[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6261044B2 - - Google Patents

Info

Publication number
JPS6261044B2
JPS6261044B2 JP7156080A JP7156080A JPS6261044B2 JP S6261044 B2 JPS6261044 B2 JP S6261044B2 JP 7156080 A JP7156080 A JP 7156080A JP 7156080 A JP7156080 A JP 7156080A JP S6261044 B2 JPS6261044 B2 JP S6261044B2
Authority
JP
Japan
Prior art keywords
latex
rubbery polymer
rubber
aqueous solution
lactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7156080A
Other languages
Japanese (ja)
Other versions
JPS56167704A (en
Inventor
Tateaki Tanaka
Gihei Watanabe
Yoshitomo Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP7156080A priority Critical patent/JPS56167704A/en
Publication of JPS56167704A publication Critical patent/JPS56167704A/en
Publication of JPS6261044B2 publication Critical patent/JPS6261044B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明はゴムラテツクスのゴム質重合体粒子を
凝集させる方法に関し、ゴム魂をほとんど生成さ
せる事なく、しかもゴム質重合体の濃度を著しく
低める事なしに、工業的に有用なゴムラテツクス
を得る方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for agglomerating rubbery polymer particles of rubber latex, which is industrially useful without generating almost any rubber particles and without significantly lowering the concentration of the rubbery polymer. The present invention provides a method for obtaining a rubber latex of high quality.

従来ジエン系ゴムラテツクスに酸性物質を添加
してラテツクスのPHを低下させ、しかる後塩基性
物質を加える事によつて、凝集肥大化したゴム粒
子からなるゴムラテツクスを得る方法は良く知ら
れている。例えば特公昭42−3112号公報に記載の
方法では、ゴム質重合物濃度20%以上、PH8.0以
上のゴムラテツクスに酸性物質を加えて、ゴム質
ラテツクスのPHを8.0〜1.0、またゴム質重合物濃
度を20%以下とし、しかる後塩基性物質を加えて
このラテツクスのPHを8.0以上とする事によつて
ゴム質重合体粒子の粒径を肥大させる方法であ
る。しかしながらこの方法では一般にゴム粒子の
凝集を充分に行なわせ所定の粒径まで肥大化させ
るには、酸性物質を多量に添加して、ラテツクス
のPHを充分低下させねばならない。この結果ラテ
ツクスの機械的安定性が悪くなり、一部のゴム粒
子はゴム塊として、撹拌機及び槽壁に付着すると
いう問題があつた。ゴム塊が生成すると作業性が
悪化するばかりでなく、最終製品に混入すると製
品の外観を損なう。ゴム塊状物の生成を避けるに
は、ラテツクス濃度を下げたり、添加する酸性水
溶液の酸濃度を下げる必要があつた。そのためゴ
ム質重合体ラテツクス中のゴム濃度が低下し、生
産性を損なうという欠点を有していた。またこの
ようなゴム塊状物の生成を避ける手段として例え
ば、特公昭49−43266号公報に記載の方法があ
る。この方法ではゴムラテツクスのPHを常に中性
ないしアルカリ性に保ちつつ、酸性物質とアルカ
リ性物質を交互にまたは同時にラテツクスに添加
することによつて、ゴム塊をほとんど生成するこ
となしにゴムラテツクスの粒子を凝集肥大させる
というものである。しかしながらこの方法では凝
集時工業的にPHを所定の値に保つのは煩雑であ
り、また酸性物質、アルカリ性物質とも単独に加
える場合よりも大量に加えなければならなという
欠点があつた。本発明者等は、かかる問題に着目
し、鋭意検討した結果凝集効果が強くかつゴム塊
の生成しにくい凝集剤として乳酸が好ましい事を
見出し、さらにその凝集条件として乳酸を添加す
る場合のゴム質重合体ラテツクス温度、乳酸水溶
液を添加する際の温度、酸濃度、系の撹拌強さを
特定の条件で行なう事によつて、ゴム塊をほとん
ど生成せず、しかも効果よく、ゴム粒子の凝集肥
大を完結できる事を見出した。
Conventionally, it is well known to add an acidic substance to a diene rubber latex to lower the pH of the latex, and then add a basic substance to obtain a rubber latex consisting of coagulated and enlarged rubber particles. For example, in the method described in Japanese Patent Publication No. 42-3112, an acidic substance is added to a rubber latex with a rubbery polymer concentration of 20% or more and a pH of 8.0 or more to raise the pH of the rubbery latex to 8.0 to 1.0, and to increase the rubbery polymer concentration. In this method, the particle size of the rubbery polymer particles is increased by adjusting the concentration of the latex to 20% or less and then adding a basic substance to make the pH of the latex 8.0 or higher. However, in this method, in general, in order to sufficiently agglomerate the rubber particles and enlarge them to a predetermined particle size, it is necessary to add a large amount of an acidic substance to sufficiently lower the pH of the latex. As a result, the mechanical stability of the latex deteriorated, and some rubber particles adhered to the stirrer and tank walls as rubber lumps. The production of rubber lumps not only impairs workability, but also impairs the appearance of the final product if it is mixed into the product. In order to avoid the formation of rubber lumps, it was necessary to lower the latex concentration or the acid concentration of the acidic aqueous solution to be added. As a result, the rubber concentration in the rubbery polymer latex decreases, which has the disadvantage of impairing productivity. Further, as a means for avoiding the formation of such rubber lumps, there is, for example, a method described in Japanese Patent Publication No. 49-43266. In this method, the PH of the rubber latex is always kept neutral or alkaline, and by adding acidic and alkaline substances to the latex alternately or simultaneously, the rubber latex particles are coagulated and enlarged without forming almost any rubber lumps. It is to let them do it. However, this method has the disadvantage that it is complicated to industrially maintain the pH at a predetermined value during aggregation, and that both acidic and alkaline substances must be added in larger quantities than when added alone. The present inventors focused on this problem, and as a result of intensive study, they found that lactic acid is preferable as a flocculant that has a strong flocculating effect and is difficult to form rubber lumps. By controlling the temperature of the polymer latex, the temperature when adding the lactic acid aqueous solution, the acid concentration, and the stirring strength of the system, it is possible to effectively agglomerate and enlarge the rubber particles with almost no rubber lumps. I discovered that it is possible to complete the

すなわち本発明は、共役ジエン系ゴムラテツク
スに乳酸水溶液を加え、ラテツクスのPHを7より
低くしてラテツクスの粒子を凝集肥大させるにあ
たり系の温度を30℃以上に保持し、かつ乳酸水溶
液中の酸濃度を1.5〜15%に保ちながらラテツク
スに添加し、しかる後に塩基性物質を加える事を
特徴とするラテツクスの凝集方法である。
That is, in the present invention, an aqueous lactic acid solution is added to a conjugated diene rubber latex, the pH of the latex is lowered to below 7, and the temperature of the system is maintained at 30°C or higher to coagulate and enlarge the latex particles, and the acid concentration in the aqueous lactic acid solution is This is a latex aggregation method characterized by adding basic substances to latex while maintaining the content at 1.5 to 15%, and then adding a basic substance.

ゴム質重合体ラテツクスとしては、ポリ−1,
3−ブタジエンおよび1,3−ブタジエンを50重
量%以上含むブタジエンと他の共重合性単量体と
の共重合体を含むラテツクスであつて、この種の
重合体は周知の方法で製造する事ができる。1−
3−ブタジエンと共重合できる単量体としては、
スチレン、α−メチルスチレン等のビニル芳香族
化合物:アクリロニトリル、メタクリロニトリル
等のビニルシアン化合物:アクリル酸エステル、
メタクリル酸エステル等があげられる。これらの
重合体はゲルの含まないものでもよいし、ジビニ
ルベンゼン等の架橋剤を使用してゲル含量をさら
に高めたものでもよい。これらの重合体の製造に
使用する乳化剤としてはロジン酸カリウム、ロジ
ン酸ナトリウム、およびオレイン酸カリウム等一
般に用いられる乳化剤であればいずれでも使用で
きる。さらにゴム質重合体ラテツクスはPHが7.0
以上で、乳化剤が安定な状態にあるものが使用さ
れる。また異なつた方法で製造されたゴムを適当
な比率でブレンドしたものも使用できる。ゴム質
重合体粒子の平均粒子径は0.4μ以下が好まし
く、均一な粒子径分布をもつたもの、あるいは適
当な粒子径分布をもつたものでもよい。
As the rubbery polymer latex, poly-1,
A latex containing a copolymer of butadiene and other copolymerizable monomers containing 50% by weight or more of 3-butadiene and 1,3-butadiene, and this type of polymer can be produced by a well-known method. Can be done. 1-
Monomers that can be copolymerized with 3-butadiene include:
Vinyl aromatic compounds such as styrene and α-methylstyrene; Vinyl cyanide compounds such as acrylonitrile and methacrylonitrile; acrylic esters;
Examples include methacrylic acid ester. These polymers may be gel-free or may be those in which the gel content is further increased by using a crosslinking agent such as divinylbenzene. As the emulsifier used in the production of these polymers, any commonly used emulsifier such as potassium rosinate, sodium rosinate, and potassium oleate can be used. Furthermore, the pH of rubbery polymer latex is 7.0.
In the above, an emulsifier in a stable state is used. It is also possible to use a blend of rubbers produced by different methods in appropriate proportions. The average particle size of the rubbery polymer particles is preferably 0.4 μm or less, and may have a uniform particle size distribution or a suitable particle size distribution.

本発明の目的を効果的に達成するためには、先
ず前記ゴム質重合体ラテツクスに乳酸を加えて、
ラテツクスのPHを7.0より低い値にして、ゴム質
重合体粒子を凝集肥大させる必要がある。添加す
る乳酸水溶液の酸濃度は、1.5〜15重量%、好ま
しくは2〜5重量%が使用される。
In order to effectively achieve the object of the present invention, first, lactic acid is added to the rubbery polymer latex,
It is necessary to lower the pH of the latex to a value lower than 7.0 to coagulate and enlarge the rubbery polymer particles. The acid concentration of the lactic acid aqueous solution to be added is 1.5 to 15% by weight, preferably 2 to 5% by weight.

乳酸水溶液の酸濃度を1.5重量%以下にする
と、ゴム質重合体ラテツクス中の固形分が低下し
てしまい、本発明の目的である固形分濃度の高い
ゴム質重合体ラテツクスを得る事ができないし、
酸濃度を15重量%以上にするとゴム塊状物が生成
し易くなるので好ましくない。またこの凝集操作
を行なう時はゴム質重合体ラテツクスの温度を30
℃以上に保つ必要がある。ラテツクスの温度が30
℃以下であると、ゴム塊が発生し易くなり、安定
な凝集操作を行なう事ができない。添加する乳酸
水溶液の温度も同様に30℃以上、好ましくは40〜
80℃に保つ必要がある。
If the acid concentration of the lactic acid aqueous solution is lower than 1.5% by weight, the solid content in the rubbery polymer latex will decrease, making it impossible to obtain a rubbery polymer latex with a high solids content concentration, which is the objective of the present invention. ,
If the acid concentration is 15% by weight or more, rubber lumps are likely to be formed, which is not preferable. Also, when performing this coagulation operation, the temperature of the rubbery polymer latex is
Must be kept above ℃. The temperature of the latex is 30
If the temperature is below 0.degree. C., rubber lumps are likely to occur, making it impossible to perform a stable aggregation operation. Similarly, the temperature of the lactic acid aqueous solution to be added is 30°C or higher, preferably 40°C or higher.
Must be kept at 80℃.

乳酸の添加方法は通常の連続添加が好ましい
が、凝集を行なわせる撹拌槽の上部から滴下させ
るよりは、インターナル管あるいは撹拌槽の底部
から供給してゴム質重合体ラテツクスに直接接触
させるようにするのが好ましい。これは撹拌槽の
上部から乳酸を滴下すると、ラテツクスの表面が
乱れてゴム塊状物の生成が起るのを防ぐためであ
る。
The preferred method for adding lactic acid is the usual continuous addition, but rather than dropping it dropwise from the top of the stirring tank where aggregation occurs, it is preferable to supply it from an internal pipe or the bottom of the stirring tank and bring it into direct contact with the rubbery polymer latex. It is preferable to do so. This is to prevent the surface of the latex from being disturbed and the formation of rubber lumps when lactic acid is dropped from the top of the stirring tank.

乳酸添加後のゴム質重合体ラテツクスのPHはゴ
ム質重合体の凝集状態に大きな影響を与えるの
で、重要な要因である。すなわちゴム質重合体ラ
テツクスのPHは7.0以下、好ましくは2.5〜6.0にす
る必要がある。ラテツクスのPHを2.5よりも低く
すると、ゴム塊が生成し易く、また6.0よりも高
くすると凝集肥大効果が弱く好ましくない。これ
はゴム質重合体ラテツクスに酸性物質を添加する
とゴム質重合体粒子に吸着され、静電気的に安定
化している界面活性剤が中和され、これらゴム質
重合体粒子の衝突融着が引き起されるためと考え
られる。更に安定な凝集操作を行なうためには、
ゴム質重合体ラテツクスにドデシルベンゼン・ス
ルホン酸ナトリウム、スルホコハク酸ジオクルエ
ステルナトリウム塩等、比較的酸に対して安定な
アニオン系界面活性剤を分散安定剤として加える
事ができる。これらの分散安定剤は乳酸水溶液を
添加する前に一括加えても良いし、乳酸水溶液に
追加して同時に添加しても良い。このような分散
安定剤の添加量は、ゴム質重合体ラテツクスの固
形分に対して0.005〜0.2重量%程度が良い。この
量が0.2重量%以上の時は乳酸によるゴム質重合
体粒子の凝集効果が低下してしまうので好ましく
ない。
The pH of the rubbery polymer latex after adding lactic acid is an important factor because it has a great effect on the state of aggregation of the rubbery polymer. That is, the pH of the rubbery polymer latex needs to be 7.0 or less, preferably 2.5 to 6.0. If the pH of the latex is lower than 2.5, rubber lumps are likely to be formed, and if it is higher than 6.0, the coagulation and enlargement effect will be weak and undesirable. This is because when an acidic substance is added to a rubbery polymer latex, it is adsorbed to the rubbery polymer particles, neutralizes the electrostatically stabilized surfactant, and causes collision and fusion of these rubbery polymer particles. This is thought to be because the In order to perform more stable aggregation operation,
Anionic surfactants that are relatively stable against acids, such as sodium dodecylbenzene sulfonate and sodium sulfosuccinate diocle ester, can be added to the rubbery polymer latex as a dispersion stabilizer. These dispersion stabilizers may be added all at once before adding the lactic acid aqueous solution, or may be added to the lactic acid aqueous solution and added at the same time. The amount of such a dispersion stabilizer added is preferably about 0.005 to 0.2% by weight based on the solid content of the rubbery polymer latex. When this amount is 0.2% by weight or more, the effect of aggregating rubbery polymer particles by lactic acid is reduced, which is not preferable.

乳酸水溶液を添加する速度は広い範囲に取り得
るが、工業的には添加時間を3〜15分程度にする
のが好ましい。ゴム質重合体粒子の凝集肥大を行
なわせる容器はジヤケツト、撹拌機つきの反応容
器であればいずれでもよい。この反応容器を用い
てゴム質重合体粒子の凝集肥大を行なわせる際の
撹拌の強さは系の安定性に大きな影響を与えるの
で、適当な撹拌強さを選ぶ必要がある。撹拌強さ
は撹拌翼の直径及び回転数によつてきめられる
が、撹拌が強すぎるとゴム塊の生成が多くなり好
ましくなく、また撹拌が弱すぎるとゴム質重合体
ラテツクスの表面の流動が不十分となり、ゴム質
重合体ラテツクスの表面に膜状のゴム塊状物が発
生し易くなる。更に極端に弱いと乳酸とゴム質重
合体ラテツクスの接触が不十分となり、ゴム質重
合体粒子の凝集肥大が十分に行なわれなくなる。
通常の重合操作に用いられる撹拌翼を用いる時
は、下記に示す範囲内の撹拌強さが良い結果をも
たらす。
Although the rate at which the aqueous lactic acid solution is added can vary over a wide range, industrially it is preferable that the addition time be about 3 to 15 minutes. The vessel in which the rubbery polymer particles are agglomerated and enlarged may be any jacket or reaction vessel equipped with a stirrer. The strength of stirring when coagulating and enlarging the rubbery polymer particles using this reaction vessel has a great effect on the stability of the system, so it is necessary to select an appropriate stirring strength. The strength of stirring is determined by the diameter and rotational speed of the stirring blade, but if the stirring is too strong, a large number of rubber lumps will be formed, which is undesirable, and if the stirring is too weak, the surface fluidity of the rubbery polymer latex will be poor. This is sufficient to easily form a film-like rubber lump on the surface of the rubbery polymer latex. Furthermore, if it is extremely weak, the contact between the lactic acid and the rubbery polymer latex will be insufficient, and the rubbery polymer particles will not be sufficiently agglomerated and enlarged.
When using a stirring blade used in ordinary polymerization operations, a stirring strength within the range shown below will give good results.

N3D2=5×103〜5×104 ここでD:撹拌翼の直径(単位m) N:撹拌翼の回転数(単位rpm) ただし、D=0.1(m)〜3.0(m)の範囲に限
られる。
N 3 D 2 = 5 × 10 3 ~ 5 × 10 4 where D: Diameter of stirring blade (unit: m) N: Rotation speed of stirring blade (unit: rpm) However, D = 0.1 (m) ~ 3.0 (m) limited to the range of

また凝集肥大を行なわせる方法として、この反
応容器を用いて予めゴム質重合体ラテツクスを仕
込み、30℃以上に温度を保つた後乳酸水溶液を添
加して、ゴム質重合体粒子を凝集肥大させるいわ
ゆるバツチ法でも良いし、ゴム質重合体ラテツク
スと乳酸水溶液をそれぞれ連続的に反応容器に供
給し、容器上部から凝集肥大化したゴム質重合体
ラテツクスを連続的に得る方法でも良い。
In addition, as a method for coagulating and enlarging the rubbery polymer particles, a rubbery polymer latex is charged in advance using this reaction vessel, and after the temperature is maintained at 30°C or higher, an aqueous lactic acid solution is added to coagulate and enlarge the rubbery polymer particles. A batch method may be used, or a method may be used in which a rubbery polymer latex and an aqueous lactic acid solution are each continuously supplied to a reaction vessel to continuously obtain agglomerated and enlarged rubbery polymer latex from the upper part of the vessel.

上記のように乳酸水溶液を添加して凝集肥大化
したゴム質重合体ラテツクスはそののままでは極
めて不安定な状態であり、塩基性物質を加える必
要がある。加える塩基性物質としては、水酸化ナ
トリウム、水酸化カリウム、炭酸ナトリウム等が
あるが、水酸化ナトリウム、水酸化カリウムが好
ましく用いられる。これらの塩基性物質の濃度は
2〜10重量%に希釈して添加するのが好ましい。
10重量%以上の濃度にして添加すると、ゴム塊が
発生し易く好ましくないし、あまり低濃度にする
と液量が多くなるので好ましくない。これらの塩
基性物質は乳酸水溶液の添加が終了後直ちに添加
する事が肝要であり、遅くとも30秒以内に添加す
る必要がある。乳酸水溶液の添加が終了してから
塩基性物質を添加する迄に30秒以上の間隔がある
と、ゴムラテツクスが不安定な状態のまま撹拌作
用を受ける事になり、撹拌機回りにゴム塊が付着
するので好ましくない。
The rubbery polymer latex, which has been coagulated and enlarged by adding an aqueous lactic acid solution as described above, is in an extremely unstable state as it is, and it is necessary to add a basic substance. Examples of the basic substance to be added include sodium hydroxide, potassium hydroxide, and sodium carbonate, and sodium hydroxide and potassium hydroxide are preferably used. It is preferable that these basic substances are diluted and added to a concentration of 2 to 10% by weight.
If it is added at a concentration of 10% by weight or more, rubber lumps are likely to occur, which is not preferable, and if the concentration is too low, the amount of liquid increases, which is not preferable. It is important to add these basic substances immediately after the addition of the lactic acid aqueous solution is completed, and it is necessary to add them within 30 seconds at the latest. If there is an interval of 30 seconds or more between the addition of the lactic acid aqueous solution and the addition of the basic substance, the rubber latex will be subjected to the stirring action in an unstable state, and rubber lumps will stick around the stirrer. Therefore, it is not desirable.

以上のように塩基性物質を添加して安定したラ
テツクスを得るには最終的にPHを8〜12に保つの
が望ましい。本発明の方法で製造されたゴム質重
合体のラテツクスは、更にビニル芳香族単量体ま
たはビニル芳香族単量体と少なくとも1種の重合
性ビニル単量体との混合物を加えてグラフト重合
させ、耐衝撃性樹脂を得る事ができる。
As mentioned above, in order to obtain a stable latex by adding a basic substance, it is desirable to maintain the final pH between 8 and 12. The rubbery polymer latex produced by the method of the present invention is further graft-polymerized by adding a vinyl aromatic monomer or a mixture of a vinyl aromatic monomer and at least one polymerizable vinyl monomer. , impact-resistant resin can be obtained.

以下に本発明方法を実施例により詳細に説明す
る。
The method of the present invention will be explained in detail below using examples.

実施例 1 直径0.36mの錨型撹拌翼とジヤケツトを備えた
200の反応容器に次のような特性を有するSBR
ラテツクス(日本合成ゴム(株)社製SLB)を
13.0Kg仕込んだ。
Example 1 Equipped with an anchor-type stirring blade with a diameter of 0.36 m and a jacket
SBR with the following characteristics for 200 reaction vessels
Latex (SLB manufactured by Japan Synthetic Rubber Co., Ltd.)
I loaded 13.0Kg.

固形分 23.3% 結合スチレン 23% ムーニー粘度 ML1+4 ゲル分 なし 乳化剤 混酸系 このラテツクスを電子顕微鏡で観察したとこ
ろ、その平均粒径は0.05μであつた。この反応缶
の撹拌翼の回転数を50rpmとして撹拌しつつ、ラ
テツクスの温度が60℃になるまでスチームで昇温
した。一方、50%乳酸水溶液1.68Kg及び脱イオン
水6.72Kgからなる酸水溶液を温度が75℃になるま
で昇温しておいた。ラテツクスの温度が60℃に達
した時、この酸水溶液をインターナル管を通して
連続的に反応缶に供給した。供給時間は7分であ
つた。この時のラテツクスのPHは4.2であつた。
Solid content 23.3% Bound styrene 23% Mooney viscosity ML 1+4 gel content None Emulsifier Mixed acid system When this latex was observed with an electron microscope, the average particle size was 0.05μ. The latex was heated with steam until the temperature of the latex reached 60° C. while stirring the reaction vessel at a rotation speed of 50 rpm. Meanwhile, an acid aqueous solution consisting of 1.68 kg of 50% lactic acid aqueous solution and 6.72 kg of deionized water was heated to a temperature of 75°C. When the temperature of the latex reached 60°C, this acid aqueous solution was continuously supplied to the reaction vessel through an internal tube. The feeding time was 7 minutes. The pH of the latex at this time was 4.2.

乳酸水溶液添加終了後時間をおかずに5重量%
濃度の水酸化ナトリウム水溶液7.2Kgを5分間で
添加した。このようにして得られたラテツクスは
白濁し、全く透明感のないものであつた。このラ
テツクスを電子顕微鏡で観察するとゴム質重合体
粒子の平均粒径は0.43μであつた。凝集後のラテ
ツクス固形分濃度は20.8%であつた。凝集操作終
了後ラテツクスを反応缶から抜き出し反応缶の内
部を観察したところ、ゴム塊の付着は殆ど見られ
ず、内部を洗浄することなく、次のバツチ操作が
行なえる状態であつた。
5% by weight immediately after addition of lactic acid aqueous solution
7.2 kg of a concentrated aqueous sodium hydroxide solution was added over 5 minutes. The latex thus obtained was cloudy and completely opaque. When this latex was observed under an electron microscope, the average particle size of the rubbery polymer particles was 0.43μ. The solid content concentration of the latex after flocculation was 20.8%. After the flocculation operation was completed, the latex was taken out from the reaction can and the inside of the reaction can was observed, and it was found that almost no rubber lumps were observed, and the next batch operation could be carried out without cleaning the inside.

比較例 1 実施例1において酸水溶液の添加終了後1.5分
間撹拌を続けてから水酸化ナトリウム水溶液を添
加し始めた以外は同例記載と同様の手順で操作を
行なつた。反応缶の底部からラテツクスを抜き出
し反応缶の内部を観察したところ、内壁、インタ
ーナル管、撹拌翼にゴム塊が少量付着していた。
Comparative Example 1 The same procedure as described in Example 1 was carried out except that stirring was continued for 1.5 minutes after the addition of the acid aqueous solution was completed and then addition of the sodium hydroxide aqueous solution was started. When the latex was extracted from the bottom of the reaction can and the inside of the reaction can was observed, a small amount of rubber lumps were found adhering to the inner wall, internal pipe, and stirring blade.

なお、これらの付着したゴム塊を取り出し、乾
燥後の重量を測定したところ0.25Kg(全ゴム分に
対して0.8重量%)であつた。
When these adhered rubber lumps were taken out and the weight after drying was measured, it was 0.25 kg (0.8% by weight based on the total rubber content).

実施例 2 ジヤケツトと直径12cmのパドル型の撹拌翼3枚
を取りつけた撹拌機を備えた5の第1反応缶と
同じくジヤケツト及びフアンタービン型の撹拌翼
を備えた2の反応缶を並列に設置した。第1反
応缶の底部には2本の供給ノズルがあり、その1
本のノズルから実施例1と同じゴム質重合体ラテ
ツクスをポンプを用いて500c.c./分の速度で供給
した。ジヤケツトからのスチーム加熱で、ゴムラ
テツクスの温度が60℃になるように調節した。予
め50%乳酸水溶液2.8Kg、脱イオン水11.2Kgから
なる酸水溶液を温度75℃に調節しておいた。ゴム
ラテツクスの供給を開始してから3分後にこの酸
水溶液をもう一方の供給ノズルから33c.c./分の速
度で供給を始めた。約10分後に第1反応缶からオ
ーバーフローが始まつた。このラテツクスは完全
に白濁した状態のものであつた。このラテツクス
を第2反応缶の底部の供給ノズルに導き、上部の
ノズルから5重量%、60℃に調整した荷性ソーダ
水溶液を13c.c./分の速度で供給を開始した。その
約4分後に第2反応缶の上部からオーバーフロー
が始まつた。
Example 2 A first reaction can of No. 5 equipped with a jacket and a stirrer equipped with three paddle-shaped stirring blades with a diameter of 12 cm and two reaction cans equipped with a jacket and fan-turbine type stirring blades were installed in parallel. did. There are two supply nozzles at the bottom of the first reactor, one of which
The same rubbery polymer latex as in Example 1 was fed through the main nozzle using a pump at a rate of 500 c.c./min. The temperature of the rubber latex was adjusted to 60°C using steam heating from the jacket. An acid aqueous solution consisting of 2.8 kg of 50% lactic acid aqueous solution and 11.2 kg of deionized water was adjusted to a temperature of 75°C in advance. Three minutes after starting the supply of rubber latex, this acid aqueous solution was started to be supplied from the other supply nozzle at a rate of 33 c.c./min. After about 10 minutes, overflow started from the first reactor. This latex was completely cloudy. This latex was led to the supply nozzle at the bottom of the second reaction vessel, and a 5% by weight aqueous sodium chloride solution adjusted to 60°C was started to be supplied from the upper nozzle at a rate of 13 c.c./min. About 4 minutes later, overflow started from the upper part of the second reaction vessel.

その後2時間同じ状態を保ち約65のラテツク
スを得た。このラテツクスの固形分濃度は22%で
PHは9.8であつた。このラテツクスを電子顕微鏡
で観察するとゴム質重合体粒子の平均粒子径は
0.40μであつた。
After that, the same conditions were maintained for 2 hours, and about 65 latexes were obtained. The solid content concentration of this latex is 22%.
The pH was 9.8. When this latex was observed under an electron microscope, the average particle diameter of the rubbery polymer particles was found to be
It was 0.40μ.

凝集操作終了後第1反応缶、第2反応缶の底部
からラテツクスを抜き出し、反応缶の内部を観察
したところゴム塊の生成が殆んどなく、更に長時
間の運転が可能である事がわかつた。
After the flocculation operation was completed, the latex was extracted from the bottoms of the first and second reaction vessels, and when the inside of the reaction vessels was observed, it was found that almost no rubber lumps were formed, and it was possible to operate for a longer period of time. Ta.

実施例 3 10撹拌器付ステンレス製オートクレーブに ブタジエン単量体 1300g ロジン酸カリウム 26g n−ドデシルメルカプタン 2.6g リン酸ナトリウム 0.65g 脱イオン水 1950g 過硫酸カリウム 2.6g を真空下に仕込み、温度50〜60℃の範囲で圧力降
下が認められなくなるまで重合反応を行なわせ、
未反応モノマーをスチームストリツピングで除去
して、重合収率96.5%、固形分40%の合成ゴムラ
テツクスを得た。得られたゴムラテツクスの特性
は通の通りであつた。
Example 3 1300 g of butadiene monomer, 26 g of potassium rosinate, 2.6 g of n-dodecyl mercaptan, 1950 g of deionized water, and 2.6 g of potassium persulfate were placed in a stainless steel autoclave equipped with a stirrer under vacuum, and the temperature was 50 to 60. The polymerization reaction is carried out in the temperature range of ℃ until no pressure drop is observed.
Unreacted monomers were removed by steam stripping to obtain a synthetic rubber latex with a polymerization yield of 96.5% and a solid content of 40%. The properties of the obtained rubber latex were as usual.

PH 11.3 ムーニー粘度 125 ゲル含有率 86 このラテツクス1,000gを直径8cmの錨型撹
拌翼を備えた2のジヤケツト付反応缶に仕込ん
だ。このラテツクスを電子顕微鏡で観察したとこ
ろ、その平均粒子径は0.22μであつた。この反応
缶の撹拌翼の回転数を120rpmに保ちながら撹拌
しつつ、ラテツクスの温度が50℃になるまで昇温
した。一方、 ドデシルベンゼンスルホン酸ナトリウム 0.06g 50%乳酸水溶液 24g 脱イオン水 276g よりなる酸水溶液を温度が75℃になるまで昇温し
ておいた。ラテツクスの温度が50℃に達した時、
この酸水溶液をインターナル管を通して連続的に
反応缶に供給した。供給時間は10分であつた。こ
の時のラテツクスのPHは3.5であつた。この酸水
溶液添加終了後間をおかずに5重量%、温度50℃
に調整した荷性ソーダ水溶液103gを5分間で添
加した。得られたラテツクスを電子顕微鏡で観察
するとゴム質重合体粒子の平均粒子径は0.36μで
あつた。凝集後のラテツクスの固形分濃度は28.5
%であつた。凝集操作後反応缶からラテツクスを
抜き出し反応缶の内部を観察したところ、ゴム塊
の付着が殆んど見られず内部を洗浄することな
く、次のバツチ操作が行なえる状態であつた。
PH: 11.3 Mooney viscosity: 125 Gel content: 86 1,000 g of this latex was charged into a jacketed reaction vessel equipped with an anchor-shaped stirring blade having a diameter of 8 cm. When this latex was observed with an electron microscope, its average particle size was 0.22μ. The temperature of the latex was raised to 50° C. while stirring while maintaining the rotation speed of the stirring blade of this reaction vessel at 120 rpm. Meanwhile, an acid aqueous solution consisting of 0.06 g of sodium dodecylbenzenesulfonate, 24 g of 50% lactic acid aqueous solution, and 276 g of deionized water was heated to 75°C. When the temperature of the latex reaches 50℃,
This acid aqueous solution was continuously supplied to the reaction vessel through an internal tube. The feeding time was 10 minutes. The pH of the latex at this time was 3.5. Immediately after the addition of this acid aqueous solution, add 5% by weight at a temperature of 50°C.
103g of aqueous sodium hydroxide solution adjusted to 100% was added over 5 minutes. When the obtained latex was observed under an electron microscope, the average particle diameter of the rubbery polymer particles was 0.36μ. The solid content concentration of the latex after flocculation is 28.5
It was %. After the flocculation operation, the latex was taken out from the reactor and the inside of the reactor was observed, and it was found that there was almost no adhesion of rubber lumps, and the next batch operation could be carried out without cleaning the inside.

実施例 4 直径0.20mの錨型撹拌翼とジヤケツトを備えた
30の反応容器に実施例1で用いたSBRラテツク
スを6Kg、また実施例3で用いたポリブタジエン
ラテツクス6Kgをそれぞれ仕込んだ。撹拌翼の回
転数を80rpmとして撹拌し混合した。この時のラ
テツクス中の固形分は31.65%であつた。このラ
テツクスは平均粒子径が0.05μのゴム質重合体粒
子と平均粒子径が、0.22μのゴム質重合体粒子の
混合物であつた。このラテツクスの温度が60℃に
なるまでスチームで昇温した。一方、 ドデシルベンゼンスルホン酸ナトリウム 0.38g 50%乳酸水溶液 190g 脱イオン水 1710g からなる酸水溶液を温度が75℃になるまで昇温し
ておいた。ラテツクスの温度が60℃に達した時、
この酸水溶液をインターナル管を通して連続的に
反応缶に供給した。供給時間は5分であつた。こ
の時のラテツクスのPHは4.6であつた。この酸水
溶液添加終了後間をおかずに5重量%濃度の水酸
化ナトリウム水溶液815gを5分間で添加した。
このようにして得られたラテツクスは白濁し、全
く透明感のないものであつた。このラテツクスに ぶどう糖 42g ピロリン酸ナトリウム 42g 硫酸第1鉄 0.4g 脱イオン水 1.05Kg からなる薬液を一括して仕込んだ。ラテツクスの
温度を60℃に保ちながら、一方単量体として スチレン 3376Kg アクリロニトリル 1.266Kg 3級ドデシルメルカプタン 17g からなる単量体を準備して4時間等速で連続的に
仕込んだ。また単量体仕込みと同時に クメン・ハイドロパーオキサイド 17g オレイン酸カリウム 170g 脱イオン水 4640g からなる重合開始剤と乳化剤の混合水溶液を5.5
時間等速で連続的に仕込んだ。これらの単量体混
合物及び重合開始剤と乳化剤の混合水溶液添加終
了後更に60℃で1時間グラフト反応を継続した。
得られた重合体ラテツクスに酸化防止剤を加え、
更に硫酸マグネシユムで凝固、過、水洗、乾燥
した。得られた重合体は白色粉末状を呈してい
た。グラフト重合体のゴム質重合体含有量は34.1
%であつた。得られたグラフト重合体粉末に別途
懸濁重合によつて得られた硬質樹脂ビーズ(スチ
レンとアクリロニトリルの重合組成が73%:27
%、極限粘度MEK30℃、〔η〕=0.50dl/gr)を
ブレンドし、ヘンシエルミキサーによつて混練
し、全組成物中のゴム質重合体の含有率が15重量
%の混合粉末とし、これを押し出し処理してペレ
ツトを得た。このペレツトを用いて射出成形法に
よつて試験片を作成しASTM法に準拠して諸物
性を評価した。アイゾツト衝撃強さ(1/2″×1/
2″)は25.5Kg・cm/cm(ノツチ付)、引張強さ
(降伏値)は455Kg/cm2であつた。
Example 4 Equipped with an anchor-shaped stirring blade with a diameter of 0.20 m and a jacket
6 kg of the SBR latex used in Example 1 and 6 kg of the polybutadiene latex used in Example 3 were charged into 30 reaction vessels. The mixture was stirred and mixed by setting the rotation speed of the stirring blade to 80 rpm. The solid content in the latex at this time was 31.65%. This latex was a mixture of rubbery polymer particles with an average particle size of 0.05μ and rubbery polymer particles with an average particle size of 0.22μ. This latex was heated with steam until the temperature reached 60°C. Meanwhile, an acid aqueous solution consisting of 0.38 g of sodium dodecylbenzenesulfonate, 190 g of a 50% lactic acid aqueous solution, and 1710 g of deionized water was heated to a temperature of 75°C. When the temperature of the latex reaches 60℃,
This acid aqueous solution was continuously supplied to the reaction vessel through an internal tube. The feeding time was 5 minutes. The pH of the latex at this time was 4.6. Immediately after the addition of the acid aqueous solution was completed, 815 g of a 5% by weight aqueous sodium hydroxide solution was added over 5 minutes.
The latex thus obtained was cloudy and completely opaque. A chemical solution consisting of 42 g of glucose, 42 g of sodium pyrophosphate, 0.4 g of ferrous sulfate, and 1.05 kg of deionized water was added to this latex all at once. While maintaining the temperature of the latex at 60° C., monomers consisting of 3376 kg of styrene, 1.266 kg of acrylonitrile, and 17 g of tertiary dodecyl mercaptan were prepared and charged continuously at a constant speed for 4 hours. At the same time as monomer preparation, a mixed aqueous solution of a polymerization initiator and an emulsifier consisting of 17 g of cumene hydroperoxide, 170 g of potassium oleate, and 4640 g of deionized water was added at 5.5 g.
It was fed continuously at a constant speed. After the addition of the monomer mixture and the mixed aqueous solution of the polymerization initiator and emulsifier was completed, the graft reaction was continued at 60° C. for 1 hour.
Adding an antioxidant to the obtained polymer latex,
It was further coagulated with magnesium sulfate, filtered, washed with water, and dried. The obtained polymer was in the form of a white powder. The rubbery polymer content of the graft polymer is 34.1
It was %. Hard resin beads (polymerization composition of styrene and acrylonitrile of 73%: 27%) obtained by separate suspension polymerization were added to the obtained graft polymer powder.
%, intrinsic viscosity MEK 30°C, [η] = 0.50 dl/gr) and kneaded with a Henschel mixer to form a mixed powder with a rubbery polymer content of 15% by weight in the entire composition, This was extruded to obtain pellets. Test specimens were prepared using the pellets by injection molding, and various physical properties were evaluated in accordance with the ASTM method. Izotsu impact strength (1/2″×1/
2'') was 25.5 Kg/cm (notched), and the tensile strength (yield value) was 455 Kg/cm 2 .

比較例 2 実施例4において凝集操作を行なわなかつた他
は同様のグラフト重合を行ない、得られたペレツ
トを用いて同様の方法で諸物性を測定したとこ
ろ、アイゾツト衝撃強さ(1/2″×1/2″)は7.5
Kg・cm/cm(ノツチ付)、引張強さ(降伏値)は
490Kg/cm2であつた。
Comparative Example 2 Graft polymerization was carried out in the same manner as in Example 4 except that the agglomeration operation was not carried out, and various physical properties were measured using the obtained pellets in the same manner. 1/2″) is 7.5
Kg・cm/cm (with notch), tensile strength (yield value)
It was 490Kg/ cm2 .

Claims (1)

【特許請求の範囲】[Claims] 1 共役ジエン系ゴムラテツクスに乳酸水溶液を
加え、ラテツクスのPHを7より低くしてラテツク
スの粒子を凝集肥大させるにあたり系の温度を30
℃以上に保持し、かつ乳酸水溶液中の酸濃度を
1.5〜15%に保ちながらラテツクスに添加し、し
かる後塩基性物質を加える事を特徴とするラテツ
クスの凝集方法。
1 Add lactic acid aqueous solution to conjugated diene rubber latex, lower the pH of the latex to below 7, and raise the temperature of the system to 30°C to coagulate and enlarge the latex particles.
℃ or higher, and the acid concentration in the lactic acid aqueous solution
A method for aggregating latex, which is characterized in that it is added to latex while maintaining it at 1.5 to 15%, and then a basic substance is added.
JP7156080A 1980-05-30 1980-05-30 Coagulation of rubber latex Granted JPS56167704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7156080A JPS56167704A (en) 1980-05-30 1980-05-30 Coagulation of rubber latex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7156080A JPS56167704A (en) 1980-05-30 1980-05-30 Coagulation of rubber latex

Publications (2)

Publication Number Publication Date
JPS56167704A JPS56167704A (en) 1981-12-23
JPS6261044B2 true JPS6261044B2 (en) 1987-12-19

Family

ID=13464221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7156080A Granted JPS56167704A (en) 1980-05-30 1980-05-30 Coagulation of rubber latex

Country Status (1)

Country Link
JP (1) JPS56167704A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241505A (en) * 2001-02-19 2002-08-28 Asahi Kasei Corp Method for producing coagulated latex
KR101319781B1 (en) 2005-08-25 2013-10-17 테크노 폴리머 가부시키가이샤 Rubber-Reinforced Resin, Anti-Static Resin Composition, Molded Article and Laminate
EP2048197B8 (en) 2006-08-03 2017-04-26 Techno Polymer Co., Ltd. Thermoplastic resin composition and molded article
EP2078736A1 (en) 2006-10-31 2009-07-15 Techno Polymer Co., Ltd. Heat-dissipating resin composition, substrate for led mounting, reflector, and substrate for led mounting having reflector portion
CN102037567A (en) 2008-10-03 2011-04-27 大科能树脂有限公司 Solar cell back surface protective film, and solar cell module provided with same
RU2619703C1 (en) * 2016-01-25 2017-05-17 Федеральное государственное унитарное предприятие "Ордена Ленина и ордена Трудового Красного Знамени Научно-исследовательский институт синтетического каучука им. академика С.В. Лебедева" (ФГУП НИИСК) Method of distribution of emulsion polymerization rubber

Also Published As

Publication number Publication date
JPS56167704A (en) 1981-12-23

Similar Documents

Publication Publication Date Title
KR101690381B1 (en) Method for preparing of acrylonitrile-butadiene-styrene graft copolymer and acrylonitrile-butadiene-styrene thermoplastic resin comprising the same
US3944630A (en) Process for preparing an impact resistant thermoplastic graft copolymer composition
JPH08225623A (en) Butadiene-based impact modifier
JP2017538799A (en) Method for producing diene rubber latex and acrylonitrile-butadiene-styrene graft copolymer containing the same
US11820849B2 (en) Method of preparing abs graft copolymer and method of preparing thermoplastic resin composition
KR102361451B1 (en) Method for preparing large particle sized rubber latex, and method for preparing abs graft copolymer
KR100988962B1 (en) Method for preparing rubber latex of a small diameter with a high polymerization rate together with reduced coagulum contents
JPS5821644B2 (en) ABS type resin manufacturing method
US3879496A (en) Low rubber, high-flow and high impact ABS plastics, improved rubber toughener for producing same, and method of manufacture
KR101484357B1 (en) Methods for preparing abs graft copolymer
JPS6261044B2 (en)
KR100519382B1 (en) A method for preparing the themoplastic resin modifier having anti-stress impact and a method for preparing its intermediate
US2469827A (en) Coagulation of emulsion polymers
KR100484720B1 (en) Thermoplastic resin and method for preparing the same
US3600465A (en) Thermoplastic moulding compositions
KR100749657B1 (en) Themoplastic resin modifier having anti-stress impact and method for preparing the same
KR100822158B1 (en) Method for preparing of rubber polymer latex
KR0184705B1 (en) Process for agglomerating rubber latex
KR100998368B1 (en) Method for preparing acrylonitrile-butadiene-styrene based copolymer latex
KR950000196B1 (en) Preparation of thermoplastic resin compositions
US4308355A (en) Process for terpolymer polyblends having high gloss and ductility
US3751526A (en) Process for producing impact resistant thermoplastic resins
JP2003231705A (en) Coagulable rubber latex
JP2000026526A (en) Production of polymer latex
KR0172160B1 (en) Method of particle-hypertrophy of rubber