unevenness occurs even at a stretching ratio of 4 times or less, and in either case, these stretching methods have the disadvantage of being practically unusable.

[発明が解決しようとする問題点1 この延伸法は、引張強度1曲げ弾性率等機械的強度を増
加せしめ、かつ、透明性を著しく改良すること、および
原反製造時と延伸温度条件が分離できるので、場合によ
り低温成形が可能であることより5例えば酸化防止剤を
添加しないで成形時の酸化劣化を防止するには有益な成
形法であることを重視し、延伸法をエチレン・αオレフ
ィン共重合体に適用した場合の問題点である延伸ムラを
減少させることを鋭意検討した。
[Problem to be solved by the invention 1 This stretching method increases mechanical strength such as tensile strength and flexural modulus, significantly improves transparency, and separates the stretching temperature conditions from the original fabric manufacturing time. Therefore, in some cases, low-temperature molding is possible.5For example, we emphasize that this is a useful molding method for preventing oxidative deterioration during molding without adding antioxidants, and we have decided to change the stretching method to ethylene/α-olefin. We have made extensive efforts to reduce stretching unevenness, which is a problem when applied to copolymers.

[問題点を解決するための手段] その結果、50(H以下の低延伸率ではエチレン・αオ
レフィン共重合体に、それと同等以下のMFRを有する
高圧法ポリエチレンを添加した組成物がムラなく延伸が
可能であること、更に原反の製造において押出温度を 
120〜200℃とすることにより、実質的に酸化防止
剤を添加しないで長時間の成形を行っても、ブッ、ゲル
、メヤニ等の劣化現象の抑制が可能であることを見出し
た。
[Means for solving the problem] As a result, at a low stretching ratio of 50 (H) or less, a composition in which high-pressure polyethylene having an MFR equivalent to or lower than that of an ethylene/α-olefin copolymer was added could be stretched evenly. In addition, it is possible to
It has been found that by controlling the temperature to 120 to 200°C, deterioration phenomena such as blistering, gelling, and smearing can be suppressed even when molding is performed for a long time without substantially adding an antioxidant.

即チ本発明は、MFRが0.1〜20g/10分、密度
が0.900〜0.940 g/amxでフローレシオ
が5〜18のエチレン・αオレフィン共重合体95〜8
0重量%と該エチレン・αオレフィン共重合体のIII
FRと同等またはそれ以下のMFRを有する高圧法ポリ
エチレン5〜40重量2からなるポリエチレン組成物を
固体状態から加温してlO〜50oz延伸することを特
徴とする延伸成形体の製造方法である。
That is, the present invention is an ethylene/α-olefin copolymer having an MFR of 0.1 to 20 g/10 min, a density of 0.900 to 0.940 g/amx, and a flow ratio of 5 to 18.
0% by weight and III of the ethylene/α-olefin copolymer
This is a method for producing a stretched molded article, which is characterized in that a polyethylene composition consisting of 5 to 40 parts by weight of high-pressure polyethylene having an MFR equivalent to or lower than FR is heated from a solid state and stretched to 10 to 50 oz.

本発明で用いられるエチレン・αオレフィン共重合体は
、チタン、バナジウム等の遷移金属と有機アルミニウム
化合物とを組合せたチーグラー触媒を用いて、気相法、
溶液法、スラリー法、高圧法等の各種の重合法により得
ることができるエチレンとαオレフィンとの共重合体で
ある。
The ethylene/α-olefin copolymer used in the present invention is produced by a gas phase method using a Ziegler catalyst that combines a transition metal such as titanium or vanadium with an organoaluminum compound.
It is a copolymer of ethylene and α-olefin that can be obtained by various polymerization methods such as a solution method, a slurry method, and a high-pressure method.

αオレフィンとしては、プロピレン、ブテン−1、ペン
テン−1、ヘキセン−1,4−メチル−ペンテン−1、
オクテン−1等、炭素数が 3〜10の1−オレフィン
から選択される。より好ましいαオレフィンは、得られ
る共重合体の強度と透明性とのバランスから、ブテン−
1、ヘキセン−1,4−メチル−ペンテン−1,または
オクテン−1である。これらのαオレフィンの共重合体
中の含量は3〜25重量駕、好ましくは4〜18重量2
である。
α-olefins include propylene, butene-1, pentene-1, hexene-1,4-methyl-pentene-1,
It is selected from 1-olefins having 3 to 10 carbon atoms, such as octene-1. The more preferred α-olefin is butene-
1, hexene-1,4-methyl-pentene-1, or octene-1. The content of these α-olefins in the copolymer is 3 to 25 weight units, preferably 4 to 18 weight units.
It is.

共重合体の密度は0.800−0.940 g/c+w
’であり、好ましくは0.1315〜0.930 g/
cm’である。密度が0.900g/cmM未満では耐
熱性が劣り、高温滅菌処理によりボトル同士の融着がお
きるおそれがある。密度が0.840g/ am’より
大では、延伸後のテープ、シート等の製品の引裂強度が
低下するので好ましくない。
The density of the copolymer is 0.800-0.940 g/c+w
', preferably 0.1315 to 0.930 g/
cm'. If the density is less than 0.900 g/cmM, the heat resistance will be poor, and there is a risk that the bottles will fuse together during high-temperature sterilization. If the density is greater than 0.840 g/am', the tear strength of products such as tapes and sheets after stretching is undesirable.

共重合体のNFRは0.1〜20 g /10分、好ま
しくは0.5〜10g/10分である。MFRが0.1
 g/10分未満では、工業的規模での原反製造時の押
出速度で表面肌荒れが発生するので、延伸しても大きな
周期で波打った外観となり、商品価値を低下させる。
The NFR of the copolymer is 0.1-20 g/10 min, preferably 0.5-10 g/10 min. MFR is 0.1
If it is less than g/10 minutes, surface roughness will occur at the extrusion speed during production of the original fabric on an industrial scale, resulting in a wavy appearance with large cycles even after stretching, reducing the commercial value.

MFR20g/10分より大では、本発明の目的とする
機械的強度、特に耐環境応力亀裂性が低下する。また、
Jl!lli K8780準拠のMFR装置を使用し、
荷重!Okgで押出した高荷重MFR(MFR+。)を
2.18kg荷重の普通のMFRで割った値で示される
フローレシオは5〜18であり、好ましくは7〜9であ
る。フローレシオが5未満の場合には、MFRが下限の
0.1g/10分未満のとき、原反押出峙にシャークス
キン、メルトフラクチャーを発生するので好ましくない
。また、フローレシオが18より大ではメルトフラクチ
ャーは発生しないものの、延伸時に引残しが発生するお
それがある。
If the MFR is greater than 20 g/10 minutes, the mechanical strength, particularly the environmental stress cracking resistance, which is the object of the present invention, decreases. Also,
Jl! Using an MFR device compliant with lli K8780,
load! The flow ratio expressed as the high load MFR (MFR+.) extruded at 2.18 kg divided by the normal MFR at 2.18 kg load is between 5 and 18, preferably between 7 and 9. When the flow ratio is less than 5, shark skin and melt fracture occur during extrusion of the raw material when the MFR is less than the lower limit of 0.1 g/10 minutes, which is not preferable. Furthermore, if the flow ratio is greater than 18, melt fracture will not occur, but there is a risk that residual residue will occur during stretching.

本発明において共重合体に配合される高圧法ポリエチレ
ンは、例えば酸素、または過酸化物を使用し、オートク
レーブまたはチューブ内で圧力1000〜3000気圧
、温度200〜250℃の条件下でラジカル的に重合さ
せて得られるポリエチレンであり、前記のエチレン・α
オレフィン共重合体に比較して長鎖分岐が多いポリエチ
レンである。この高圧法ポリエチレンのMFRは先のエ
チレン拳αオレフィン共重合体のMFRと同等以下であ
ることが必要である。これより大きいNFRを有する高
圧法ポリエチレンを混合した場合には、延伸時に引残し
が発生するおずれがあり好ましくない。
The high-pressure polyethylene blended into the copolymer in the present invention is radically polymerized in an autoclave or tube at a pressure of 1000 to 3000 atm and a temperature of 200 to 250°C using, for example, oxygen or peroxide. It is a polyethylene obtained by
Polyethylene has more long chain branches than olefin copolymers. It is necessary that the MFR of this high-pressure polyethylene is equal to or lower than the MFR of the above-mentioned ethylene fist α-olefin copolymer. If high-pressure polyethylene having an NFR larger than this is mixed, it is not preferable because it may cause residual residue during stretching.

高圧法ポリエチレンの密度はo、sto〜0.938g
/c+s”が好適である。密度OJ10g/cm’未満
のものは組成物の耐熱性を比較的低下せしめ、また、0
、ll13Bg/ amxより高いものは、実質的に高
圧法プロセスではコスト高となり工業的価値が低い。
The density of high pressure polyethylene is o, sto ~ 0.938g
/c+s'' is preferred. If the density OJ is less than 10 g/cm', the heat resistance of the composition will be relatively reduced;
, 113Bg/amx, the high pressure process substantially increases the cost and has low industrial value.

エチレン・αオレフィン共重合体への高圧法ポリエチレ
ンの混合割合は5〜40重量2、好ましくは10〜40
重量%である。5重量を未満では延伸時のムラの改良効
果が少なく、40重重量上り多い配合は、エチレン・α
オレフィン共重合体の有するB5OR、クリープ特性、
機械的強度についてのすぐれた特性を低下させる。
The mixing ratio of high-pressure polyethylene to the ethylene/α-olefin copolymer is 5 to 40% by weight2, preferably 10 to 40% by weight.
Weight%. If the weight is less than 5%, the effect of improving unevenness during stretching will be small, and if the weight exceeds 40%, ethylene/α
B5OR, creep properties of olefin copolymer,
Decreases the excellent properties of mechanical strength.

エチレン・αオレフィン共重合体と高圧法ポリエチレン
との混合は、一般的には一軸押出機、二軸押出機、バン
バリー、ロール等既知の溶融混合法が利用出来る。成形
直前にペレット同士トライブレンドし成形する事も可能
!あるが、本発明は低NFRの高圧法ポリエチレンを使
用しているので、原反押出機種類、グイ構造、グイ形状
によってはグイラインが発生する場合があるので、一旦
溶融混合してベレットとしておく事が好ましい。
For mixing the ethylene/α-olefin copolymer and high-pressure polyethylene, generally known melt mixing methods such as a single screw extruder, twin screw extruder, Banbury, and roll can be used. It is also possible to tri-blend pellets together just before molding! However, since the present invention uses high-pressure polyethylene with a low NFR, goui lines may occur depending on the type of raw material extruder, gouey structure, and goui shape, so it is necessary to melt and mix it once to form a pellet. is preferred.

この組成物には、物性を損なわない範囲で中和剤、酸化
防止剤、顔料、帯電防止剤、防曇剤、アンチブロッキン
グ剤、スリップ剤、耐候性改良剤等を添加する事が出来
る。
A neutralizing agent, an antioxidant, a pigment, an antistatic agent, an antifogging agent, an antiblocking agent, a slip agent, a weather resistance improver, etc. can be added to this composition within a range that does not impair the physical properties.

これらの組成物をTダイ、円筒グイから樹脂温度120
〜200℃の条件でフィルム、シート、パイプを押出し
、次に冷却ロールとの接触により、または水冷却槽に通
すことにより冷却し、延伸原反とする。原反押出の温度
が120℃より低いと押出時にシャークスキンを発生し
、温度が200℃より高いと微量の劣化物が生成し、医
療容器の場合。
These compositions were heated to a resin temperature of 120 from a T-die and a cylindrical die.
A film, sheet, or pipe is extruded at a temperature of ~200°C, and then cooled by contact with a cooling roll or by passing through a water cooling bath to form a stretched original fabric. If the extrusion temperature of the raw material is lower than 120°C, shark skin will occur during extrusion, and if the temperature is higher than 200°C, a small amount of deterioration products will be generated, in the case of medical containers.

内容物によっては2〜30IL■の微粒子となって薬品
中へ浮遊することがあり好ましくない。
Depending on the contents, fine particles of 2 to 30 IL may float in the drug, which is not preferable.

次に温度90〜130℃のロール、またはオーブン温度
雰囲気下で一軸または二軸方向に延伸を行なう。二軸延
伸は同時延伸でも逐次延伸でもよい。
Next, stretching is performed uniaxially or biaxially in a roll or oven temperature atmosphere at a temperature of 90 to 130°C. Biaxial stretching may be simultaneous stretching or sequential stretching.

延伸温度は80〜130℃が選択されるが、90℃未満
での延伸では、例えば輸液ボトルの場合、液の充満率が
低い状態で加熱滅菌処理されると、ボトルの収縮が始ま
り、寸法安定性が劣るので好ましくなく、延伸温度が1
30℃より高い場合には、延伸による内部Hazeの改
良効果は少ない。
The stretching temperature is selected to be 80 to 130°C, but if the stretching temperature is less than 90°C, for example, in the case of an infusion bottle, if the bottle is heat sterilized with a low liquid filling rate, the bottle will begin to shrink and its dimensions will become unstable. It is not preferable because the stretching temperature is 1.
When the temperature is higher than 30°C, the effect of improving internal haze by stretching is small.

延伸倍率は10〜50ozが適用される。延伸倍率が1
0%未満では内部Hazeの改良が小さい。50ozよ
り高い延伸を行なう場合は、エチレン・αオレフィン共
重合体単独でも引残しなく延伸する事が可能であり本発
明の組成物を用いる必要性がない。
A stretching ratio of 10 to 50 oz is applied. Stretching ratio is 1
If it is less than 0%, the improvement in internal haze is small. When stretching is performed at higher than 50 oz, it is possible to stretch the ethylene/α-olefin copolymer alone without leaving any residue, and there is no need to use the composition of the present invention.

延伸後の密度は0.l]10〜0.944 g/cta
Sが好ましいが、密度が0.!310g/cm’未満で
は、用途によっては加熱滅菌温度(例えば105°C)
に耐えられないこともあり、 0.l]44g/am5
より高くなると製品剛性が高く、柔軟性に欠けることも
ある。
The density after stretching is 0. l]10-0.944 g/cta
S is preferred, but the density is 0. ! If it is less than 310g/cm', heat sterilization temperature (e.g. 105°C) may be required depending on the application.
0. l]44g/am5
If the height is higher, the product becomes more rigid and may lack flexibility.

[実施例] 実施例1 チーグラー触媒で重合されたMFR2,0g/ 10分
、密度0.922g/ cya’ 、  70−シオ7
.5、ブテン−1含量8.5重量2のエチレン・ブテン
−1共重合体80重量2にMFR0,1g/10分、密
度0.918g/ cts’ テ酸化防止剤無添加の高
圧法ポリエチレン20重量2を混合し40mm造粒機(
スクリュウ−し/口=24)でシリングー、ダイス共1
80°Cに設定し造粒した。この組成物のMFRは1.
2g/ 10分、密度Q、1121g/ cmMであっ
た。このペレットを三菱重工製65璽1φTダイ押出機
に投入しホッパ一温度180℃、シリンダー(CI)1
70℃、シリンダー(C2)温度17Q℃、アダプタ一
温度170℃、ダイス温度180℃にしスクリュー回転
数89rp―で可塑化しシートをリップ巾2騰■、幅3
0−1、表面クロムメッキ仕上げのマニホールドタイプ
ダイから押出した。次にこのシートを20°Cのロール
にエアーナイフで密着させながら冷却し延伸原反とする
。この時メヤニ、異臭、変色等劣化に係る現象は観察さ
れなかった。
[Example] Example 1 Polymerized with Ziegler catalyst MFR2.0g/10 minutes, density 0.922g/cya', 70-sio7
.. 5. Ethylene-butene-1 copolymer with butene-1 content 8.5 weight 2, MFR 0.1 g/10 min, density 0.918 g/cts' 20 weight high-pressure polyethylene with no antioxidant added Mix 2 and use a 40mm granulator (
Screw/mouth = 24), both cylinder and die are 1
The temperature was set at 80°C for granulation. The MFR of this composition is 1.
2 g/10 min, density Q, 1121 g/cmM. The pellets were put into a 65 mm 1φ T die extruder made by Mitsubishi Heavy Industries, and the hopper temperature was 180°C and the cylinder (CI) 1
70℃, cylinder (C2) temperature 17Q℃, adapter temperature 170℃, die temperature 180℃, screw rotation speed 89rp-, plasticize the sheet, lip width 2cm, width 3cm.
0-1, extruded from a manifold type die with a chrome-plated surface. Next, this sheet is cooled while being brought into close contact with a roll at 20° C. using an air knife to form a stretched original fabric. At this time, no phenomena related to deterioration such as smear, strange odor, or discoloration were observed.

この延伸原反シートを105℃の予熱ロールに接触させ
て加温した後、回転速度の異るロール間で20ozの延
伸倍率で延伸し引取った。平均原反厚さは0.85mm
、原反密度0.91?Og/cm’であり、平均延伸シ
ート厚さO,?2+s閣、密度0.9204g/cs+
Sの延伸シートを得た。この延伸シートの幅方向の中央
部を2?Ommにわたって厚さを測定したところ、厚さ
ムラは(最大膜厚・最小膜厚)/平均膜厚= 0.25
であった・ 後記する比較例1の高圧法ポリエチレンを添加しない場
合に比較し、本実施例のものは厚さムラが少なく延伸さ
れている。また、ASTM 01003に準拠してHa
zeを測定したところ、原反のHaze35.13%に
対し延伸シートのHazeは17.7χであり、延伸に
より透明性が向上した。
This stretched raw sheet was brought into contact with a 105° C. preheating roll to be heated, then stretched at a stretching ratio of 20 oz between rolls having different rotational speeds, and then taken off. Average fabric thickness is 0.85mm
, original fabric density 0.91? Og/cm' and the average stretched sheet thickness O,? 2+s cabinet, density 0.9204g/cs+
A stretched sheet of S was obtained. The center part of this stretched sheet in the width direction is 2? When the thickness was measured over 0mm, the thickness unevenness was (maximum film thickness / minimum film thickness) / average film thickness = 0.25
Compared to Comparative Example 1, which will be described later, in which high-pressure polyethylene was not added, the film of this example was stretched with less uneven thickness. In addition, in accordance with ASTM 01003, Ha
When the haze was measured, the haze of the stretched sheet was 17.7% compared to 35.13% for the original sheet, and the transparency was improved by stretching.

実施例2 実施例1において延伸倍率を50ozとして延伸シート
を作成した。この原反厚さは実施例1と同じであるが平
均延伸シート厚さは9.25m鵬で、延伸後の密度は0
.l]22Bg/cm1であった。このシートの幅方向
の中央部を27hmにわたって測定した厚さムラは0.
08であり、ムラが非常に少なく延伸されている。更に
延伸シートのHazeは2.5zであり、肉厚見合上極
めて透明性が優れている。
Example 2 A stretched sheet was prepared in Example 1 except that the stretching ratio was 50 oz. The thickness of this original sheet is the same as in Example 1, but the average stretched sheet thickness is 9.25 m, and the density after stretching is 0.
.. l]22Bg/cm1. The thickness unevenness measured over 27 hm at the center in the width direction of this sheet was 0.
08, and it was stretched with very little unevenness. Further, the stretched sheet has a haze of 2.5z, and has excellent transparency considering its thickness.

実施例3 フィリプス触媒で重合されたMFR0,7g/10分、
密度0.!1130g/ cya” 、  70−レシ
第16.5、ブチ7−1含量5.5重tのエチレン・ブ
テン−1共重合体の80重量2とMFRo、5g/10
分、密度0.832g/ am’の高圧法ポリエチレン
の40重量駕を実施例1と同様条件で造粒し成形に供し
た。延伸倍率を300駕とした。この場合の原反厚さは
実施例1と同じであるが平均延伸シート厚さは0.44
+u+である。このシートの幅方向の中央部を270鵬
■にわたっての厚さムラは0.21であり、比較例2に
比較しムラが少なく延伸されている。更に延伸シートの
Hazeは8.3zであり、肉厚見合で極めて透明性が
優れている。
Example 3 MFR 0.7 g/10 min polymerized with Phillips catalyst,
Density 0. ! 1130g/cya'', 70-resi No. 16.5, buty 7-1 content of 5.5wt ethylene-butene-1 copolymer 80wt2 and MFRo, 5g/10
40 weight pellets of high-pressure polyethylene having a density of 0.832 g/am' were granulated under the same conditions as in Example 1 and subjected to molding. The stretching ratio was set to 300. The thickness of the original sheet in this case is the same as in Example 1, but the average stretched sheet thickness is 0.44.
+u+. The thickness unevenness of this sheet over 270 mm in the widthwise center part was 0.21, and compared to Comparative Example 2, the sheet was stretched with less unevenness. Further, the stretched sheet has a haze of 8.3z, and has excellent transparency considering its thickness.

比較例1 実施例1のエチレン・ブテン−1共重合体(MFR2,
0g/10分、密度0.922g/c■3.フローレシ
オ7.5、ブテン−1含量8.5重量2)のみを成形に
供した。延伸倍率を200%とした時の原反厚さ、平均
延伸シート厚さは実施例1と同じである。このシートの
幅方向の中央部270■にわたっての厚さムラは0.3
5であり、実施例1に比較してムラが大きい。延伸シー
トのHazeは38.8駕で、原反Haze79.8%
に比べれば延伸により透明性は改良されたものの、実施
例1に比較すれば大幅に劣る。
Comparative Example 1 Ethylene-butene-1 copolymer of Example 1 (MFR2,
0g/10min, density 0.922g/c■3. Only the sample with a flow ratio of 7.5 and a butene-1 content of 8.5 weight 2) was subjected to molding. The original film thickness and average stretched sheet thickness are the same as in Example 1 when the stretching ratio is 200%. The thickness unevenness of this sheet over the center 270 cm in the width direction is 0.3
5, and the unevenness is larger than that in Example 1. The haze of the stretched sheet is 38.8, and the haze of the original sheet is 79.8%.
Although the transparency was improved by stretching compared to Example 1, it was significantly inferior to Example 1.

比較例2 実施例3で使用のエチレン・ブテン−1共重合体のみで
実験したところ、厚さムラは0.28であり、実施例3
に比較してムラが大きい。延伸シートのHazeは20
.0%で原反のHaze35.5%に比べれば延伸によ
り透明性は改良されたものの、実施例3に比較すれば劣
る。
Comparative Example 2 When an experiment was conducted using only the ethylene-butene-1 copolymer used in Example 3, the thickness unevenness was 0.28, which was compared to Example 3.
The unevenness is large compared to . Haze of stretched sheet is 20
.. Although the transparency was improved by stretching when compared to the Haze of the original fabric of 0% and 35.5%, it was inferior when compared to Example 3.

比較例3 実施例1において延伸温度を135℃としたところ、厚
さムラは0.06であり、実施例1に比較してムラが小
さいものの、延伸シートのHazeは44.7%で実施
例1に比べ透明性の改良効果は少ない。
Comparative Example 3 When the stretching temperature was set to 135°C in Example 1, the thickness unevenness was 0.06, and although the unevenness was smaller than in Example 1, the Haze of the stretched sheet was 44.7%, which was the same as in Example 1. Compared to No. 1, the effect of improving transparency is small.

[作用効果] 本発明のポリエチレン組成物は、特定の物性を有するエ
チレン・αオレフィン共重合体に、それと同等もしくは
それ以下のMFRを有する高圧法ポリエチレンを配合す
ることにより、低延伸倍率の成形品用としてすぐれた成
形特性を有し、原反製造に際しては 120〜200℃
の押出し温度を採用し、80〜130℃の延伸温度を用
いることにより、10〜50ozの低延伸倍率の成形体
を製造した場合、シャークスキンや延伸ムラのない、か
つ、透明度の良好な製品を得ることができる。
[Operation and Effect] The polyethylene composition of the present invention can be used to form molded products with a low draw ratio by blending an ethylene/α-olefin copolymer with specific physical properties with high-pressure polyethylene having an MFR equivalent to or lower than the ethylene/α-olefin copolymer. It has excellent molding properties for general use, and can be manufactured at temperatures of 120 to 200℃.
By adopting an extrusion temperature of Obtainable.

従って、本発明の方法により、透明性、耐熱性および耐
薬品性のすぐれた、食品用、医療用の中空ボトル、フィ
ルム、柔軟性および透明性のすぐれたシート、耐縦裂性
を有し、厚さムラの少ないテープ、リボン等を得ること
ができる。
Therefore, by the method of the present invention, hollow bottles and films for food and medical use with excellent transparency, heat resistance and chemical resistance, sheets with excellent flexibility and transparency, and longitudinal tear resistance can be obtained. Tapes, ribbons, etc. with less uneven thickness can be obtained.

Claims (4)

【特許請求の範囲】[Claims] (1)MFRが0.1〜20g/10分、密度が0.9
00〜0.940g/cm^3でフローレシオが5〜1
8のエチレン・αオレフィン共重合体95〜80重量%
と該エチレン・αオレフィン共重合体のMFRと同等ま
たはそれ以下のMFRを有する高圧法ポリエチレン5〜
40重量%からなるポリエチレン組成物を固体状態から
加温して10〜500%延伸することを特徴とするポリ
エチレン延伸成形体の製造方法。
(1) MFR is 0.1-20g/10min, density is 0.9
00~0.940g/cm^3 and flow ratio is 5~1
8 ethylene/α-olefin copolymer 95-80% by weight
and a high-pressure polyethylene 5 to 5 having an MFR equal to or lower than the MFR of the ethylene/α-olefin copolymer.
A method for producing a polyethylene stretched molded article, which comprises heating a polyethylene composition consisting of 40% by weight from a solid state and stretching it by 10 to 500%.
(2)原反を温度120〜200℃の押出条件で製造す
る、特許請求の範囲第1項に記載の方法。
(2) The method according to claim 1, wherein the original fabric is produced under extrusion conditions at a temperature of 120 to 200°C.
(3)延伸のための加温が90〜130℃である、特許
請求の範囲第1項または第2項に記載の方法。
(3) The method according to claim 1 or 2, wherein the heating for stretching is 90 to 130°C.
(4)延伸された製品の密度が0.910〜0.944
g/cm^3である、特許請求の範囲第1項ないし第3
項のいずれかに記載の方法。
(4) The density of the stretched product is 0.910 to 0.944
g/cm^3, claims 1 to 3
The method described in any of the paragraphs.
JP20443385A 1985-09-18 1985-09-18 Method for producing polyethylene stretched molded body Pending JPS6264846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20443385A JPS6264846A (en) 1985-09-18 1985-09-18 Method for producing polyethylene stretched molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20443385A JPS6264846A (en) 1985-09-18 1985-09-18 Method for producing polyethylene stretched molded body

Publications (1)

Publication Number Publication Date
JPS6264846A true JPS6264846A (en) 1987-03-23

Family

ID=16490455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20443385A Pending JPS6264846A (en) 1985-09-18 1985-09-18 Method for producing polyethylene stretched molded body

Country Status (1)

Country Link
JP (1) JPS6264846A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310639A (en) * 1986-03-03 1988-01-18 Kohjin Co Ltd Heat-shrinkable film and production thereof
US4939181A (en) * 1988-05-19 1990-07-03 Stamicarbon B.V. Polyethylene composition, objects made therefrom and process for the manufacture of foamed objects
US5112696A (en) * 1989-07-20 1992-05-12 E. I. Du Pont De Nemours And Company Tough monolayer shrink film for products containing moisture
US5376439A (en) * 1992-09-16 1994-12-27 Exxon Chemical Patents Inc. Soft films having enhanced physical properties
US5530065A (en) * 1992-01-07 1996-06-25 Exxon Chemical Patents Inc. Heat sealable films and articles made therefrom
US5656696A (en) * 1993-03-02 1997-08-12 Mitsubishi Chemical Corporation Resin composition for injection molding
US5904964A (en) * 1989-12-18 1999-05-18 E. I. Du Pont De Nemours And Company Process for manufacturing heat-shrinkable polyethylene film
JP2010189473A (en) * 2009-02-16 2010-09-02 Prime Polymer Co Ltd Oriented film comprising ethylenic polymer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149941A (en) * 1983-02-15 1984-08-28 Sumitomo Chem Co Ltd Resin composition for inflation film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149941A (en) * 1983-02-15 1984-08-28 Sumitomo Chem Co Ltd Resin composition for inflation film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310639A (en) * 1986-03-03 1988-01-18 Kohjin Co Ltd Heat-shrinkable film and production thereof
JPH0530855B2 (en) * 1986-03-03 1993-05-11 Kojin Kk
US4939181A (en) * 1988-05-19 1990-07-03 Stamicarbon B.V. Polyethylene composition, objects made therefrom and process for the manufacture of foamed objects
US5066725A (en) * 1988-05-19 1991-11-19 Stamicarbon B.V. Polyethylene composition, objects made therefrom and process for the manufacture of foamed objects
US5112696A (en) * 1989-07-20 1992-05-12 E. I. Du Pont De Nemours And Company Tough monolayer shrink film for products containing moisture
US5904964A (en) * 1989-12-18 1999-05-18 E. I. Du Pont De Nemours And Company Process for manufacturing heat-shrinkable polyethylene film
US5530065A (en) * 1992-01-07 1996-06-25 Exxon Chemical Patents Inc. Heat sealable films and articles made therefrom
US5376439A (en) * 1992-09-16 1994-12-27 Exxon Chemical Patents Inc. Soft films having enhanced physical properties
US5656696A (en) * 1993-03-02 1997-08-12 Mitsubishi Chemical Corporation Resin composition for injection molding
JP2010189473A (en) * 2009-02-16 2010-09-02 Prime Polymer Co Ltd Oriented film comprising ethylenic polymer

Similar Documents

Publication Publication Date Title
US5026778A (en) Polypropylene-based resin composition and process for preparation of sheets comprising the resin composition
JP3470337B2 (en) Propylene composition, method for producing the same, polypropylene composition and molded article
JPS6411061B2 (en)
CZ172190A3 (en) Matted stretched packaging material and process for producing thereof
EP1803772B1 (en) Polypropylene film with improved balance of mechanical properties
JPS6264846A (en) Method for producing polyethylene stretched molded body
EP0755970A1 (en) Process for the extrusion of polyethylene
JP2002249626A (en) Propylene composition, method for producing the same, polypropylene composition and molded article
KR0156574B1 (en) Polypropylene Resin Blow Molding Container
JPH01306448A (en) Polypropylene resin composition, sheets and production thereof
JP3721936B2 (en) Polypropylene resin composition and molded article comprising the same
JP4193567B2 (en) Polypropylene resin composition for heat-shrinkable film, method for producing the resin composition, and heat-shrinkable film
JPH0126859B2 (en)
JPH0582416B2 (en)
JP2000204175A (en) Propylene resin sheet and molded article using the same
JP2001181455A (en) Hollow molding resin composition and hollow molding container
JP2001114954A (en) Propylene resin composition, propylene resin composition for stretch blow molding, stretch blow molding container, and method for producing stretch blow molding container
JP2003253062A (en) Polyethylene composition
JPH0220320A (en) Production of polypropylene resin sheet and resin sheet obtained thereby
JP4406493B2 (en) Low gloss blow molded product
JPH08419B2 (en) Method for producing polypropylene resin sheets
JP4013497B2 (en) Polypropylene composition for film and film thereof
JPS6220543A (en) polyolefin composition
JPH0847980A (en) Crystalline olefin resin container and production thereof
JPH0593099A (en) Polyethylene composition