JPS6263180A - Rf type ion source - Google Patents
Rf type ion sourceInfo
- Publication number
- JPS6263180A JPS6263180A JP60201589A JP20158985A JPS6263180A JP S6263180 A JPS6263180 A JP S6263180A JP 60201589 A JP60201589 A JP 60201589A JP 20158985 A JP20158985 A JP 20158985A JP S6263180 A JPS6263180 A JP S6263180A
- Authority
- JP
- Japan
- Prior art keywords
- induction coil
- plasma
- spiral
- type ion
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Plasma Technology (AREA)
- Electron Sources, Ion Sources (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は、人工衛星の姿勢制御を行なうRF型イオン
・エンジンに関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an RF type ion engine for controlling the attitude of an artificial satellite.
従来のRF (Radiofrequency)型イオ
ン・エンジンの構成を第6図に示す、放電容器2に導入
されたHgガスにインダラシ1ンコイル6によって加速
された電子が衝突して電離プラズマを放電室8内に生成
し、 Hg÷イオンが電極3,4.5で構成される加速
電極によって運転エネルギを与えられ。The configuration of a conventional RF (Radiofrequency) type ion engine is shown in FIG. 6, in which electrons accelerated by an induction coil 6 collide with Hg gas introduced into a discharge vessel 2, producing ionized plasma within a discharge chamber 8. The Hg ÷ ions are generated and given operating energy by the accelerating electrodes composed of electrodes 3 and 4.5.
中和器7から放出される電子によって中和化された後、
放出されてイオン・エンジンの推力となる。After being neutralized by the electrons emitted from the neutralizer 7,
It is released and becomes the thrust of the ion engine.
効率の良い推力を得るためには、電極3の表面でのプラ
ズマの一様性が満足される必要がある。プラズマの一様
性を満たすためには、放電室8内のガス圧としてI X
10−”Torr以上必要である。ところが、5 X
1G−’Torr程度にしかガス圧を上げることが出
来ず、電極中心部でのイオン電流密度が周辺部より低く
なり、推進効率を下げるという問題がある。In order to obtain efficient thrust, uniformity of the plasma on the surface of the electrode 3 needs to be satisfied. In order to satisfy plasma uniformity, the gas pressure in the discharge chamber 8 must be
10-” Torr or more is required. However, 5
There is a problem in that the gas pressure can only be raised to about 1 G-'Torr, and the ion current density at the center of the electrode is lower than that at the periphery, reducing propulsion efficiency.
本発明は、このような事情に鑑みてなされきもので、推
進効率の良い、しかも放電容器上蓋のインダクションコ
イルの寿命を短くすることなく。The present invention was created in view of these circumstances, and provides a high propulsion efficiency without shortening the life of the induction coil on the discharge vessel top cover.
電極孔のある領域でのプラズマの一様性を改善したRF
型イオン源を提供することを目的とする。RF with improved plasma uniformity in areas with electrode holes
The purpose is to provide a type ion source.
本発明は、放電容器2の上蓋内側に螺旋状インダクショ
ンコイルを設け、螺旋状又は円状に磁石列を配して蝋旋
状インダクションコイルを磁気カスプでプラズマからガ
ードしたことを特徴とするRF型イオン源である。The present invention is an RF type characterized in that a spiral induction coil is provided inside the upper lid of the discharge vessel 2, a magnet array is arranged spirally or circularly, and the spiral induction coil is protected from plasma by a magnetic cusp. It is an ion source.
本発明によれば、インダクションコイルの寿命を問題に
せずに、簡単な構成でプラズマの一様性を改善でき推進
効率の良いRF型イオン源を構成できる。According to the present invention, it is possible to construct an RF type ion source that can improve plasma uniformity and have good propulsion efficiency with a simple configuration without making the life of the induction coil a problem.
以下本発明の実施例を詳細に説明する。なお従来装置と
その構成が同一の部分については同一符号を附けてその
説明を省略する。第1図に示すような位置にコイル6を
SAS製の容器の内周に設け、これとは別に放電容器中
心部の誘導電界を強めるために上蓋内側20に、螺旋状
インダクションコイル10を設け、第2図および第3図
に示すように螺旋状インダクションコイル10の両側に
極性の異なる磁石列9を配する。螺旋状インダクション
コイルlOの全体が磁場で覆われているため、プラズマ
の螺旋状インダクションコイル10への直接接触を防げ
る。螺旋状インダクションコイル10へのプラズマの接
触がなくなったので、スパタリングによる寿命の問題は
発生しないことになる。Examples of the present invention will be described in detail below. Note that the same reference numerals are given to the parts having the same configuration as those of the conventional device, and the explanation thereof will be omitted. A coil 6 is provided on the inner periphery of the SAS container at the position shown in FIG. 1, and in addition to this, a spiral induction coil 10 is provided inside the upper lid 20 in order to strengthen the induced electric field at the center of the discharge container. As shown in FIGS. 2 and 3, magnet arrays 9 having different polarities are arranged on both sides of the spiral induction coil 10. Since the entire helical induction coil 10 is covered with a magnetic field, direct contact of plasma with the helical induction coil 10 can be prevented. Since the helical induction coil 10 is no longer in contact with plasma, there will be no problem with the lifetime due to sputtering.
第4図および第5図に磁石列の別の配置例を示す、これ
は螺旋状インダクションコイル1o複数回おきに円状の
磁石列を極性をかえて配している。FIGS. 4 and 5 show another arrangement example of the magnet array, in which circular magnet arrays are arranged with polarities changed every several turns of the spiral induction coil 1o.
この磁石列配置だと螺旋状インダクションコイル10へ
のプラズマの直接接触部分は磁石列を横切る部分11の
みとなり、この部分11以外のスパッタリングによる寿
命の問題が発生しない、又、磁石列を横切る部分11は
寿命によって決まる肉厚にすることになるが、この部分
は少なく大きな重量増加にはならない、要は磁石列9と
螺旋状インダクションコイル10との交差部分が少なく
なるように磁石列9を配置すればよく、前述した磁石列
配置に限定するものではない、又、放電容器1の側面に
配置しているインダクションコイル6はなくても良い、
導入ガスとしてHgを用いているが、 Hgガスに限定
するものではない。With this magnet array arrangement, the only part of the helical induction coil 10 that is in direct contact with the plasma is the part 11 that crosses the magnet array, and there is no problem with the lifespan due to sputtering in areas other than this part 11. The wall thickness will be determined by the service life, but this part is small and will not result in a large increase in weight.In short, the magnet array 9 should be arranged so that the intersection between the magnet array 9 and the spiral induction coil 10 is reduced. However, the arrangement is not limited to the magnet row arrangement described above, and the induction coil 6 disposed on the side surface of the discharge vessel 1 may be omitted.
Although Hg is used as the introduced gas, it is not limited to Hg gas.
本発明は、RF型イオン・エンジンについて説明したが
、RFタイプの放電室を使用している全ての装置に適用
できる0例えば、該融合で使用されているプラズマ加熱
用中性粒子入射装置のRF型イオン源についても全く同
じように適用できる。Although the present invention has been described with respect to an RF type ion engine, it can be applied to any device using an RF type discharge chamber. The same applies to type ion sources.
第1図は本発明の実施例を示す断面図、第2図は本発明
実施例の磁石列配置図、第3図は第2図のA−A’力方
向ら見た断面図、第4図は別の磁石列配置図、第5図は
第4図のB−B’力方向ら見た断面図、第6図は従来の
RF型イオン・エンジンの断面図である。
1・・・ガス導入系 2・・・放電容器3.4.5・
・・電極 6・・・インダクションコイル7・・
・中和器 8・・・放電室9・・・磁石
10・・・螺旋状インダクションコイル・代理人 弁理
士 則 近 憲 佑
同 竹 花 喜久男
第2図
第4図
第5図
第6図FIG. 1 is a cross-sectional view showing an embodiment of the present invention, FIG. 2 is a magnet array arrangement diagram of an embodiment of the present invention, FIG. 3 is a cross-sectional view taken from the A-A' force direction in FIG. The figure shows another arrangement of magnet arrays, FIG. 5 is a sectional view taken along line BB' in FIG. 4, and FIG. 6 is a sectional view of a conventional RF type ion engine. 1... Gas introduction system 2... Discharge vessel 3.4.5.
...Electrode 6...Induction coil 7...
・Neutralizer 8...Discharge chamber 9...Magnet 10...Spiral induction coil ・Agent Patent attorney Yudo Noriyuki Chika Kikuo Takehana Figure 2 Figure 4 Figure 5 Figure 6
Claims (3)
インダクションコイルと中和器と電源等で構成されるイ
オン・エンジンに於いて、螺旋状のインダクションコイ
ルを放電容器上蓋内側に設け、磁気カスプ環状線が形成
されるように磁石を放電容器上蓋の壁に配し、かつ該磁
石列間に螺旋状インダクションコイルを設けたことを特
徴と するRF型イオン・エンジン。(1) In an ion engine consisting of a gas introduction system, a discharge vessel, an electrode, an induction coil installed inside the discharge chamber, a neutralizer, a power supply, etc., a spiral induction coil is installed inside the upper lid of the discharge vessel, An RF type ion engine characterized in that magnets are arranged on the wall of a discharge vessel upper cover so as to form a magnetic cusp ring, and a spiral induction coil is provided between the magnet rows.
コイルに沿って螺旋状に配したことを特徴とする特許請
求の範囲第1項記載のRF型イオン・エンジン。(2) The RF type ion engine according to claim 1, wherein the discharge vessel upper lid magnet array is arranged in a spiral along a spiral induction coil.
コイル複数回おきに円状に配したことを特徴とする特許
請求の範囲第1項記載のRF型イオン・エンジン。(3) The RF type ion engine according to claim 1, wherein the discharge vessel upper lid magnet array is arranged in a circle every plural times of the spiral induction coil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60201589A JPS6263180A (en) | 1985-09-13 | 1985-09-13 | Rf type ion source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60201589A JPS6263180A (en) | 1985-09-13 | 1985-09-13 | Rf type ion source |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6263180A true JPS6263180A (en) | 1987-03-19 |
Family
ID=16443559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60201589A Pending JPS6263180A (en) | 1985-09-13 | 1985-09-13 | Rf type ion source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6263180A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015097209A (en) * | 2008-05-05 | 2015-05-21 | アストリウム・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Ionic engine |
CN114135457A (en) * | 2021-11-30 | 2022-03-04 | 中国工程物理研究院电子工程研究所 | Ion propeller |
-
1985
- 1985-09-13 JP JP60201589A patent/JPS6263180A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015097209A (en) * | 2008-05-05 | 2015-05-21 | アストリウム・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Ionic engine |
CN114135457A (en) * | 2021-11-30 | 2022-03-04 | 中国工程物理研究院电子工程研究所 | Ion propeller |
CN114135457B (en) * | 2021-11-30 | 2023-03-14 | 中国工程物理研究院电子工程研究所 | Ion propeller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9494143B1 (en) | Ion propulsion thruster including a plurality of ion optic electrode pairs | |
US5241244A (en) | Cyclotron resonance ion engine | |
US7116054B2 (en) | High-efficient ion source with improved magnetic field | |
RU2107837C1 (en) | Short-length plasma-jet engine with closed-circuit electron drift | |
US5215703A (en) | High-flux neutron generator tube | |
US20080028743A1 (en) | Air-breathing electrostatic ion thruster | |
EP0606097B1 (en) | A permanent magnet arrangement for use in magnetron plasma processing | |
CN115681052A (en) | Hall thruster, equipment with Hall thruster and using method of Hall thruster | |
US20050212442A1 (en) | Ion accelerator arrangement | |
US7030576B2 (en) | Multichannel hall effect thruster | |
US10961989B2 (en) | Ion thruster with external plasma discharge | |
JPS6263180A (en) | Rf type ion source | |
JP2003139044A (en) | Ion thrustor | |
US4516050A (en) | Ion chamber for electron-bombardment ion sources | |
CN116190040A (en) | Magnetic field structure of external discharge plasma thruster and thruster | |
JP2856740B2 (en) | ECR type ion thruster | |
RU2139647C1 (en) | Closed-electron-drift plasma accelerator | |
JP3127636B2 (en) | Ion source | |
JPS5740845A (en) | Ion beam generator | |
JPS6263179A (en) | Rf type ion source | |
JPS6250941B2 (en) | ||
JPS6263181A (en) | Rf type ion source | |
JPS6166869A (en) | Rf type ion engine | |
JPS61126383A (en) | Ion thrustor | |
CN117108468A (en) | Coil excitation type hollow cathode thruster |